Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/20127
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ottazzi, Alessandro | en |
dc.contributor.author | Schmalz, Gerd | en |
dc.date.accessioned | 2017-03-07T13:45:00Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of Mathematical Analysis and Applications, 443(2), p. 1220-1231 | en |
dc.identifier.issn | 1096-0813 | en |
dc.identifier.issn | 0022-247X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/20127 | - |
dc.description.abstract | We describe the automorphisms of a singular multicontact structure, that is a generalisation of the Martinet distribution. Such a structure is interpreted as a para-CR structure on a hypersurface M of a direct product space R²+ x R²-. We introduce the notion of a finite type singularity analogous to CR geometry and, along the way, we prove extension results for para-CR functions and mappings on embedded para-CR manifolds into the ambient space. | en |
dc.language | en | en |
dc.publisher | Academic Press | en |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.title | Singular multicontact structures | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jmaa.2016.06.002 | en |
dcterms.accessRights | Green | en |
dc.subject.keywords | Lie Groups, Harmonic and Fourier Analysis | en |
dc.subject.keywords | Algebraic and Differential Geometry | en |
dc.subject.keywords | Real and Complex Functions (incl. Several Variables) | en |
local.contributor.firstname | Alessandro | en |
local.contributor.firstname | Gerd | en |
local.subject.for2008 | 010106 Lie Groups, Harmonic and Fourier Analysis | en |
local.subject.for2008 | 010111 Real and Complex Functions (incl. Several Variables) | en |
local.subject.for2008 | 010102 Algebraic and Differential Geometry | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schmalz@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-chute-20170228-163609 | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1220 | en |
local.format.endpage | 1231 | en |
local.identifier.scopusid | 84973522047 | en |
local.url.open | https://arxiv.org/abs/1409.2229 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 443 | en |
local.identifier.issue | 2 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Ottazzi | en |
local.contributor.lastname | Schmalz | en |
dc.identifier.staff | une-id:schmalz | en |
local.profile.orcid | 0000-0002-6141-9329 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:20325 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Singular multicontact structures | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/DP130103485 | en |
local.search.author | Ottazzi, Alessandro | en |
local.search.author | Schmalz, Gerd | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000379282100033 | en |
local.year.published | 2016 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/6141ddf0-e0bf-4d5d-94a0-e54a6bc30423 | en |
local.subject.for2020 | 490406 Lie groups, harmonic and Fourier analysis | en |
local.subject.for2020 | 490411 Real and complex functions (incl. several variables) | en |
local.subject.for2020 | 490402 Algebraic and differential geometry | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
2
checked on May 18, 2024
Page view(s)
1,270
checked on May 5, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.