Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/18834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaier, Roberten
dc.contributor.authorMoser, Gerharden
dc.contributor.authorChen, Guo-Boen
dc.contributor.authorRipke, Stephanen
dc.contributor.authorCoryell, Williamen
dc.contributor.authorPotash, James Ben
dc.contributor.authorScheftner, William Aen
dc.contributor.authorShi, Jianxinen
dc.contributor.authorWeissman, Myrna Men
dc.contributor.authorHultman, Christina Men
dc.contributor.authorLande´n, Mikaelen
dc.contributor.authorLevinson, Douglas Fen
dc.contributor.authorKendler, Kenneth Sen
dc.contributor.authorSmoller, Jordan Wen
dc.contributor.authorWray, Naomi Ren
dc.contributor.authorLee, S Hongen
dc.date.accessioned2016-04-06T16:45:00Z-
dc.date.issued2015-
dc.identifier.citationAmerican Journal of Human Genetics, 96(2), p. 283-294en
dc.identifier.issn1537-6605en
dc.identifier.issn0002-9297en
dc.identifier.urihttps://hdl.handle.net/1959.11/18834-
dc.description.abstractGenetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk.en
dc.languageenen
dc.publisherCell Pressen
dc.relation.ispartofAmerican Journal of Human Geneticsen
dc.titleJoint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorderen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ajhg.2014.12.006en
dcterms.accessRightsGolden
dc.subject.keywordsQuantitative Genetics (incl. Disease and Trait Mapping Genetics)en
dc.subject.keywordsGenomicsen
dc.subject.keywordsAnimal Breedingen
local.contributor.firstnameRoberten
local.contributor.firstnameGerharden
local.contributor.firstnameGuo-Boen
local.contributor.firstnameStephanen
local.contributor.firstnameWilliamen
local.contributor.firstnameJames Ben
local.contributor.firstnameWilliam Aen
local.contributor.firstnameJianxinen
local.contributor.firstnameMyrna Men
local.contributor.firstnameChristina Men
local.contributor.firstnameMikaelen
local.contributor.firstnameDouglas Fen
local.contributor.firstnameKenneth Sen
local.contributor.firstnameJordan Wen
local.contributor.firstnameNaomi Ren
local.contributor.firstnameS Hongen
local.subject.for2008070201 Animal Breedingen
local.subject.for2008060408 Genomicsen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.seo2008970107 Expanding Knowledge in the Agricultural and Veterinary Sciencesen
local.subject.seo2008970106 Expanding Knowledge in the Biological Sciencesen
local.subject.seo2008970111 Expanding Knowledge in the Medical and Health Sciencesen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20160402-121944en
local.publisher.placeUnited States of Americaen
local.format.startpage283en
local.format.endpage294en
local.peerreviewedYesen
local.identifier.volume96en
local.identifier.issue2en
local.access.fulltextYesen
local.contributor.lastnameMaieren
local.contributor.lastnameMoseren
local.contributor.lastnameChenen
local.contributor.lastnameRipkeen
local.contributor.lastnameCoryellen
local.contributor.lastnamePotashen
local.contributor.lastnameScheftneren
local.contributor.lastnameShien
local.contributor.lastnameWeissmanen
local.contributor.lastnameHultmanen
local.contributor.lastnameLande´nen
local.contributor.lastnameLevinsonen
local.contributor.lastnameKendleren
local.contributor.lastnameSmolleren
local.contributor.lastnameWrayen
local.contributor.lastnameLeeen
dc.identifier.staffune-id:slee38en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:19034en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleJoint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorderen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionNHMRC/APP1080157en
local.relation.grantdescriptionARC/DE130100614en
local.search.authorMaier, Roberten
local.search.authorMoser, Gerharden
local.search.authorChen, Guo-Boen
local.search.authorRipke, Stephanen
local.search.authorCoryell, Williamen
local.search.authorPotash, James Ben
local.search.authorScheftner, William Aen
local.search.authorShi, Jianxinen
local.search.authorWeissman, Myrna Men
local.search.authorHultman, Christina Men
local.search.authorLande´n, Mikaelen
local.search.authorLevinson, Douglas Fen
local.search.authorKendler, Kenneth Sen
local.search.authorSmoller, Jordan Wen
local.search.authorWray, Naomi Ren
local.search.authorLee, S Hongen
local.uneassociationNoen
local.year.published2015en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.for2020310509 Genomicsen
local.subject.for2020310506 Gene mappingen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

177
checked on Oct 26, 2024

Page view(s)

1,154
checked on Jan 14, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.