Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/10433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTighe, Matthewen
dc.contributor.authorMunoz-Robles, Carlosen
dc.contributor.authorReid, Nicken
dc.contributor.authorWilson, Brianen
dc.contributor.authorBriggs, Sue Ven
dc.date.accessioned2012-06-13T11:50:00Z-
dc.date.issued2012-
dc.identifier.citationEarth Surface Processes and Landforms, 37(6), p. 620-632en
dc.identifier.issn1096-9837en
dc.identifier.issn0197-9337en
dc.identifier.urihttps://hdl.handle.net/1959.11/10433-
dc.description.abstractThere has been limited success in determining critical thresholds of ground cover or soil characteristics that relate to significant changes in runoff or sediment production at the microscale (<1 m²), particularly in semi-arid systems where management of ground cover is critical. Despite this lack of quantified thresholds, there is an increasing research focus on the two-phase mosaic of vegetation patches and inter-patches in semi-arid systems. In order to quantify ground cover and soil related thresholds for runoff and sediment production, we used a data mining technique known as conditional inference tree analysis to determine statistically significant values of a range of measured variables that predicted average runoff, peak runoff, sediment concentration and sediment production at the microscale. On Chromic Luvisols across a range of vegetation states in semi-arid south-eastern Australia, large changes in runoff and sediment production were related to a hierarchy of different variables and thresholds, but the percentage of bare soil played a primary role in predicting runoff and sediment production in most instances. The identified thresholds match well with previous thresholds found in semi-arid and temperate regions (including the approximate values of 30%, 50% and 70% total ground cover). The analysis presented here identified the critical role of soil surface roughness, particularly where total ground cover is sparse. The analysis also provided evidence that a two-phase mosaic of patches and inter-patches identified via rapid visual assessment could be further delineated into distinct groups of hydrological response, or a multi-phase rather than a two-phase system. The approach used here may aid in assessing scale-dependent responses and address data non-linearity in studies of semi-arid hydrology.en
dc.languageenen
dc.publisherJohn Wiley & Sons Ltden
dc.relation.ispartofEarth Surface Processes and Landformsen
dc.titleHydrological thresholds of soil surface properties identified using conditional inference tree analysisen
dc.typeJournal Articleen
dc.identifier.doi10.1002/esp.3191en
dc.subject.keywordsSurface Processesen
local.contributor.firstnameMatthewen
local.contributor.firstnameCarlosen
local.contributor.firstnameNicken
local.contributor.firstnameBrianen
local.contributor.firstnameSue Ven
local.subject.for2008040607 Surface Processesen
local.subject.seo2008960510 Ecosystem Assessment and Management of Sparseland, Permanent Grassland and Arid Zone Environmentsen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolOffice of Faculty of Science, Agriculture, Business and Lawen
local.profile.emailmtighe2@une.edu.auen
local.profile.emailcarlos.munoz@inecol.edu.mxen
local.profile.emailnrei3@une.edu.auen
local.profile.emailbwilson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20120613-090446en
local.publisher.placeUnited Kingdomen
local.format.startpage620en
local.format.endpage632en
local.identifier.scopusid84859832506en
local.peerreviewedYesen
local.identifier.volume37en
local.identifier.issue6en
local.contributor.lastnameTigheen
local.contributor.lastnameMunoz-Roblesen
local.contributor.lastnameReiden
local.contributor.lastnameWilsonen
local.contributor.lastnameBriggsen
dc.identifier.staffune-id:mtighe2en
dc.identifier.staffune-id:cmunozen
dc.identifier.staffune-id:nrei3en
dc.identifier.staffune-id:bwilson7en
local.profile.orcid0000-0002-4377-9734en
local.profile.orcid0000-0002-7983-0909en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:10628en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleHydrological thresholds of soil surface properties identified using conditional inference tree analysisen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorTighe, Matthewen
local.search.authorMunoz-Robles, Carlosen
local.search.authorReid, Nicken
local.search.authorWilson, Brianen
local.search.authorBriggs, Sue Ven
local.uneassociationUnknownen
local.identifier.wosid000302896400004en
local.year.published2012en
local.subject.for2020370901 Geomorphology and earth surface processesen
local.subject.seo2020180601 Assessment and management of terrestrial ecosystemsen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 28, 2024

Page view(s)

894
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.