Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/16192
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Lianlien
dc.contributor.authorCampbell, Hamishen
dc.contributor.authorBidder, Owen Ren
dc.contributor.authorHunter, Janeen
dc.date.accessioned2014-12-03T15:15:00Z-
dc.date.issued2013-
dc.identifier.citationEcological Informatics, v.13, p. 47-56en
dc.identifier.issn1878-0512en
dc.identifier.issn1574-9541en
dc.identifier.urihttps://hdl.handle.net/1959.11/16192-
dc.description.abstractIncreasingly, animal biologists are taking advantage of low cost micro-sensor technology, by deploying accelerometers to monitor the behavior and movement of a broad range of species. The result is an avalanche of complex tri-axial accelerometer data streams that capture observations and measurements of a wide range of animal body motion and posture parameters. Analysis of these parameters enables the identification of specific animal behaviors-however the analysis process is immature with much of the activity identification steps undertaken manually and subjectively. Consequently, there is an urgent need for the development of new tools to streamline the management, analysis, indexing, querying and visualization of such data. In this paper, we present a Semantic Annotation and Activity Recognition (SAAR) system which supports storing, visualizing, annotating and automatic recognition of tri-axial accelerometer data streams by integrating semantic annotation and visualization services with Support Vector Machine (SVM) techniques. The interactive Web interface enables biologists to visualize and correlate 3D accelerometer data streams with associated video streams. It also enables domain experts to accurately annotate or tag segments of tri-axial accelerometer data streams, with standardized terms from an activity ontology. These annotated data streams can then be used to dynamically train a hierarchical SVM activity classification model, which can be applied to new accelerometer data streams to automatically recognize specific activities. This paper describes the design, implementation and functional details of the SAAR system and the results of the evaluation experiments that assess the performance, usability and efficiency of the system. The evaluation results indicate that the SAAR system enables ecologists with little knowledge of machine learning techniques to collaboratively build classification models with high levels of accuracy, sensitivity, precision and specificity.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofEcological Informaticsen
dc.titleA Web-based semantic tagging and activity recognition system for species' accelerometry dataen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.ecoinf.2012.09.003en
dc.subject.keywordsWildlife and Habitat Managementen
dc.subject.keywordsAnimal Behaviouren
local.contributor.firstnameLianlien
local.contributor.firstnameHamishen
local.contributor.firstnameOwen Ren
local.contributor.firstnameJaneen
local.subject.for2008050211 Wildlife and Habitat Managementen
local.subject.for2008060801 Animal Behaviouren
local.subject.seo2008960899 Flora, Fauna and Biodiversity of Environments not elsewhere classifieden
local.subject.seo2008970106 Expanding Knowledge in the Biological Sciencesen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailhcampbe8@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20141128-101959en
local.publisher.placeNetherlandsen
local.format.startpage47en
local.format.endpage56en
local.peerreviewedYesen
local.identifier.volume13en
local.contributor.lastnameGaoen
local.contributor.lastnameCampbellen
local.contributor.lastnameBidderen
local.contributor.lastnameHunteren
dc.identifier.staffune-id:hcampbe8en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:16429en
local.identifier.handlehttps://hdl.handle.net/1959.11/16192en
dc.identifier.academiclevelAcademicen
local.title.maintitleA Web-based semantic tagging and activity recognition system for species' accelerometry dataen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorGao, Lianlien
local.search.authorCampbell, Hamishen
local.search.authorBidder, Owen Ren
local.search.authorHunter, Janeen
local.uneassociationUnknownen
local.year.published2013en
local.subject.for2020410407 Wildlife and habitat managementen
local.subject.for2020310901 Animal behaviouren
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
Appears in Collections:Journal Article
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

31
checked on Jun 8, 2024

Page view(s)

1,254
checked on Jun 9, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.