Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/14312
Title: Global proteomic profiling of the membrane compartment of bovine testis cell populations
Contributor(s): Colgrave, Michelle L (author); Stockwell, Sally (author); Grace, Aimee  (author); McMillan, Mary  (author)orcid ; Davey, Rhonda  (author); Lehnert, Sigrid (author); Schmoelzl, Sabine  (author)
Publication Date: 2013
DOI: 10.5584/jiomics.v3i2.136
Handle Link: https://hdl.handle.net/1959.11/14312
Abstract: Spermatogonial stem cells hold enormous potential in mammalian reproductive medicine through the preservation of gametes, the restoration of fertility, enhancement of germ-lineage genetic manipulation and the improvement in our understanding of stem cell biology. Here we describe the protein profiles of the membrane compartment of bovine testicular cell isolates which were enriched for germ cells using differential plating. The isolated cells were characterised with antibodies to UCHL1 (previously known as PGP9.5) for type A spermatogonia; DDX4 (previously known as VASA) for germ cells and vimentin for Sertoli cells. Ultraconservative techniques were used to specifically isolate cell membranes, with membrane protein identifications significantly increased when compared to whole cell lysates. We utilised the filter-aided sample preparation protocol for improved digestion efficiency of membrane proteins. Using ESI-LC-MS/MS, we compared the proteins present in two cell populations. A total of 1,387 proteins were identified in bovine testis cell isolates, of which 39% were membrane associated. A total of 64 proteins were differentially expressed in the non-adhered fraction (enriched for undifferentiated germ cells) compared to the adhered fraction, of which 16 were unique to this cell population and the remaining 48 showed a two-fold change (increase when compared to the adhered cell population) as judged by spectral counting. This analysis revealed a number of candidate germ cell markers including the known markers, DDX4 and UCHL1. The proteomic profiles generated in this study support and complement transcription data on gene expression and histological levels, and reinforce the potential of proteomics in identifying and characterising the protein effectors of self-renewal and/or differentiation in stem cells.
Publication Type: Journal Article
Source of Publication: Journal of Integrated OMICS, 3(2), p. 99-111
Publisher: Journal of Integrated OMICS
Place of Publication: Portugal
ISSN: 2182-0287
Fields of Research (FoR) 2008: 060110 Receptors and Membrane Biology
060602 Animal Physiology - Cell
060109 Proteomics and Intermolecular Interactions (excl Medical Proteomics)
Fields of Research (FoR) 2020: 310110 Receptors and membrane biology
310909 Animal physiology - cell
310109 Proteomics and intermolecular interactions (excl. medical proteomics)
Socio-Economic Objective (SEO) 2008: 970106 Expanding Knowledge in the Biological Sciences
Socio-Economic Objective (SEO) 2020: 280102 Expanding knowledge in the biological sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Science and Technology

Files in This Item:
3 files
File Description SizeFormat 
Show full item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.