Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/21911
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoxley, Peteren
dc.date.accessioned2017-09-26T15:32:00Z-
dc.date.issued2017-
dc.identifier.citationNeural Computation, 29(10), p. 2769-2799en
dc.identifier.issn1530-888Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/21911-
dc.description.abstractThe two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.en
dc.languageenen
dc.publisherMIT Pressen
dc.relation.ispartofNeural Computationen
dc.titleThe Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Imagesen
dc.typeJournal Articleen
dc.identifier.doi10.1162/neco_a_00997en
dc.subject.keywordsBiological Mathematicsen
dc.subject.keywordsNeural, Evolutionary and Fuzzy Computationen
dc.subject.keywordsStatistical Mechanics, Physical Combinatorics and Mathematical Aspects of Condensed Matteren
local.contributor.firstnamePeteren
local.subject.for2008010506 Statistical Mechanics, Physical Combinatorics and Mathematical Aspects of Condensed Matteren
local.subject.for2008080108 Neural, Evolutionary and Fuzzy Computationen
local.subject.for2008010202 Biological Mathematicsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.subject.seo2008970106 Expanding Knowledge in the Biological Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailploxley@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-chute-20170807-094855en
local.publisher.placeUnited States of Americaen
local.format.startpage2769en
local.format.endpage2799en
local.identifier.scopusid85029315918en
local.peerreviewedYesen
local.identifier.volume29en
local.identifier.issue10en
local.title.subtitleA Model of Simple-Cell Receptive Fields and Sparse Structure in Imagesen
local.contributor.lastnameLoxleyen
dc.identifier.staffune-id:ploxleyen
local.profile.orcid0000-0003-3659-734Xen
local.profile.roleauthoren
local.identifier.unepublicationidune:22101en
local.identifier.handlehttps://hdl.handle.net/1959.11/21911en
dc.identifier.academiclevelAcademicen
local.title.maintitleThe Two-Dimensional Gabor Function Adapted to Natural Image Statisticsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLoxley, Peteren
local.uneassociationUnknownen
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/e4604f84-85ce-4f4a-81b1-2a02d053537fen
local.subject.for2020461301 Coding, information theory and compressionen
local.subject.for2020461106 Semi- and unsupervised learningen
local.subject.for2020320904 Computational neuroscience (incl. mathematical neuroscience and theoretical neuroscience)en
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
dc.notification.tokendd487fac-33fb-4dc0-a202-d43d07802ca1en
local.codeupdate.date2022-02-17T11:15:52.901en
local.codeupdate.epersonploxley@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490206 Statistical mechanics, physical combinatorics and mathematical aspects of condensed matteren
local.original.for2020490102 Biological mathematicsen
local.original.for2020undefineden
local.original.seo2020280102 Expanding knowledge in the biological sciencesen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

Page view(s)

2,176
checked on Sep 3, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.