Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/22026
Title: An Accuracy Assessment of Derived Digital Elevation Models from Terrestrial Laser Scanning in a Sub-Tropical Forested Environment
Contributor(s): Muir, Jasmine  (author)orcid ; Goodwin, Nicholas (author); Armston, John (author)orcid ; Phinn, Stuart (author)orcid ; Scarth, Peter (author)orcid 
Publication Date: 2017
Open Access: Yes
DOI: 10.3390/rs9080843Open Access Link
Handle Link: https://hdl.handle.net/1959.11/22026
Abstract: Forest structure attributes produced from terrestrial laser scanning (TLS) rely on normalisation of the point cloud values from sensor coordinates to height above ground. One method to do this is through the derivation of an accurate and repeatable digital elevation model (DEM) from the TLS point cloud that is used to adjust the height. The primary aim of this paper was to test a number of TLS scan configurations, filtering options and output DEM grid resolutions (from 0.02 m to 1.0 m) to define a best practice method for DEM generation in sub-tropical forest environments. The generated DEMs were compared to both total station (TS) spot heights and a 1-m DEM generated from airborne laser scanning (ALS) to assess accuracy. The comparison to TS spot heights found that a DEM produced using the minimum elevation (minimum Z value) from a point cloud derived from a single scan had mean errors >1 m for DEM grid resolutions <0.2 m at a 25-m plot radius. At a 1-m grid resolution, the mean error was 0.19 m. The addition of a filtering approach that combined a median filter with a progressive morphological filter and a global percentile filter was able to reduce mean error of the 0.02-m grid resolution DEM to 0.31 m at a 25-m plot radius using all returns. Using multiple scan positions to derive the DEM reduced the mean error for all DEM methods. Our results suggest that a simple minimum Z filtering DEM method using a single scan at the grid resolution of 1 m can produce mean errors <0.2 m, but for a small grid resolution, such as 0.02 m, a more complex filtering approach and multiple scan positions are required to reduced mean errors. The additional validation data provided by the 1-m ALS DEM showed that when using the combined filtering method on a point cloud derived from a single scan at the plot centre, errors between 0.1 and 0.5 m occurred in the TLS DEM for all tested grid resolutions at a plot radius of 25 m. These findings present a protocol for DEM production from TLS data at a range of grid resolutions and provide an overview of factors affecting DEMs produced from single and multiple TLS scan positions.
Publication Type: Journal Article
Source of Publication: Remote Sensing, 9(8), p. 1-24
Publisher: MDPI AG
Place of Publication: Switzerland
ISSN: 2072-4292
Fields of Research (FoR) 2008: 050102 Ecosystem Function
Fields of Research (FoR) 2020: 410203 Ecosystem function
Socio-Economic Objective (SEO) 2008: 960806 Forest and Woodlands Flora, Fauna and Biodiversity
Socio-Economic Objective (SEO) 2020: 180606 Terrestrial biodiversity
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Science and Technology

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

12
checked on Dec 14, 2024

Page view(s)

1,382
checked on Jun 23, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.