Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/20386
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Xiaoxianen
dc.contributor.authorCrawford, John Wen
dc.contributor.authorFlavel, Richarden
dc.contributor.authorYoung, Iainen
dc.date.accessioned2017-04-11T11:00:00Z-
dc.date.issued2016-
dc.identifier.citationJournal of Hydrology, 541(Part B), p. 1020-1029en
dc.identifier.issn0022-1694en
dc.identifier.urihttps://hdl.handle.net/1959.11/20386-
dc.description.abstractThe Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Hydrologyen
dc.titleA multi-scale Lattice Boltzmann model for simulating solute transport in 3D X-ray micro-tomography images of aggregated porous materialsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jhydrol.2016.08.013en
dc.subject.keywordsSoil Physicsen
dc.subject.keywordsCrop and Pasture Productionen
local.contributor.firstnameXiaoxianen
local.contributor.firstnameJohn Wen
local.contributor.firstnameRicharden
local.contributor.firstnameIainen
local.subject.for2008070399 Crop and Pasture Production not elsewhere classifieden
local.subject.for2008050305 Soil Physicsen
local.subject.seo2008961402 Farmland, Arable Cropland and Permanent Cropland Soilsen
local.subject.seo2008970107 Expanding Knowledge in the Agricultural and Veterinary Sciencesen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailxiaoxian.zhang@rothamsted.ac.uken
local.profile.emailrflavel3@une.edu.auen
local.profile.emailiyoung4@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-chute-20161223-224831en
local.publisher.placeNetherlandsen
local.format.startpage1020en
local.format.endpage1029en
local.identifier.scopusid84991782559en
local.peerreviewedYesen
local.identifier.volume541en
local.identifier.issuePart Ben
local.contributor.lastnameZhangen
local.contributor.lastnameCrawforden
local.contributor.lastnameFlavelen
local.contributor.lastnameYoungen
dc.identifier.staffune-id:rflavel3en
dc.identifier.staffune-id:iyoung4en
local.profile.orcid0000-0001-7867-2104en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:20582en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA multi-scale Lattice Boltzmann model for simulating solute transport in 3D X-ray micro-tomography images of aggregated porous materialsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorZhang, Xiaoxianen
local.search.authorCrawford, John Wen
local.search.authorFlavel, Richarden
local.search.authorYoung, Iainen
local.uneassociationUnknownen
local.identifier.wosid000386410400029en
local.year.published2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a653343c-c4d6-4de6-9017-08ca794bac23en
local.subject.for2020410605 Soil physicsen
local.subject.seo2020180605 Soilsen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

29
checked on Jul 6, 2024

Page view(s)

1,352
checked on Jun 9, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.