Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/20320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoxley, Peteren
dc.contributor.authorNadiga, B Ten
dc.date.accessioned2017-04-04T14:51:00Z-
dc.date.issued2013-
dc.identifier.citationPhysics of Fluids, 25(1), p. 1-17en
dc.identifier.issn1089-7666en
dc.identifier.issn1070-6631en
dc.identifier.urihttps://hdl.handle.net/1959.11/20320-
dc.description.abstractWe propose a theory that qualitatively predicts the stability and equilibrium structure of long-lived, quasi-steady flow states in decaying two-dimensional turbulence. This theory combines a maximum entropy principal with a nonlinear parameterization of the vorticity-stream-function dependency of such long-lived states. In particular, this theory predicts unidirectional-flow states that are bistable, exhibit hysteresis, and undergo large abrupt changes in flow topology; and a vortex-pair state that undergoes continuous changes in flow topology. These qualitative predictions are confirmed in numerical simulations of the two-dimensional Navier-Stokes equation. We discuss limitations of the theory, and why a reduced quantitative theory of long-lived flow states is difficult to obtain. We also provide a partial theoretical justification for why certain sets of initial conditions go to certain long-lived flow states.en
dc.languageenen
dc.publisherAmerican Institute of Physicsen
dc.relation.ispartofPhysics of Fluidsen
dc.titleBistability and hysteresis of maximum-entropy states in decaying two-dimensional turbulenceen
dc.typeJournal Articleen
dc.identifier.doi10.1063/1.4774348en
dc.subject.keywordsDynamical Systems in Applicationsen
dc.subject.keywordsNumerical Computationen
dc.subject.keywordsStatistical Mechanics, Physical Combinatorics and Mathematical Aspects of Condensed Matteren
local.contributor.firstnamePeteren
local.contributor.firstnameB Ten
local.subject.for2008010506 Statistical Mechanics, Physical Combinatorics and Mathematical Aspects of Condensed Matteren
local.subject.for2008080205 Numerical Computationen
local.subject.for2008010204 Dynamical Systems in Applicationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.subject.seo2008970102 Expanding Knowledge in the Physical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailploxley@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-chute-20170331-152552en
local.publisher.placeUnited States of Americaen
local.identifier.runningnumber015113en
local.format.startpage1en
local.format.endpage17en
local.identifier.scopusid84873419716en
local.peerreviewedYesen
local.identifier.volume25en
local.identifier.issue1en
local.contributor.lastnameLoxleyen
local.contributor.lastnameNadigaen
dc.identifier.staffune-id:ploxleyen
local.profile.orcid0000-0003-3659-734Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:20517en
dc.identifier.academiclevelAcademicen
local.title.maintitleBistability and hysteresis of maximum-entropy states in decaying two-dimensional turbulenceen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLoxley, Peteren
local.search.authorNadiga, B Ten
local.uneassociationUnknownen
local.year.published2013en
local.subject.for2020490206 Statistical mechanics, physical combinatorics and mathematical aspects of condensed matteren
local.subject.for2020461306 Numerical computation and mathematical softwareen
local.subject.for2020490105 Dynamical systems in applicationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.subject.seo2020280120 Expanding knowledge in the physical sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

5
checked on Jan 11, 2025

Page view(s)

1,126
checked on May 5, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.