Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/18833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoser, Gerharden
dc.contributor.authorLee, Sang Hongen
dc.contributor.authorHayes, Ben Jen
dc.contributor.authorGoddard, Michael Een
dc.contributor.authorWray, Naomi Ren
dc.contributor.authorVisscher, Peter Men
dc.date.accessioned2016-04-06T16:48:00Z-
dc.date.issued2015-
dc.identifier.citationPLoS Genetics, 11(4), p. 1-22en
dc.identifier.issn1553-7404en
dc.identifier.issn1553-7390en
dc.identifier.urihttps://hdl.handle.net/1959.11/18833-
dc.description.abstractGene discovery, estimation of heritability captured by SNP arrays, inference on genetic architecture and prediction analyses of complex traits are usually performed using different statistical models and methods, leading to inefficiency and loss of power. Here we use a Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic variance explained by all variants and prediction of unobserved phenotypes in new samples. We apply the method to simulated data of quantitative traits and Welcome Trust Case Control Consortium (WTCCC) data on disease and show that it provides accurate estimates of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it can estimate genetic architecture by partitioning variation across hundreds to thousands of SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had small effects, confirming a substantial polygenic component to common diseases. The proportion of the SNP-based variance explained by large effects (each SNP explaining 1% of the variance) varied markedly between diseases, ranging from almost zero for bipolar disorder to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform profile scoring or mixed model approaches.en
dc.languageenen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPLoS Geneticsen
dc.titleSimultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Modelen
dc.typeJournal Articleen
dc.identifier.doi10.1371/journal.pgen.1004969en
dcterms.accessRightsGolden
dc.subject.keywordsQuantitative Genetics (incl. Disease and Trait Mapping Genetics)en
dc.subject.keywordsBioinformatics Softwareen
dc.subject.keywordsAnimal Breedingen
local.contributor.firstnameGerharden
local.contributor.firstnameSang Hongen
local.contributor.firstnameBen Jen
local.contributor.firstnameMichael Een
local.contributor.firstnameNaomi Ren
local.contributor.firstnamePeter Men
local.subject.for2008070201 Animal Breedingen
local.subject.for2008080301 Bioinformatics Softwareen
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.seo2008970106 Expanding Knowledge in the Biological Sciencesen
local.subject.seo2008970107 Expanding Knowledge in the Agricultural and Veterinary Sciencesen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailgmoser@une.edu.auen
local.profile.emailslee38@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20160402-121153en
local.publisher.placeUnited States of Americaen
local.identifier.runningnumbere1004969en
local.format.startpage1en
local.format.endpage22en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue4en
local.access.fulltextYesen
local.contributor.lastnameMoseren
local.contributor.lastnameLeeen
local.contributor.lastnameHayesen
local.contributor.lastnameGoddarden
local.contributor.lastnameWrayen
local.contributor.lastnameVisscheren
dc.identifier.staffune-id:gmoseren
dc.identifier.staffune-id:slee38en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:19035en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSimultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Modelen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionNHMRC/APP1080157en
local.search.authorMoser, Gerharden
local.search.authorLee, Sang Hongen
local.search.authorHayes, Ben Jen
local.search.authorGoddard, Michael Een
local.search.authorWray, Naomi Ren
local.search.authorVisscher, Peter Men
local.uneassociationUnknownen
local.year.published2015en
local.subject.for2020300109 Non-genetically modified uses of biotechnologyen
local.subject.for2020460103 Applications in life sciencesen
local.subject.for2020310506 Gene mappingen
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

264
checked on Oct 26, 2024

Page view(s)

1,156
checked on Jan 14, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.