Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/12768
Title: The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system
Contributor(s): Tighe, Matthew  (author); Lockwood, Peter V  (author); Ashley, Paul  (author); Murison, Robert D  (author); Wilson, Susan C  (author)orcid 
Publication Date: 2013
DOI: 10.1016/j.scitotenv.2013.05.032
Handle Link: https://hdl.handle.net/1959.11/12768
Abstract: The Macleay floodplain on the north coast of New South Wales, Australia, has surface soil concentrations of up to 40 mg kg⁻¹ arsenic (As) and antimony (Sb), due to historical mining practices in the upper catchment. The floodplain also contains areas of active and potential acid sulfate soils (ASS). Some of these areas are purposely re-flooded to halt oxidation processes, but the effect of this management on the metalloid mobility and phytoavailability of the metalloids present is unknown. This study investigated the changes to soil solution As and Sb, associations of metalloids with soil solid phases, and uptake into two common pasture species following 20 weeks of flooding in a controlled environment. The effect of an ASS subsoil was also investigated. The soil solution concentration and availability of the metalloids was in some instances higher in the floodplain soils than would generally be expected in soils with comparable contamination. There appeared to be few changes to soil solution concentrations or phase associations with flooding in this short term study, due to the high acid buffering and poise of the investigated soils. A strong relationship was found between the relative uptake of Sb into pastures and the oxalate extractable Fe in the soil, which was taken as a proxy for non-crystalline iron (Fe) hydroxides. This relationship was dependent on flooding and was absent for As. Further targeted investigations into metalloid speciation kinetics and the stability of soil solid phases with flooding management are recommended.
Publication Type: Journal Article
Source of Publication: Science of the Total Environment, v.463-464, p. 151-160
Publisher: Elsevier BV
Place of Publication: Netherlands
ISSN: 1879-1026
0048-9697
Fields of Research (FoR) 2008: 050206 Environmental Monitoring
050304 Soil Chemistry (excl Carbon Sequestration Science)
Fields of Research (FoR) 2020: 410599 Pollution and contamination not elsewhere classified
300204 Agricultural management of nutrients
Socio-Economic Objective (SEO) 2008: 961401 Coastal and Estuarine Soils
961103 Physical and Chemical Conditions of Water in Fresh, Ground and Surface Water Environments (excl. Urban and Industrial Use)
961402 Farmland, Arable Cropland and Permanent Cropland Soils
Socio-Economic Objective (SEO) 2020: 180202 Coastal erosion
180306 Measurement and assessment of freshwater quality (incl. physical and chemical conditions of water)
180605 Soils
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

25
checked on Mar 16, 2024

Page view(s)

1,064
checked on Apr 2, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.