Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/16192
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gao, Lianli | en |
dc.contributor.author | Campbell, Hamish | en |
dc.contributor.author | Bidder, Owen R | en |
dc.contributor.author | Hunter, Jane | en |
dc.date.accessioned | 2014-12-03T15:15:00Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Ecological Informatics, v.13, p. 47-56 | en |
dc.identifier.issn | 1878-0512 | en |
dc.identifier.issn | 1574-9541 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/16192 | - |
dc.description.abstract | Increasingly, animal biologists are taking advantage of low cost micro-sensor technology, by deploying accelerometers to monitor the behavior and movement of a broad range of species. The result is an avalanche of complex tri-axial accelerometer data streams that capture observations and measurements of a wide range of animal body motion and posture parameters. Analysis of these parameters enables the identification of specific animal behaviors-however the analysis process is immature with much of the activity identification steps undertaken manually and subjectively. Consequently, there is an urgent need for the development of new tools to streamline the management, analysis, indexing, querying and visualization of such data. In this paper, we present a Semantic Annotation and Activity Recognition (SAAR) system which supports storing, visualizing, annotating and automatic recognition of tri-axial accelerometer data streams by integrating semantic annotation and visualization services with Support Vector Machine (SVM) techniques. The interactive Web interface enables biologists to visualize and correlate 3D accelerometer data streams with associated video streams. It also enables domain experts to accurately annotate or tag segments of tri-axial accelerometer data streams, with standardized terms from an activity ontology. These annotated data streams can then be used to dynamically train a hierarchical SVM activity classification model, which can be applied to new accelerometer data streams to automatically recognize specific activities. This paper describes the design, implementation and functional details of the SAAR system and the results of the evaluation experiments that assess the performance, usability and efficiency of the system. The evaluation results indicate that the SAAR system enables ecologists with little knowledge of machine learning techniques to collaboratively build classification models with high levels of accuracy, sensitivity, precision and specificity. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Ecological Informatics | en |
dc.title | A Web-based semantic tagging and activity recognition system for species' accelerometry data | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.ecoinf.2012.09.003 | en |
dc.subject.keywords | Wildlife and Habitat Management | en |
dc.subject.keywords | Animal Behaviour | en |
local.contributor.firstname | Lianli | en |
local.contributor.firstname | Hamish | en |
local.contributor.firstname | Owen R | en |
local.contributor.firstname | Jane | en |
local.subject.for2008 | 050211 Wildlife and Habitat Management | en |
local.subject.for2008 | 060801 Animal Behaviour | en |
local.subject.seo2008 | 960899 Flora, Fauna and Biodiversity of Environments not elsewhere classified | en |
local.subject.seo2008 | 970106 Expanding Knowledge in the Biological Sciences | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | hcampbe8@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20141128-101959 | en |
local.publisher.place | Netherlands | en |
local.format.startpage | 47 | en |
local.format.endpage | 56 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 13 | en |
local.contributor.lastname | Gao | en |
local.contributor.lastname | Campbell | en |
local.contributor.lastname | Bidder | en |
local.contributor.lastname | Hunter | en |
dc.identifier.staff | une-id:hcampbe8 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:16429 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/16192 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Web-based semantic tagging and activity recognition system for species' accelerometry data | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Gao, Lianli | en |
local.search.author | Campbell, Hamish | en |
local.search.author | Bidder, Owen R | en |
local.search.author | Hunter, Jane | en |
local.uneassociation | Unknown | en |
local.year.published | 2013 | en |
local.subject.for2020 | 410407 Wildlife and habitat management | en |
local.subject.for2020 | 310901 Animal behaviour | en |
local.subject.seo2020 | 280102 Expanding knowledge in the biological sciences | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
31
checked on Jun 8, 2024
Page view(s)
1,254
checked on Jun 9, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.