On the prescribed scalar curvature problem in RN, local uniqueness and periodicity

Title
On the prescribed scalar curvature problem in RN, local uniqueness and periodicity
Publication Date
2015
Author(s)
Deng, Yinbin
Lin, Chang-Shou
Yan, Shusen
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Elsevier Masson
Place of publication
France
DOI
10.1016/j.matpur.2015.07.003
UNE publication id
une:18777
Abstract
We obtain a local uniqueness result for bubbling solutions of the prescribed scalar curvature problem in RN. Such a result implies that some bubbling solutions preserve the symmetry from the scalar curvature K(y). In particular, we prove in this paper that if K(y)is periodic in y₁ with period 1 and has a local maximum at 0, then a bubbling solution whose blow-up set is {(jL, 0, ···, 0) :j=0, ±1, ±2, ···} must be periodic in y₁ provided the positive integer L is large enough.
Link
Citation
Journal de Mathematiques Pures et Appliquees, 104(6), p. 1013-1044
ISSN
1776-3371
0021-7824
Start page
1013
End page
1044

Files:

NameSizeformatDescriptionLink