Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/18244
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, Yihongen
dc.contributor.authorMatsuzawa, Hiroshien
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2015-12-09T16:44:00Z-
dc.date.issued2014-
dc.identifier.citationSIAM Journal on Mathematical Analysis, 46(1), p. 375-396en
dc.identifier.issn1095-7154en
dc.identifier.issn0036-1410en
dc.identifier.urihttps://hdl.handle.net/1959.11/18244-
dc.description.abstractWe study nonlinear diffusion problems of the form ut = uxx + f(u) with free boundaries. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundaries representing the expanding fronts. For monostable, bistable, and combustion types of nonlinearities, Du and Lou ["Spreading and vanishing in nonlinear diffusion problems with free boundaries," J. Eur. Math. Soc. (JEMS), to appear] obtained a rather complete description of the long-time dynamical behavior of the problem and revealed sharp transition phenomena between spreading (limt→∞u(t, x) = 1) and vanishing (limt→∞ u(t, x) = 0). They also determined the asymptotic spreading speed of the fronts by making use of semiwaves when spreading happens. In this paper, we give a much sharper estimate for the spreading speed of the fronts than that in the above-mentioned work of Du and Lou, and we describe how the solution approaches the semiwave when spreading happens.en
dc.languageenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.ispartofSIAM Journal on Mathematical Analysisen
dc.titleSharp Estimate of the Spreading Speed Determined by Nonlinear Free Boundary Problemsen
dc.typeJournal Articleen
dc.identifier.doi10.1137/130908063en
dc.subject.keywordsPartial Differential Equationsen
local.contributor.firstnameYihongen
local.contributor.firstnameHiroshien
local.contributor.firstnameMaolinen
local.subject.for2008010110 Partial Differential Equationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailydu@une.edu.auen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20151208-083459en
local.publisher.placeUnited States of Americaen
local.format.startpage375en
local.format.endpage396en
local.identifier.scopusid84897671327en
local.peerreviewedYesen
local.identifier.volume46en
local.identifier.issue1en
local.contributor.lastnameDuen
local.contributor.lastnameMatsuzawaen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:yduen
dc.identifier.staffune-id:mzhou6en
local.profile.orcid0000-0002-1235-0636en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:18449en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSharp Estimate of the Spreading Speed Determined by Nonlinear Free Boundary Problemsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/DP120100727en
local.search.authorDu, Yihongen
local.search.authorMatsuzawa, Hiroshien
local.search.authorZhou, Maolinen
local.uneassociationUnknownen
local.identifier.wosid000333591800013en
local.year.published2014en
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.codeupdate.date2021-11-08T16:09:10.263en
local.codeupdate.epersonydu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020490410 Partial differential equationsen
local.original.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

118
checked on Dec 28, 2024

Page view(s)

1,032
checked on Sep 10, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.