Please use this identifier to cite or link to this item:
Title: Use of Genetic Polymorphisms to Assess the Genetic Structure and Breed Composition of Crossbred Animals
Contributor(s): Weerasinghe, Shalanee (author); Gibson, John  (supervisor); Gondro, Cedric  (supervisor)orcid ; Jeyaruban, Gilbert (supervisor)
Conferred Date: 2016
Copyright Date: 2015
Open Access: Yes
Handle Link:
Abstract: This thesis explores the accuracy of methods to estimate the breed composition of crossbred animals which have unknown pedigree. Herein I present the use of SNP technologies to estimate the breed composition of small-holder crossbred dairy cattle in developing countries for the first time. Before this could be done there was a need to determine: what are the accuracies of different methods for estimating breed composition? The genetic structure of animals, the design of reference populations, the number of SNP markers and the model selected has possible consequences for estimation of breed composition. Once the effect of the above factors on the accuracy of estimation of breed composition is identified, it is possible to estimate with confidence the breed composition of crossbred animals that have no recorded pedigree. The overall aim of this thesis was to investigate the use of high-density SNP data to understand the livestock breed's population structure and estimate the breed composition of crossbred animals.
Publication Type: Thesis Doctoral
Field of Research Codes: 080308 Programming Languages
070201 Animal Breeding
Socio-Economic Outcome Codes: 839899 Environmentally Sustainable Animal Production not elsewhere classified
830308 Pigs
830309 Poultry
Rights Statement: Copyright 2015 - Shalanee Weerasinghe
HERDC Category Description: T2 Thesis - Doctorate by Research
Statistics to Oct 2018: Visitors: 31
Views: 215
Downloads: 20
Appears in Collections:Thesis Doctoral

Files in This Item:
11 files
File Description SizeFormat 
open/MARCXML.xmlMARCXML.xml2.56 kBUnknownView/Open
open/SOURCE03.pdfAbstract458.52 kBAdobe PDF
Download Adobe
open/SOURCE04.pdfThesis795.11 kBAdobe PDF
Download Adobe
1 2 Next
Show full item record

Page view(s)

checked on Dec 29, 2018


checked on Dec 29, 2018
Google Media

Google ScholarTM


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.