Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/18394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorMatsuzawa, Hiroshien
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2016-01-11T15:59:00Z-
dc.date.issued2015-
dc.identifier.citationJournal de Mathematiques Pures et Appliquees, 103(3), p. 741-787en
dc.identifier.issn1776-3371en
dc.identifier.issn0021-7824en
dc.identifier.urihttps://hdl.handle.net/1959.11/18394-
dc.description.abstractWe consider nonlinear diffusion problems of the form ut = Δu + f(u) with Stefan type free boundary conditions, where the nonlinear term f(u) is of monostable, bistable or combustion type. Such problems are used as an alternative model (to the corresponding Cauchy problem) to describe the spreading of a biological or chemical species, where the free boundary represents the expanding front. We are interested in its long-time spreading behavior which, by recent results of Du, Matano and Wang [10], is largely determined by radially symmetric solutions. Therefore we will examine the radially symmetric case, where the equation is satisfied in |x| < h(t), with |x| = h(t) the free boundary. We assume that spreading happens, namely limt→∞h(t) = ∞, limt→∞u(t,|x|) =1. For the case of one space dimension (N = 1), Du and Lou [8]proved that limt→∞h(t)t=c∗ for some c∗ > 0. Subsequently, sharper estimate of the spreading speed was obtained by the authors of the current paper in [11], in the form that limt→∞[h(t) − c∗t] =ˆ Ĥ∈R¹. In this paper, we consider the case N ≥ 2 and show that a logarithmic shifting occurs, namely there exists c͙ > 0 independent of N such that limt→∞[h(t) − c∗t + (N − 1)c͙logt] =ˆ ĥ∈R¹. At the same time, we also obtain a rather clear description of the spreading profile of u(t,r). These results reveal striking differences from the spreading behavior modeled by the corresponding Cauchy problem.en
dc.languageenen
dc.publisherElsevier Massonen
dc.relation.ispartofJournal de Mathematiques Pures et Appliqueesen
dc.titleSpreading speed and profile for nonlinear Stefan problems in high space dimensionsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.matpur.2014.07.008en
dc.subject.keywordsPartial Differential Equationsen
local.contributor.firstnameYihongen
local.contributor.firstnameHiroshien
local.contributor.firstnameMaolinen
local.subject.for2008010110 Partial Differential Equationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20151223-175110en
local.publisher.placeFranceen
local.format.startpage741en
local.format.endpage787en
local.identifier.scopusid84922807617en
local.peerreviewedYesen
local.identifier.volume103en
local.identifier.issue3en
local.contributor.lastnameDuen
local.contributor.lastnameMatsuzawaen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:yduen
dc.identifier.staffune-id:mzhou6en
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:18598en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSpreading speed and profile for nonlinear Stefan problems in high space dimensionsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP120100727en
local.search.authorDu, Yihongen
local.search.authorMatsuzawa, Hiroshien
local.search.authorZhou, Maolinen
local.uneassociationUnknownen
local.identifier.wosid000350529200004en
local.year.published2015en
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-11-08T15:57:19.205en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

57
checked on Dec 28, 2024

Page view(s)

1,066
checked on Oct 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.