Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/21009
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Ningkuien
dc.contributor.authorLou, Bendongen
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2017-05-22T09:41:00Z-
dc.date.issued2017-
dc.identifier.citationCalculus of Variations and Partial Differential Equations, 56(3), p. 1-36en
dc.identifier.issn1432-0835en
dc.identifier.issn0944-2669en
dc.identifier.urihttps://hdl.handle.net/1959.11/21009-
dc.description.abstractWe consider a reaction-diffusion-advection equation of the form: ut = uxx - β(t)ux + f (t, u) for x ∈ (g(t), h(t)), where β(t) is a T-periodic function representing the intensity of the advection, f (t, u) is a Fisher-KPP type of nonlinearity, T periodic in t, g(t) and h(t) are two free boundaries satisfying Stefan conditions. This equation can be used to describe the population dynamics in time-periodic environment with advection. Its homogeneous version (that is, both β and f are independent of t) was recently studied by Gu et al. (J Funct Anal 269:1714-1768, 2015). In this paper we consider the time-periodic case and study the long time behavior of the solutions. We show that a vanishing-spreading dichotomy result holds when β is small; a vanishing transition-virtual spreading trichotomy result holds when β is a medium-sized function; all solutions vanish when β is large. Here the partition of β(t) depends not only on the "size" β := 1T ∫ T0 β(t)dt of β(t) but also on its "shape" β(t):=β(t)-β.en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofCalculus of Variations and Partial Differential Equationsen
dc.titleFisher-KPP equation with free boundaries and time-periodic advectionsen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s00526-017-1165-1en
dc.subject.keywordsPartial Differential Equationsen
local.contributor.firstnameNingkuien
local.contributor.firstnameBendongen
local.contributor.firstnameMaolinen
local.subject.for2008010110 Partial Differential Equationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20170502-19276en
local.publisher.placeGermanyen
local.identifier.runningnumber61en
local.format.startpage1en
local.format.endpage36en
local.peerreviewedYesen
local.identifier.volume56en
local.identifier.issue3en
local.contributor.lastnameSunen
local.contributor.lastnameLouen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:mzhou6en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:21202en
local.identifier.handlehttps://hdl.handle.net/1959.11/21009en
dc.identifier.academiclevelAcademicen
local.title.maintitleFisher-KPP equation with free boundaries and time-periodic advectionsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSun, Ningkuien
local.search.authorLou, Bendongen
local.search.authorZhou, Maolinen
local.uneassociationUnknownen
local.identifier.wosid000402817100006en
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/c7adb98d-dbe5-46ef-a2bc-81fd04166324en
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

30
checked on Jul 27, 2024

Page view(s)

1,190
checked on Aug 4, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.