Please use this identifier to cite or link to this item:
Title: Crop-available water and agronomic management, rather than nitrogen supply, primarily determine grain yield of commercial chickpea in northern New South Wales
Contributor(s): Elias, Natalie V (author); Herridge, David  (author)orcid 
Publication Date: 2014
DOI: 10.1071/CP13397
Handle Link:
Abstract: Chickpea ('Cicer arietinum' L.) is considered an effective rotation crop in Australia's northern grains region; however, concerns exist that grain yields of commercial crops are reduced because of nitrogen (N) deficiency related to inadequate nodulation and N₂ fixation. As part of a program to address these issues, we report on the monitoring of 22 commercial fields around Moree, northern NSW, during 2005-07 that were designated for chickpea, and an associated farmer survey (81 respondents). Our objectives were to determine whether the monitored crops were limited by N and to develop recommendations that would optimise productivity for farmers growing chickpeas. In 2005, only soil water and nitrate data were collected from the six fields designated for chickpea. In 2006 and 2007, almost complete datasets were assembled from the 16 chickpea fields or crops, including soil water and nitrate at sowing, row spacing, plant density, plant height, stubble cover, weed density and composition, shoot biomass, grain yield, nodulation and N₂ fixation (%N derived from the atmosphere (%Ndfa) and total crop N fixed). The associated survey provided insights into farmer knowledge of, and practices related to, inoculation. Field monitoring indicated moderate-high levels of soil nitrate at sowing (averages 114, 126 and 110 kg N ha⁻¹ to 1.2 m depth for 2005, 2006 and 2007, respectively) and generally low plant nodulation (0.11-1.16 g fresh wt plant⁻¹) and N₂ fixation (0-62%Ndfa and 0-87 kg N ha⁻¹). Grain yield varied between 0.53 and 2.91 t ha⁻¹ across the 14 monitored crops, with averages of 1.89 t ha⁻¹ in 2006 and 1.02 t ha⁻¹ in 2007. Although total crop N and grain yields were highly correlated with total (i.e. soil + fixed) N supply, there was no evidence that the monitored chickpea crops were N-limited. Rather, we conclude that soil N and biologically fixed N were complementary in supplying N to the crops, the grain yields of which were primarily determined by the supply of plant-available water (PAW) and water-use efficiency (WUE). Simple and multivariate regression analyses showed that stubble cover during the fallow (positively correlated with sowing PAW) and sowing date (positively correlated with crop WUE) were significant determinants of grain yield. We conclude that farmers could improve inoculation practice by ensuring the time between seed inoculation and sowing is always <24 h.
Publication Type: Journal Article
Source of Publication: Crop and Pasture Science, 65(5), p. 442-452
Publisher: CSIRO Publishing
Place of Publication: Australia
ISSN: 1836-0947
Field of Research (FOR): 050303 Soil Biology
070306 Crop and Pasture Nutrition
070302 Agronomy
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Statistics to Oct 2018: Visitors: 255
Views: 325
Downloads: 0
Appears in Collections:Journal Article
School of Environmental and Rural Science

Files in This Item:
2 files
File Description SizeFormat 
Show full item record


checked on Dec 3, 2018

Page view(s)

checked on May 2, 2019
Google Media

Google ScholarTM



Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.