Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/20229
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wei, Lei | en |
dc.contributor.author | Du, Yihong | en |
dc.date.accessioned | 2017-03-21T16:51:00Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Journal of Differential Equations, 262(7), p. 3864-3886 | en |
dc.identifier.issn | 1090-2732 | en |
dc.identifier.issn | 0022-0396 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/20229 | - |
dc.description.abstract | In this paper, we study the singular behavior at x=0of positive solutions to the equation −u = λ |x|2 u − |x|σ up, x ∈ \{0}, where ⊂RN(N≥3)is a bounded domain with 0 ∈, and p>1, σ>−2are given constants. For the case λ ≤(N−2)2/4, the singular behavior of all the positive solutions is completely classified in the recent paper [5]. Here we determine the exact singular behavior of all the positive solutions for the remaining case λ >(N−2)2/4. In sharp contrast to the case λ ≤(N−2)2/4, where several converging/blow-up rates of u(x)are possible as |x| →0, we show that when λ >(N−2)2/4, every positive solution u(x)blows up in the same fashion: lim |x|→0 |x| 2+σ p−1 u(x) = λ+ 2 +σ p −1 2 +σ p − 1 +2 −N 1/(p−1) . | en |
dc.language | en | en |
dc.publisher | Academic Press | en |
dc.relation.ispartof | Journal of Differential Equations | en |
dc.title | Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jde.2016.12.004 | en |
dc.subject.keywords | Partial Differential Equations | en |
local.contributor.firstname | Lei | en |
local.contributor.firstname | Yihong | en |
local.subject.for2008 | 010110 Partial Differential Equations | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | ydu@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20170302-094415 | en |
local.publisher.place | United States of America | en |
local.format.startpage | 3864 | en |
local.format.endpage | 3886 | en |
local.identifier.scopusid | 85007566405 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 262 | en |
local.identifier.issue | 7 | en |
local.contributor.lastname | Wei | en |
local.contributor.lastname | Du | en |
dc.identifier.staff | une-id:ydu | en |
local.profile.orcid | 0000-0002-1235-0636 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:20427 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP120100727 | en |
local.search.author | Wei, Lei | en |
local.search.author | Du, Yihong | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000393630500003 | en |
local.year.published | 2017 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/f2748a23-100e-43a7-8ff1-8b5ba46d3c96 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.codeupdate.date | 2021-11-05T11:01:00.841 | en |
local.codeupdate.eperson | ydu@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 490410 Partial differential equations | en |
local.original.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
9
checked on May 18, 2024
Page view(s)
1,250
checked on May 5, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.