Please use this identifier to cite or link to this item:
Title: Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation
Contributor(s): Daetwyler, H D (author); Swan, Andrew  (author); Van Der Werf, Julius H  (author)orcid ; Hayes, Ben J (author)
Publication Date: 2012
Open Access: Yes
DOI: 10.1186/1297-9686-44-33Open Access Link
Handle Link:
Abstract: Background: Genomic predictions can be applied early in life without impacting selection candidates. This is especially useful for meat quality traits in sheep. Carcass and novel meat quality traits were predicted in a multi-breed sheep population that included Merino, Border Leicester, Polled Dorset and White Suffolk sheep and their crosses. Methods: Prediction of breeding values by best linear unbiased prediction (BLUP) based on pedigree information was compared to prediction based on genomic BLUP (GBLUP) and a Bayesian prediction method (BayesR). Cross-validation of predictions across sire families was used to evaluate the accuracy of predictions based on the correlation of predicted and observed values and the regression of observed on predicted values was used to evaluate bias of methods. Accuracies and regression coefficients were calculated using either phenotypes or adjusted phenotypes as observed variables. Results and conclusions: Genomic methods increased the accuracy of predicted breeding values to on average 0.2 across traits (range 0.07 to 0.31), compared to an average accuracy of 0.09 for pedigree-based BLUP. However, for some traits with smaller reference population size, there was no increase in accuracy or it was small. No clear differences in accuracy were observed between GBLUP and BayesR. The regression of phenotypes on breeding values was close to 1 for all methods, indicating little bias, except for GBLUP and adjusted phenotypes (regression = 0.78). Accuracies calculated with adjusted (for fixed effects) phenotypes were less variable than accuracies based on unadjusted phenotypes, indicating that fixed effects influence the latter. Increasing the reference population size increased accuracy, indicating that adding more records will be beneficial. For the Merino, Polled Dorset and White Suffolk breeds, accuracies were greater than for the Border Leicester breed due to the smaller sample size and limited across-breed prediction. BayesR detected only a few large marker effects but one region on chromosome 6 was associated with large effects for several traits. Cross-validation produced very similar variability of accuracy and regression coefficients for BLUP, GBLUP and BayesR, showing that this variability is not a property of genomic methods alone. Our results show that genomic selection for novel difficult-to-measure traits is a feasible strategy to achieve increased genetic gain.
Publication Type: Journal Article
Source of Publication: Genetics Selection Evolution, v.44, p. 1-11
Publisher: BioMed Central Ltd
Place of Publication: United Kingdom
ISSN: 1297-9686
Field of Research (FOR): 060412 Quantitative Genetics (incl Disease and Trait Mapping Genetics)
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Statistics to Oct 2018: Visitors: 423
Views: 449
Downloads: 3
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
School of Environmental and Rural Science

Files in This Item:
2 files
File Description SizeFormat 
Show full item record


checked on Nov 30, 2018

Page view(s)

checked on Feb 18, 2019
Google Media

Google ScholarTM



Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.