Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/22067
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, G Ben
dc.contributor.authorLee, Sang Hongen
dc.contributor.authorZhu, Z Xen
dc.contributor.authorBenyamin, Ben
dc.contributor.authorRobinson, M Ren
dc.date.accessioned2017-10-27T16:19:00Z-
dc.date.issued2016-
dc.identifier.citationHeredity, 117(1), p. 51-61en
dc.identifier.issn1365-2540en
dc.identifier.issn0018-067Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/22067-
dc.description.abstractWe develop a novel approach to identify regions of the genome underlying population genetic differentiation in any genetic data where the underlying population structure is unknown, or where the interest is assessing divergence along a gradient. By combining the statistical framework for genome-wide association studies (GWASs) with eigenvector decomposition (EigenGWAS), which is commonly used in population genetics to characterize the structure of genetic data, loci under selection can be identified without a requirement for discrete populations. We show through theory and simulation that our approach can identify regions under selection along gradients of ancestry, and in real data we confirm this by demonstrating LCT to be under selection between HapMap CEU–TSI cohorts, and we then validate this selection signal across European countries in the POPRES samples. HERC2 was also found to be differentiated between both the CEU–TSI cohort and within the POPRES sample, reflecting the likely anthropological differences in skin and hair colour between northern and southern European populations. Controlling for population stratification is of great importance in any quantitative genetic study and our approach also provides a simple, fast and accurate way of predicting principal components in independent samples. With ever increasing sample sizes across many fields, this approach is likely to be greatly utilized to gain individual-level eigenvectors avoiding the computational challenges associated with conducting singular value decomposition in large data sets. We have developed freely available software, Genetic Analysis Repository (GEAR), to facilitate the application of the methods.en
dc.languageenen
dc.publisherNature Publishing Groupen
dc.relation.ispartofHeredityen
dc.titleEigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populationsen
dc.typeJournal Articleen
dc.identifier.doi10.1038/hdy.2016.25en
dcterms.accessRightsGolden
dc.subject.keywordsBiological Psychology (Neuropsychology, Psychopharmacology, Physiological Psychology)en
local.contributor.firstnameG Ben
local.contributor.firstnameSang Hongen
local.contributor.firstnameZ Xen
local.contributor.firstnameBen
local.contributor.firstnameM Ren
local.subject.for2008170101 Biological Psychology (Neuropsychology, Psychopharmacology, Physiological Psychology)en
local.subject.seo2008920110 Inherited Diseases (incl. Gene Therapy)en
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20171026-12010en
local.publisher.placeUnited Kingdomen
local.format.startpage51en
local.format.endpage61en
local.peerreviewedYesen
local.identifier.volume117en
local.identifier.issue1en
local.title.subtitlefinding loci under selection through genome-wide association studies of eigenvectors in structured populationsen
local.access.fulltextYesen
local.contributor.lastnameChenen
local.contributor.lastnameLeeen
local.contributor.lastnameZhuen
local.contributor.lastnameBenyaminen
local.contributor.lastnameRobinsonen
dc.identifier.staffune-id:slee38en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:22257en
local.identifier.handlehttps://hdl.handle.net/1959.11/22067en
dc.identifier.academiclevelAcademicen
local.title.maintitleEigenGWASen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChen, G Ben
local.search.authorLee, Sang Hongen
local.search.authorZhu, Z Xen
local.search.authorBenyamin, Ben
local.search.authorRobinson, M Ren
local.uneassociationUnknownen
local.identifier.wosid000377495900007en
local.year.published2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/286e4d04-d0ed-4812-8ca3-565a547aee03en
local.subject.for2020310207 Statistical and quantitative geneticsen
local.subject.seo2020200101 Diagnosis of human diseases and conditionsen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

58
checked on Nov 23, 2024

Page view(s)

1,212
checked on Jun 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.