Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/10392
Title: Exploring breeding opportunities for reduced thermal sensitivity of feed intake in the lactating sow
Contributor(s): Bergsma, R (author); Hermesch, Susanne  (author)orcid 
Publication Date: 2012
DOI: 10.2527/jas.2011-4021
Handle Link: https://hdl.handle.net/1959.11/10392
Abstract: The aims of this study were, first, to evaluate the effects of climatic variables on daily feed intake of lactating sows and, second, to establish whether the response of sows to variation in temperature on feed intake during lactation was heritable. A total of 82,614 records for daily feed intake during lactation were available for 848 sows with 3,369 litters farrowing from January 2000 to December 2007. Climatic parameters available from the nearest weather station were maximum 24 h outside temperature, day length changes, and humidity. Although ambient room temperature was modified at the animal level in the farrowing shed, these climatic variables still had a significant effect on feed intake during lactation. Regression coefficients temperature and humidity were 0.01385 ± 0.00300 (temperature) - 0.00031 ± 0.00009 (temperature²) and 0.01443 ± 0.00620 (humidity) - 0.00009 ± 0.00004 (humidity²). There was an interaction between temperature and humidity, partly due to the climate control in the farrowing shed. At low temperature, feed intake increased considerably with greater humidity, in contrast to a small reduction in feed intake with greater humidity at high temperature. Day length change was modeled with a cosine function. At the start of autumn (September 21), sows ate 0.36 ± 0.056 kg/d less feed than at the start of spring (March 21). Daily feed intake during lactation was described as a function of days in lactation and as a function of both days in lactation and temperature using random regression models. The average heritability and repeatability summarized over the day in lactation at the mean temperature were 0.21 and 0.69, respectively. Genetic variance of temperature response on feed intake was less than 20% of the day effect. The permanent environmental variance was 2-fold (day) and 4-fold (temperature) greater than the corresponding additive genetic variance. Heritabilities of daily feed intake were greater during the first week of lactation compared with the rest of lactation. The genetic correlation between days decreased as time increased down to about 0.2 between the first and last day in lactation. The genetic correlation between feed intake records at the extreme temperatures decreased to about -0.35. It was concluded that random regression models are useful for research and results may be used to develop simpler models that can be implemented in practical breeding programs. An effect of temperature on lactation feed intake was found even in this climate-controlled environment located in a temperate climate zone. Larger effects are expected in more extreme climatic conditions with less temperature-controlled farrowing sheds.
Publication Type: Journal Article
Source of Publication: Journal of Animal Science, 90(1), p. 85-98
Publisher: American Society of Animal Science
Place of Publication: United States of America
ISSN: 1525-3163
0021-8812
Fields of Research (FoR) 2008: 070201 Animal Breeding
Fields of Research (FoR) 2020: 300305 Animal reproduction and breeding
Socio-Economic Objective (SEO) 2008: 830308 Pigs
Socio-Economic Objective (SEO) 2020: 100410 Pigs
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

21
checked on Dec 21, 2024

Page view(s)

1,852
checked on Mar 8, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.