Investigating Teachers' Technology Use to Enhance Student Understanding of Algebra

Michael Paddy Masige

Cert. IV, Small Business Management—Small Business Centre, New England/North West

Certificate of Religious Education (NSW)-Catholic Diocese of Armidale

Bachelor of Science with Education (Hons)-Makerere University

Bachelor of Education-University of New England

Master of International and Community Development-Deakin University

A thesis submitted for the degree of Master of Education (Honours) of the University of New England.

January, 2011

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis and all sources used have been acknowledged in this thesis.

M. Masige

ACKNOWLEDGEMENTS

I would like to acknowledge the support and advice provided to me while I worked on this thesis.

My deepest appreciation go to my two supervisors—Associate Professor Steve Tobias, and Dr. Pep Serow. Their contribution has been invaluable

Thank you to Associate Professor Debra Panizzon, Professor John Pegg, Associate Professor Neil Taylor, Dr Michael Littledyke, and Dr. Howard Smith for your assistance and encouragement in the early stages of this learning journey.

Thank you to the Director, Catholic Schools Office, Armidale Diocese, Mr John Mula and principals of the participating schools for making it possible for me to access the teachers that I interviewed.

To Dr. Tony Moran, the Principal, St. Mary's College, Gunnedah, where I am a teacher, thank you for your support of my application for permission to collect data in the schools run by the Catholic Schools Office, Armidale, New South Wales.

To the teachers who agreed to be the interviewed, sometimes waiting for me to arrive at the school past normal school time, I would like to express my deep gratitude.

Thank you to the administrative staff at the School of Education, Faculty of the Professions, University of New England. In particular, I would like to thank Diane Mitchell for her support in helping me to get the materials I needed for the course.

Lastly, my thanks go to my wife Anne and children Edwin, Norah and Sharon for their patience during the many times when I had to be away from home while working on this thesis.

ABSTRACT

In Australia, as in other countries, algebra occupies a central role in school mathematics. Like other mainstream mathematics programs, algebra is affected by the growing presence of digital tools in schools. Not only do technological tools change the nature of the tasks that are presented to students, they change the nature of the teaching as well. To take advantage of the potential of technology to enhance students' understanding of algebra requires not only tasks that are designed to push them beyond the limits of their current algebraic thinking and encourage further development of that thinking, but also approaches to teaching that facilitate such growth in students. Using a case study approach, teachers' use of digital tools was investigated with a view to enhancing students' understanding of algebra in secondary schools in New South Wales, Australia. In particular, teachers' roles, approaches, reasons for those approaches and ways to overcome any shortcomings were examined.

A number of findings emerged from the study. Firstly, the participants viewed their role as that of 'facilitators' in a digital technology-enabled algebra classroom. To enhance students understanding of algebra concepts in technology-enabled lessons, there is a need to further analyse and lift the quality of this 'facilitator' role by addressing teachers' pedagogical technology knowledge in relation to their roles as: allocator of time, catalyst, evaluator of student learning, explainer, manager, planner and conductor of classroom activities, a resource, a task setter, and a technical assistant. Secondly, respondents used particular tools in algebra because they found them convenient to use (easy to use, easily

accessible) or on the recommendation of peers or a faculty coordinator. These issues need to be taken advantage of at the school level to improve digital tool use in algebra. Finally, all the respondents supported the use of training in technology integration in algebra at professional development workshops to address weaknesses in teachers' skills and show them how to address their concerns in relation to the integration of digital technology in algebra. The study can serve as a base for other larger studies aimed at statistical generalisation in relation to these findings.

TABLE OF CONTENTS

STATE ACKNO ABSTR TABLE LIST O LIST O ACROI	PAGE EMENT OF ORIGINALITY OWLEDGEMENTS RACT E OF CONTENTS OF CONTENTS DF TABLES DF FIGURES NYMS FER ONE: INTRODUCTION AND OVERVIEW	ii iii iv vi x xi
1.0	CHAPTER OVERVIEW	1
1.1	THE FOCUS OF THE INVESTIGATION	2
1.2	THE SCHOOL ALGEBRA CONTEXT	2
1.3	RATIONALE FOR THE STUDY	5
1.4	THE SIGNIFICANCE OF THE STUDY	5
1.5	BACKGROUND TO TECHNOLOGY INTEGRATION INTO MATHEMATICS 1.5.1 TECHNOLOGY AND ALGEBRA LEARNING AND TEACHING	
1.6	CONCLUSION: OVERVIEW OF THE RESEARCH	9
CHAP	FER TWO: LITERATURE REVIEW	
2.0	INTRODUCTION	12
2.1	OVERVIEW OF TECHNOLOGY USE IN SCHOOL MATHEMATICS	13
2.2	TEACHERS' ROLES IN TECHNOLOGY-BASED ALGEBRA CLASSROOMS	14
	 2.2.1 TYPOLOGIES OF TEACHERS' ROLES. 2.2.1.1 TEACHER AS ALLOCATOR OF TIME. 2.2.1.2 TEACHER AS CATALYST. 2.2.1.3 TEACHER AS COLLABORATOR OR FELLOW INVESTIGATOR. 2.2.1.4 TEACHER AS COUNSELLOR. 2.2.1.5 TEACHER AS AN EVALUATOR. 2.2.1.6 TEACHER AS AN EXPLAINER. 2.2.1.7 TEACHER AS MANAGER. 2.2.1.8 TEACHER AS PLANNER AND CONDUCTOR. 2.2.1.9 TEACHER AS A RESEOURCE. 2.2.1.10 TEACHER AS A TASK SETTER. 2.2.1.11 TEACHER AS A TECHNICAL ASSISTANT. 	.17 .17 18 18 19 19 .19 .20 .20 .21 .21
	2.2.2 TECHNOLOGY AS MASTER, SERVANT, PARTNER AND EXTENSION OF SELF	.21

2.3	FACTORS INFLUENCING THE WAY ALGEBRA IS TAUGHT IN DIGITAL
	TECHNOLOGY ENVIRONMENTS

	2.3.1 SOCIAL, POLITICAL, ECONOMIC AND CULTURAL FACTORS	
	2.3.1.1 THE POLITICAL AND ECONOMIC FACTORS	
	2.3.1.2 THE SOCIAL AND CULTURAL FACTORS	
	2.3.2 THE MATHEMATICAL AND EPISTEMOLOGICAL FACTORS	27
	2.3.3 THE SCHOOL OR INSTITUTIONAL FACTORS	
	2.3.4 THE CLASSROOM AND DIDACTICAL FACTORS	
2.4	TEACHERS' INTERVENTIONS AND CONCERNS	35
	2.4.1 TEACHERS' CONCERNS	36
	2.4.1.1 PERSONAL CONCERNS.	
	2.4.1.2 MANAGEMENT CONCERNS	
	2.4.1.3 TECHNOLOGY CONCERNS	
	2.4.2 MODES OF USE OF TECHNOLOGY	41
	2.4.2.1 HALL AND HORD'S LEVELS OF USE MODEL	
	2.4.2.2 THE PLAY, USE, RECOMMEND, INCORPORATE, ASSESS (PURIA) MODE	
2.5	ADDRESSING PTK SHORTCOMINGS: FROM PCK TO PTK	45
	2.5.1 PEDAGOGICAL TECHNOLOGY KNOWLEDGE	45
2.6	THEORETICAL FRAMEWORKS ON THE ROLES OF DIGITAL TOOLS	
2.0		
	2.6.2 TECHNOLOGY AS AMPLIFIER AND ORGANISER	
	2.6.2 TECHNOLOGY AS TOOL, TUTOR, TUTEE	
	2.6.3 WHITE BOX-BLACK BOX	49
	2.6.4 REPRESENTATION	50
2.7	THEORETICAL FRAMEWORKS BASED ON VYGOTSKY'S THEORETICAL WRITINGS	51
	2.7.1 VALSINER'S ZONE THEORY	
	2.7.2 INSTRUMENTAL APPROACHES	
	2.7.2.1 THE INSTRUMENTAL DIMENSION.	
	2.7.2.2 ORCHESTRATION	
	2.7.2.3 MEDIATION AND SEMIOTIC MEDIATION	
2.8	CONCLUSION	61
CHAI	PTER THREE: RESEARCH DESIGN AND METHODOLOGY	
3.0	INTRODUCTION	63
3.1	DEFINITION AND PURPOSE	63
	3.1.1 PARADIGM CONSIDERATIONS	64
	3.1.2 THE RESEARCH STRATEGY	65
	3.1.3 CASE STUDY RESEARCH	
	3.1.4 TYPES OF CASE STUDY RESEACRH AND THE DESIGN SELECTED FOR THIS STUDY	67
3.2	COMPONENTS OF THE RESEARCH DESIGN	70
	3.2.1 THE RESEARCH QUESTIONS	71
	3.2.2 RATIONALE FOR USING A CASE STUDY RESEARCH STRATEGY	
	3.2.2.1 RATIONALE FOR USING A MULTIPLE CASE STUDY DESIGN	72

	3.2.3 THE UNIT OF ANALYSIS	
	3.2.4 LINKING THE DATA TO THE RATIONALE	
	3.2.4.1 THE STUDY'S RATIONALE 7	5
	3.2.5 CREDIBILITY OF THE RESEARCH	7
	3.2.6 SELECTION OF CANDIDATES FOR CASE STUDIES	
	3.2.7 THE PILOT CASE STUDY	
	3.2.8 THE PROCESS OF INQUIRY	'9
	3.2.9 THE PROCESS OF GAINING ACCESS TO RESEARCH DATA	
	3.2.10 TIME AND DURATION OF DATA COLLECTION	32
3.3	CONCLUSION	32
CHAI	PTER FOUR: RESULTS AND ANALYSIS OF THE RESULTS	
4.0	INTRODUCTION	84
4.1	THE SCHOOL CONTEXT OF THE PARTICIPANTS	85
4.2	DATA COLLECTION INTERVIEWS	86
	4.2.1 CASE STUDY: TEACHER 1(T1)-SCHOOL A	
	4.2.2 CASE STUDY: TEACHER 2(T2)-SCHOOL B)() \1
	4.2.5 CASE STUDY: TEACHER 3(13)-SCHOOL C	
		5
4.3	ANALYSIS OF THE RESULTS 9	94
	4.3.1 INFORMANTS' USE OF INTERACTIVE WHITEBOARDS	6
	4.3.2 INFORMANTS' USE OF SCIENTIFIC CALCULATORS	
	4.3.3 INFORMANTS' USE OF GRAPHICS CALCULATORS.	
	4.3.4 INFORMANTS' USE OF TUTOR PROGRAMS AND GRAPHING SOFTWARE	
	4.3.6 INFORMANTS' CONCERNS WHEN USING TECHNOLOGY	
	4.3.7 INFORMANTS' SUGGESTIONS OF HOW IN-SERVICE TEACHERS CAN BE SUPPORTED	
4.4	CHAPTER SUMMARY 1	00
CHAI	PTER FIVE: DISCUSSION OF RESULTS	
5.0	INTRODUCTION 1	01
5.1	THE TEACHERS' ROLE IN A TECHNOLOGY-ENABLED ALGEBRA CLASSROOM1	02
5.2	TEACHERS CHOICES OF APPROACHES TO THE USES OF TECHNOLOGY 1	03
5.3	HOW TEACHERS INCORPORATE TECHNOLOGY INTO ALGEBRA1	04
5.4	OVERCOMING TEACHERS' SHORTCOMINGS IN THE USE OF TECHNOLOGY 1	06
5.5	LINKING THE RESULTS AND THEORIES ON TECHNOLOGY INTEGRATION1	08
	5.5.1 THE USE OF THE INTERACTIVE WHITEBOARD1	08
	5.5.2 THE USE/NON-USE OF THE GRAPHICS CALCULATOR	.09
	5.5.3 GRAPHING SOFTWARE	11

	5.5.4 HOTmaths PROGRAM	. 111
	5.5.5 TEACHERS' PEDAGOGICAL TECHNOLOGY KNOWLEDGE	112
5.6	CONCLUSION	113
СНАР	TER SIX: CONCLUSIONS AND RECOMMENDATIONS	
6.0	INTRODUCTION	114
6.1	TEACHERS' ROLES IN TECHNOLOGY-ENABLED ALGEBRA LESSONS	114
6.2	TEACHERS' REASONS FOR USING TECHNOLOGY THE WAY THEY DID	. 116
6.3	HOW TEACHERS INCORPORATED TECHNOLOGY INTO ALGEBRA	. 117
6.4	ADDRESSING SHORTCOMINGS IN TEACHERS' PEDAGOGICAL TECHNOLOGY KNOWLEDGE	. 118
6.5	IMPLICATIONS OF THE STUDY	119
	6.5.1 IMPLICATIONS FOR EDUCATORS AND POLICY MAKERS6.5.2 IMPLICATIONS FOR SCHOOL MANAGERS	
6.6	LIMITATIONS OF THE STUDY	.120
6.7	RECOMMENDATIONS	. 120
	6.7.1 FURTHER RESEARCH.6.7.2 ENCOURAGEMENT OF PROFESSIONAL DEVELOPMENT.	
6.8	CONCLUSION	. 122
REFEI	RENCES	. 123
APPEN	NDICES	
APPEN	NDIX 1 INTERVIEW QUESTIONS	. 143
APPEN	NDIX 2 INFORMATION SHEET FOR PARTICIPANTS	. 144
APPEN	NDIX 3 CONSENT FORM FOR PARTICIPANTS	. 146
APPEN	NDIX 4 APPROVAL LETTER FROM HREC COMMITTEE OF UNE	. 147
APPEN	NDIX 5 APPROVAL LETTER FROM DIRECTOR, CSO, ARMIDALE, NSW	. 148
APPEN	NDIX 6 LETTER OF SUPPORT FROM ST MARY'S COLLEGE, GUNNEDAH, PRINCIPAL	. 149

LIST OF TABLES

Page

Table 1.1	The elaborated and extended PURIA model 43
Table 2.2	Factors affecting technology use 53
Table 3.1	Criteria for selection of the participants and schools for
	the study78
Table 3.2	Codes used for participants and schools78
Table 3.3	Time frame
Table 4.1	Summary of data collected from participants

LIST OF FIGURES

Figure 1.1	Kieran's GTG model of algebraic activities 2
Figure 2.1	The links between function representations
Figure 2.2	Symbolic, graphical and numerical representations of a family of functions represented by the general equation $y = x^2 \pm c$
Figure 2.3	The didactic tetrahedron
Figure 2.4	A model of the process of mediation by an artefact
Figure 3.1	The parameters that guide research
Figure 3.2	Basic types of research designs for case studies
Figure 3.3	The process of gaining access to research data
Figure 4.1	Example of a widget from <i>HOTmaths</i>

ACRONYMS

ACARA	Australian Curriculum and Reporting Authority
ASRMI	Availability of School Resources for Mathematics Index
B.Ed	Bachelor of Education
CAS	Computer Algebra Systems
CBAM	Concerns-Based Adoption Model
CSO	Catholic Schools Office
DET	Department of Education and Training
EMAT	Teaching Mathematics with Technology
GTG	Generational Transformational Global/Meta-Level
ICT	Information and Communication Technologies
KLA	Key Learning Area
РСК	Pedagogical Content Knowledge
РТК	Pedagogical Technology Knowledge
PME	Psychology of Mathematics Education
SCAN	Systematic Classroom Analysis Notation
TI	Texas Instruments
TIMSS	Trends in International Mathematics and Science Study
UNE	University of New England
ZFM	Zone of Free Movement
ZPA	Zone of Promoted Action
ZPD	Zone of Proximal Development
WBBB	White Box-Black Box