Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/16418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatbri, Houssemen
dc.contributor.authorKwan, Paul Hen
dc.contributor.authorKameyama, Keisukeen
dc.date.accessioned2015-01-07T14:57:00Z-
dc.date.issued2014-
dc.identifier.citationProceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), p. 2085-2092en
dc.identifier.isbn9781479914883en
dc.identifier.urihttps://hdl.handle.net/1959.11/16418-
dc.description.abstractQuery spotting in document images is a subclass of Content-Based Image Retrieval (CBIR) algorithms concerned with detecting occurrences of a query in a document image. Due to noise and complexity of document images, spotting can be a challenging task and easily prone to false positives and partially incorrect matches, thereby reducing the overall precision of the algorithm. A robust and accurate spotting algorithm is essential to our current research on sketch-based retrieval of digitized lecture materials. We have recently proposed a modular spotting algorithm in [1]. Compared to existing methods, our algorithm is both application-independent and segmentation-free. However, it faces the same challenges of noise and complexity of images. In this paper, inspired by our earlier research on optimizing parameter settings for CBIR using an evolutionary algorithm [2][3], we introduce a Genetic Algorithm-based optimization step in our spotting algorithm to improve each spotting result. Experiments using an image dataset of journal pages reveal promising performance, in that the precision is significantly improved but without compromising the recall of the overall spotting result.en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC)en
dc.titleA Modular Approach for Query Spotting in Document Images and Its Optimization Using Genetic Algorithmsen
dc.typeConference Publicationen
dc.relation.conferenceCEC 2014: IEEE Congress on Evolutionary Computationen
dc.identifier.doi10.1109/CEC.2014.6900475en
dc.subject.keywordsNeural, Evolutionary and Fuzzy Computationen
dc.subject.keywordsComputer Visionen
dc.subject.keywordsImage Processingen
local.contributor.firstnameHoussemen
local.contributor.firstnamePaul Hen
local.contributor.firstnameKeisukeen
local.subject.for2008080106 Image Processingen
local.subject.for2008080104 Computer Visionen
local.subject.for2008080108 Neural, Evolutionary and Fuzzy Computationen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.subject.seo2008970110 Expanding Knowledge in Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailchatbri.houcem@gmail.comen
local.profile.emailwkwan2@une.edu.auen
local.profile.emailKeisuke.Kameyama@cs.tsukuba.ac.jpen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20141223-163627en
local.date.conference6th - 11th July, 2014en
local.conference.placeBeijing, Chinaen
local.publisher.placeLos Alamitos, United States of Americaen
local.format.startpage2085en
local.format.endpage2092en
local.peerreviewedYesen
local.contributor.lastnameChatbrien
local.contributor.lastnameKwanen
local.contributor.lastnameKameyamaen
dc.identifier.staffune-id:wkwan2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:16655en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Modular Approach for Query Spotting in Document Images and Its Optimization Using Genetic Algorithmsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsCEC 2014: IEEE Congress on Evolutionary Computation, Beijing, China, 6th - 11th July, 2014en
local.search.authorChatbri, Houssemen
local.search.authorKwan, Paul Hen
local.search.authorKameyama, Keisukeen
local.uneassociationUnknownen
local.year.published2014en
local.subject.for2020460306 Image processingen
local.subject.for2020460301 Active sensingen
local.subject.for2020460203 Evolutionary computationen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
local.subject.seo2020220401 Application software packagesen
local.date.start2014-07-06-
local.date.end2014-07-11-
Appears in Collections:Conference Publication
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

2
checked on Jul 6, 2024

Page view(s)

1,324
checked on Jun 30, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.