Regularity and Asymptotic Behavior of Nonlinear Stefan Problems

Title
Regularity and Asymptotic Behavior of Nonlinear Stefan Problems
Publication Date
2014
Author(s)
Du, Yihong
( author )
OrcID: https://orcid.org/0000-0002-1235-0636
Email: ydu@une.edu.au
UNE Id une-id:ydu
Matano, Hiroshi
Wang, Kelei
Type of document
Journal Article
Language
en
Entity Type
Publication
Publisher
Springer
Place of publication
Germany
DOI
10.1007/s00205-013-0710-0
UNE publication id
une:17257
Abstract
We study the following nonlinear Stefan problem 'ut−dΔu=g(u)u=0andut=μ|∇xu|2u(0,x)=u0(x)forx∈Ω(t),t>0,forx∈ (t),t>0,forx∈Ω0', where Ω(t)⊂Rn ( n≧2 ) is bounded by the free boundary Γ(t) , with Ω(0)=Ω0 , μ and d are given positive constants. The initial function u 0 is positive in Ω0 and vanishes on ∂Ω0 . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary Γ(t) is smooth outside the closed convex hull of Ω0 , and as t→∞ , either Ω(t) expands to the entire Rn , or it stays bounded. Moreover, in the former case, Γ(t) converges to the unit sphere when normalized, and in the latter case, u→0 uniformly. When g(u)=au−bu2, we further prove that in the case Ω(t) expands to Rn , u→a/b as t→∞ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists μ∗≧0 such that Ω(t) expands to Rn exactly when μ>μ∗.
Link
Citation
Archive for Rational Mechanics and Analysis, 212(3), p. 957-1010
ISSN
1432-0673
0003-9527
Start page
957
End page
1010

Files:

NameSizeformatDescriptionLink