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ABSTRACT

A theory for RIFT, the transport process that results from raindrops

impacting shallow flows, is presented. The theory relies on the observation

that, after being lifted from the soil surface, a particle moves downstream a

distance that depends on flow velocity and the time the particle remains

suspended in the flow. The theory indicates that sediment transport rates

increase linearly with rainfall intensity and flow velocity when entrainment

by flow is absent.

Laboratory experiments where sand was eroded by rain-impacted flow

provide support for the theory. In addition to influencing the downstream

motion of particles detached by raindrop impacts, surface-water flows absorb

raindrop energy. Consequently, interactions between flow depth and drop size

were also examined through the laboratory experiments. This resulted in a

mathematical model of RIFT that accounts for the interactions between

raindrops and flow on the sediment transport rate. When applied to

experimental data, the model showed that the time-averaged effect of rainfall

on sediment transport by rain-impacted flow is independent of the manner by

which the rain is applied.

Particle size was also varied in the experiments. ParT.icles having

similar fall velocities in water but different densities were transported at

different rates. The differences were more the result of differences in the

masses of material lifted into the flow by a drop impact than differences in

the distances the particles travelled after being disturbed.

On soil surfaces, pre-detached particles stored on the surface between

impacts protect the soil matrix. Us:.ng a numerical model of RIFT, the

protective effect was shown to vary in time, with particle size and with the

difficulty experienced by drops in detaching soil particles from the soil

matrix.

Flow depths and velocities are seldom measured but the RIFT theory

provides a mechanism for developing models using more commonly measured

parameters. An analysis of field experiments using an alternative to the more

commonly used interrill erosion model indicates that actual interrill

erodibilities may differ significantly from those determined using the

previous model. An alternative to the EI 3(J index in the USLE also results from

the RIFT theory.
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PREFACE

The work reported in this thesis results from a long term interest in

erosion resulting from raindrop impact. Initially, when I joined the CSIRO

Division of Soils 1969, I worked on splash erosion and acoustic impact as a

measure of the erosive power of rainfall. When the raintowe facilities of the

Division became fully operational in the mid 1970s, as part of the Sediment

Transport Group, I was involved in performing some initial laboratory

experiments on sediment transport by rain--impacted flow before undertaking

experiments with runoff and soil loss plots under natural rainfall. Erosion by

rain-impacted flow was the major cause of the erosion in these field

experiments and it soon became obvious that internationally there was a lack

of knowledge on this erosion process. Most of mathematical models of rainfall

erosion produced to date fail to account for sediment transport by rain-

impacted flow because of this. The work reported here is a contribution

towards resolving this problem.

Most of the work reported here was done at the Canberr=a Laboratories of

the CSIRO Division of Soils. In regard to this work, the assistance of Colin

McLachlan, Joseph Kemei and Neville Carrigy who helped from time to time with

some of the experiments is gratefully acknowledged. Some of the statistical

procedures used in this thesis result from work done by Dr. Jeff Wood

(I.N.R.E. Biometric Unit, CSIRO). The assistance of Dr. David Smiles, Dr. Pat

Walker, Dr. John Williams in providing an administrative climate which allowed

the work to proceed is also gratefully acknowledged. The quality of the

figures in this thesis is a testament to the skills of the Division's Drawing

Office in Adelaide. Also, a special vote of thanks is extended to John Hutka

who undertook much of the work in developing the raintower facilities back in

the mid 1970s. Without the development of such facilities, much of the work

reported here would not have been possible.

The work covering drops with low impact velocities was done at the

Department of Resource Engineering, University of New England with the

assistance of a CSIRO/UNE co-operative grant. This work required the

development of new facilities at the university. The support of the workshop

staff of the Department of Resource Engineering, in particular David Sauer and
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Trevor Stac:e, in developing these facilities is gratefully acknowledge. My

thanks are also given to Prof. John Burton (Dept. Res. Eng., UNE), Dr. Alf

Cass (Dept. Agron. and Soils, UNE) and Prof. Ian Moore (CRES, Australian

National University) who acted as supervisors for the Ph.D program.
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SUMMARY

Rain-impacted flows often dominate the sheet and inter-rill erosion

environment, but the factors that influence sediment transport by these flows

have been studied little. Many modern models of rainfall erosion ignore the

contribution rain-impacted flows make to the movement of soil material over

the soil surface. In this thesis, a theoretical basis for investigating the

factors that influence sediment transport by rain-impacted:Flow is presented

in Chapter 2. The effects of a number of these factors are studied

experimentally in Chapter 3. Then the application of the theory to modelling

the erosion of soil surfaces by rain-impacted flow is demonstrated in Chapters

4 and finally, some suggestions for further study are presented in Chapter 5.

When a soil particle is detached from the soil matrix by a raindrop

impacting a shallow flow, the particle may move downstream across an arbitrary

boundary in one of 4 modes. The particle may move aerially by drop splash, but

if it fails to be lifted above the water surface, or falls back into the water

upstream of the boundary, it may then move in one of 3 modes that are

associated with the flow. It may, 	 it is small or of low density, move as

suspended load. If it is larger or of higher density, it will fall back to the

soil surface before the boundary. If the Flow has sufficien-7, velocity, the

particle may then be entrained by the flow. If not, then the subsequent

downstream movement can only occur under the stimulus of a external force.

Raindrops impacting shallow flows can provide that force.

The downstream movement of soil particles that relies on repeated

stimulation by raindrop impact is termed Raindrop Induced FLow Transport

(RIFT). The theory for RIFT presented in this thesis relies on the observation

that, after being lifted from the soil surface as a result of a drop impact, a

particle travels a distance (xp ) downstream that depends on the time the

particle remains suspended in the flow (t p ) and the velocity of the flow (u).

The distance travelled controls the extent of a zone, called the active zone,

in which all drop impacts cause soil material to pass across the boundary. As

a result, the sediment transport rate (cIsR) across the boundary is given by

the product of the frequency (f) of the drop impacts in this zone and the mass

of material (D) each drop lifts into the flow. The sediment transport rate can
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be expressed as a function of rainfall intensity (R), raincl:fop size (d)

particle size (p) and flow velocity by

6 Rd t'pd u Dpd

vi

clsR (Plc' ) - (2.20)
IC d3

where t.' pd is the effective average duration of the suspensLon of p sized

particles induced by the impact of drops of size d.

On soil surfaces, pre-detached particles are stored on the soil surface

between impacts and, as a result, drop impacts may lift both pre•detached

particles and particles from the soil matrix. Pre-detached particles sitting

on the surface are lifted first and particles from the soil matrix are lifted

only if there is excess energy left after this process. The pre-detached

particles provide a degree of protection (H), with the result that

	

Dpd = H.Dpd . D	 (1-H)Dpd.m
	 (2.24)

where Dpd .D is the value of Dpd obtained when the soil matrix is completely

protected and Dpd . m is the value of Dpd obtained when no pre-detached material

exists. The need to store particles on the soil surface during the transport

process results in the development of a layer of pre-detached particles on the

soil surface. Through the use of a numerical model of the RIFT processes, the

temporal and spatial variability of this layer is demonstrated in. Section 2.4.

Available data, together with new data collected during this study

(Chapter 3), confirm that Eq. 2.20 can account for effects cf R and u on qsR•

These data also show that qsR is influenced by particle size, density and flow

depth (h). Apart from drop size and particle size, factors such as drop

velocity, drop shape, particle density, and flow depth influence Dpd and t'pd.

The data collected during the study show that,

Dpdt' pd = k 0 (1 - Bh)	 for h 1<h<h 2 (3.5)

where h 1	4 mm and h 2 	3d, k0 is -Lae intercept on the "y" axis projected by

the linear equation

Dpdt' pd = k j	 b2h
	

(3.6)r
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and 13 is the inverse of the projected intercept on the "x" axis. Both 13 and k0

vary with drop size and velocity but. 13 varies independently of the

characteristics of the eroding surface. k 0 is influenced by both the drop and

the surface characteristics and k 0 decreases in value with particle fall

velocity to a power less than 0.5 when particle size varies.

In this study, coal was used to examine the movement of particles of a

density similar to that of aggregates. The experiments show that Eq. 3.5

applies not only to sand but also to coal but, when the particles have similar

fall velocities, qsR for coal particles greatly exceeded the values for sand.

Eq. 3.5 is also valid for erosion of soil surfaces by rain-impacted flows

where a wide range of particle size and density are present.

It follows from the combination of Eqs. 2.20 and 3.5 that the effects of

rain (r), flow and soil (s) on qsR can be represented by an equation of the

form

cisR[Sfr] = ks R u f[h,r]
	

(3.21)

where ks is the susceptibility of the soil to erosion by rain-impacted flow

and f[h,r] is a function that accounts for the interaction between raindrop

size and flow depth. Analysis of the data from the experiments presented here,

together with the data from Moss and Green (1983), indicates that raindrop

size has a non-significant influence on q sR when medium-to-large drops

travelling at or close to their terminal velocities impact flows shallower

than about 4 mm. Evidently, this effect results from the water surface

restricting the height to which particles are lifted in the flow when these

high energy drops impact shallow flow because drop size influences qsR when

small drops travelling at terminal velocity, and medium-to-large drops

travelling at subterminal velocity, impact flows shallower than 4 mm. On the

basis of the apparent constraint placed on q sR by the height of the water

surface, the qsR-h relationship observed for 5.1 mm drops travelling at

terminal velocity,

clsR[sf r] = 0.001553 ks R u h exp(5.7975 - 0.1881h),
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provides a mechanism for determining the upper limit of ci sR for flows

shallower than about 20 mm. The above equation results from

ks f[h,d] = h exp(5.7975 - 0.1881h)	 (3.26a)

and the observation that, for 0.2 mm sand used in the experiments, k s = 644

kg.s m-3 (Table 3.7).

In that, at some critical depth (h e ), the f[h,d] to h relationship

departs from Eq. 3.26a, Eq. 3.26a is applies when h�he , and, for 0.2 mm sand,

ks f[h,d] = h exp(5.7975 - 0.1881h e - b' d (h-he ))	 (3.26b)

where

b' d = exp(0.77749 - 0.48251 d) 	 (3.27)

applies when h<hc . Together, Eqs. 3.21 ,3.26 and 3.27 provide a mechanism for

estimating the effect of drop size - flow depth interaction for rain with non-

uniform drop-size distributions, and a mechanism for separating the erosivity

and erodibility components in erosion by rain-impacted flow. Using this

mechanism, the assumption that the time averaged effect of rainfall on

sediment transport by rain-impacted flow is independent of whether rain is

applied as a pulse, as often the case with field rainfall simulators, or

applied as a continuous stream, as in the case of natural rainfall, was found

to be valid. (Section 4.2). However, the effect of pulsed rainfall on

variations in the susceptibility of surfaces to erosion lies outside the scope

of this study.

While factors such as flow depth (h) and velocity (u) directly affect

q3R , they are seldom measured. It iE well known that sediment discharge is

given by the product of flow discharge (q w) and sediment concentration (c).

Thus

qsR	 qw cR.	 (4.5)

where c R is the sediment concentration resulting from the raindrops impacting

the flow. Since flow discharge is the product of flow depth and velocity, it

follows from Eq. 3.21 that
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cR [s,r] = ks R f[h,r] h-1
	

(4.6)

and

qsR	 ks qw R f[h,r] h-1
	

(4.7).

Considering qsR in terms of flow discharge thus eliminates the need to

consider flow velocity but the effect of flow depth remains to be accounted

for. However, it is also well known that slope gradient (S) influences flow

depth and velocity and, as a result, Eq. 4.7 can be rewritten as

qsR = k1 qw R f[S]	 (4.8)

where f[S] is a function that accounts for the effect of slope gradient on qsR

and k1 is a coefficient influenced by variations in soil characteristics and

also by variations in flow depth that are not accounted for directly by f[S].

Analysis of data from Meyer and Harmon (1989) shows that, for S<30%,

f[S] = S	 (4.9)

but other functions that include an interaction between soil and slope

gradient may be more appropriate (Section 5.2).

Equation 4.8 is comparable to a widely used model tha-.7, uses R 2 rather

than R qw , and Ki rather than k1 . Analysis of 18 cropland soils used in the

USDA Water Erosion Prediction Project (WEPP) in terms of the two models

indicates that the susceptibility of some soils to erosion by rain-impacted

flow may differ substantially from the values used in WEPP (Section 4.1).

The dynamic depositional layer (DDL), the layer that results from the

need to store particles on the soil surface between drop impacts when RIFT

operates and entrainment by flow is absent, has a major influence on sediment

discharge through the term H in Eq. 2.24. While the development and effect of

the DDL is demonstrated using a numerical model of the RIFT processes in

Section 2.4, the modelling concepts used in that section are impractical for

field sized areas. In Chapter 5, an alternative approach is suggested. This

approach considers the particle uplift and deposition events separately during

an element of time, and the protective effect of the DDL to be absolute (H=1)
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when the mass of the DDL in the active zone associated with any particle is

greater or equal to the maximum mass RIFT can transport from that zone during

that element of time. Otherwise, H is given by the ratio of the mass of the

DDL in the active zone and the maximum mass RIFT can transport from that zone

during that element of time. While the model produces reasonable results under

a set of arbitrary conditions, the concepts need to be evaluated under more

realistic circumstances.

Just as the consideration of the product of flow discharge and sediment

concentration provides an alternative interrill erosion model to the one used

in WEPP, so too does this product provide an alternative to the EI 30 index in

the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss

Equation (RUSLE). In this case, the product of flow discharge, or its

surrogate, the excess rate of rainfall, and the rate of expenditure of rain

kinetic energy may be considered as a more processed orientated index than

E 30 . Also, the use of such an index would enable factors, such as antecedent

soil moisture, that have important Lmpacts on soil losses from individual rain

storms but which are currently ignored in the USLE and RUSLE, to be taken into

account. While soil erodibilities would need to be re-evaluated if E1 30 is

replaced by this product, many of the algorithms and procedures for

determining the effect of other factors, such as vegetative cover and changes

in soil organic matter, that are currently part of the USLE and RUSLE could be

retained. Under these circumstances, the model could perhaps fill the void

between the USLE and WEPP models that will almost certainly exist in many

parts of the world as a result of the extensive data requirements of WEPP.
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depth (h) shown.

Figure 3.22.	 3.48

The effect of drop impact velocity on the relationship between sediment

discharge and flow depth for flows over 0.2 mm sand.

Figure 3.23.	 3.49

The effect of flow depth on qsR for 0.2 mm sand for flows impacted by

0.8 mm and 1.3 mm drops in the experiments of Moss and Green (1983)

together with the qsR-h relationships that result for d �2.7 mm from Eq.

3.21.

Figure 3.24.	 3.50

The relationships between ks f[h,d]h -1 and flow depth (h) for various

sized drops in the current and Moss and Green (1983) experiments with

drops travelling at or near terminal velocity impacting flows shallower

than 21. mm. The data for h<11 mm is shown in greater detail in Fig. 3.25

Figure 3.25.	 3.51

Greater detail of the data for the relationships between ks f[h,d]h-1

and flow depth (h) for various sized drops in the current and Moss and

Green (1983) experiments with drops travelling at or near terminal

velocity impacting shallow flows.

Figure 3.26.	 3.55

(A) the relationship between f[h,r] and flow depth (h) resulting from

applying Eqs. 3.25 - 3.29 to the drop size data of Hairsine (1988) and

(B) the relationship between the values of f[h,r] that result from Eqs.

3.25 - 3.29 and the q sR values obtained for the two soils used by

Hairsine when R=56 mm h -1 and u=20 mm s-1.

Figure 4.1.	 4.5

The relationship between flow depth and f[h,r]h -1 that results from the

data given in Fig.3.26A.
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Figure 4.2.	 4.6

The effect of slope gradient on sediment concentrations in experiments

by Meyer and Harmon (1989) with 600rnm long slopes.

Figure 4.3.	 4.10

The relaticnship between f s and slope gradient for the 18 soils examined

by Liebenow et al. (1990).

Figure 4.4.	 4.11

Bargraph of the relative values of k ibest and Kibest for the 18 soils

considered in Tables 4.1 and 4.2. The values shown for each parameter

are scaled so that a value of 1.0 is allocated to the maximum.

Figure 4.5.	 4.12

The relationship between k ibest and Kibest for the data given in Tables

4.1 and 4.2.

Figure 4.6.	 4.16

k l and Ki values calculated for the experiments of Elwell (:L986, R=166

mm h -1 ) and when R=62 mm h-1.

Figure 4.7.	 4.17

Observed and predicted soil losses .A.) and runoff volumes 03) for

different rainfall intensities under conditions associated the

experiments of Elwell (1986).

Figure 4.8.	 4.22

Drop size distributions at the downstream. end of the 500 mm by 500 mm

target area for Spraying Systems Veejet 80100 and Fulljet HH3OWSQ

nozzles measured using a Distromet Distrorneter. Nozzle height was 3.2 m

and the water pressures were 50 kPa and 30 kPa respectively.

Figure 4.9.	 4.23

Sediment discharge rates (cIsR) produced by the various rain3 in the

experiments with 0.2 mm sand when the nominal flow velocity was

40 mm 3-1.

Figure 4.10.	 4.25
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xx

The relationship between the term q, R/Ru and flow depth (h) for the

various rains in the experiments with 0.2 mm sand.

Figure 4.11.	 4.26

The relationship between the observed values of ksf[h,r] and those

predicted from Eqs.3. 25-3.29 for 0.2 mm sand.
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mm sand after 11.2 m fall. Data from Moss (pers.comm).
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Conditions used in the current experiments. x' denotes the :=actor being

investigated, s denotes experiments in which the rainfall modules were
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factor was held constant. NB. The values of u and h were maintained
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constant varied considerably. For Rd, the values in parenthesis are

nominal.

Table 3.3

(A). Regression analysis for the effect of flow depth (h) on Dpdt' pd for
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(B). Regression analysis for the particle size on k 0 for sand under

flows impacted by drops of various size (d) after falling from 11.2 m
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and McTainsh (1986).
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units for c(g 1-1), R(mm h-1) and S3). The soils are ordered according
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ai	 Ratic of concentration of ith size class next to bed to
mean concentration over entire depth

A coefficient (=b2k0-1)

Dd	 A coefficient dependent on d

X	 ratio of the terminal velocity of fall of a particle in water (vp )

to its average velocity of fan through a flow.

a	 Detachability coefficient

a s	 a coefficient influenced by soil characteristics

aD	 a for deposited layer

aM	 a for soil matrix

ax	 Either aD or aM

aD *	 Value of aD below critical flow depth (h*)

a 1	 Coefficient

b	 A power

b 1	 Coefficient

b2	 Coefficient in Dpdt' pd to h relationship

bs	 a coefficient influenced by soil characteristics

b' d A coefficient dependent on d

c	 Sediment concentration

c i	 Sediment concentration of ith size class

cR	 Sediment concentration produced by RIFT

Ce	 Fraction of soil unprotected from drop impact

d	 Drop size (mm)

di	 Sediment deposition rate for Lth size class

Dpd Mass of p sized particles lifted by a d sized drop

Dpdz Mass of p sized particles lifted to height z by a d sized drop

DDL Dynamic depositional layer resulting from the need for storage
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X X V

of material on the surface between drop impacts

e.	 Rainfall detachment rate for ith size class

f[h,d] Function accounting for the interaction between drop size

and flow depth (0-1)

f[S] Function accounting for the effect of slope gradient Ln a

interrill erosion model

fd	Frequency of impacts of drop size d within xp,-0.5xcz upstream

of a boundary

fp	Dpd.m-to-Dpd.D ratio

fS	Factor accounting for departures from f[S]=S

F	 Distance of drop fall

Fd	Spatially averaged impact frequency of d sized drops

h Flow depth (mm)

H Coefficient of protection of matrix soil by deposit

hOd Flow depth for no RIFT projected for drop size d by linear

qsR to h relationship

he	The critical flow depth where the depth of flow does not constrain

the height to which particles are lifted

I	 Number of sediment size classes

K Coefficient in relationship between T and R

k 0	Constant in linear D pdt' pd to h relationship

kOd Constant influenced by d

kp	Coefficient varying with partf_cle size

ks	Coefficient dependent on soil properties

k1	Coefficient depending on ks and a number of other fac7.ors

k' d Constant dependent on particle and drop size

k' d Factor accounting for drop size contributions to k' pd

k'	 Factor accounting for particle size contributions to ..('pd
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L Loss of sand relative to loss at position 17

Lm	Mean of L

Lx	Length of a plane surface

MDz Mass of particles lifted to height z

N Number of drop sizes

n Variable in summation equation

p	 A power in e i to R relationship

p	 particle size (mm)

Pm	 Drop momentum

Pmax Peak pressure exerted at the point on the bed below the

centre of a drop impact

PpD Proportion of p sized particles in DDL

Ppm Proportion of p sized particles in soil matrix

Q Rain induced discharge per unit area

qs	 Rate sediment transported by flow across a unit width

of a boundary

qso Mass of material transported across the downstream boundary

of an element

qsoD Mass of material from DDL transported across the downstream

boundary of an element

qsoM Mass of material soil matrix transported across the downstream

boundary of an element

qsR qs for sediment transported by RIFT

qw
	 Rate at which water is discharged across a unit width

of a boundary

R	 Rainfall intensity
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Rd	Intensity of rain of drop size d

r	 Sediment entrainment rate for ith size class

S	 Slope gradient

T	 Rate at which sediment is trarsported across a boundary

TA	Rate at which splash transports sediment across a boundary

TB	Rate at which bed load is transported across a boundary

TF	Rate at which rain-impacted flow transports sediment

across a boundary

TS	Rate at which suspended load is transported across

a. boundary

TR	Rate at which RIFT transports sediment across a boundary

tp	Time p sized particle remains suspended following

disturbance by a drop impact

pz
	 Time p sized particle remains suspended after being lifted

to a height z

t' pd Average time p sized particle remains suspended following

disturbance by a drop impact

u	 Flow velocity

vi	Mean fall velocity in water fcr particles in size class i

vp	Fall velocity in water for particles of size p

vd	Fall velocity in air for drops of size d

w	 A power in the relationship between T and R

Wf	Width of flow

X	 Parameter related to stress applied by impacting drop

Xc	Critical value of X below which particles are not lifted

into the flow by a drop impact
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x	 Distance

Diameter of particle cloud at height zcz

Distance travelled by a particle of size pxP
Distance travelled by a particle of size p lifted to height zpz

x'	 Average distance travelled by a particle of size p disturbedpd

by the impact of a d sized drop

z	 Height from bed
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TF = Ts + TB + TR

T = TF + T = T + TBA	 S

T = K Rw

qs = qwc

a	 a

	 ( ciwc ,) 4- 	 (hc.),
ax	 at

RP
e . = a Ce

I

di = v3ci

a CeRP

c . =

I(Q + vi)

a = H ap + (1-H) am

ax = ax* (h*h-1) b

alp * h*b RP
c i = 	

I
hb Ea.vi

i=1

LIST OF EQUATIONS

+ TR + TA

= e .	- d .	+ riI	 ,

(1.1)
(2.1)
(2.2)
(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
(2.9)

(2.10)

t = h v -1	 (2.11)

xp = tp u	 (2.12)

tp = tpz = z vp-1	 (2.13)

MDz Eprd3 - fd Dpdz	 (2.14)
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MDz [p d] = Fd xpz Dpdz Wf (2.15)

6 Rd xpz Dpdz Wf
MDz [P,d] =

(2.16)
d3

6 Rd tpz u Dpdz Wf

MDz [p, d] =
(2.17)

n 3

6 Rd t' pd u Dpd Wf

MD [P, d] = (2.18)

d3

I	 (t	 Dpdz)   dzpz

t ' d =P 
(2.19) 

Dpd

X XX

Jo

clsR [p, d] =

6 Rd t' pd u Dpd
(2.20)

d3

qw = hu	 (2.21)

clsR [P,d]	 6 Rd t' pd Dpd
cR [P, d] = 	 	 (2.22)

qw	 n d3 h

6 Rd t' pd Dpd
c . (d) =	 (2.23)

n d3 h

Dpd = H.Dpd.D + (1-H)Dpd. m	 (2.24)

cisR ( Pi c' ) - Fd x' pd Dpd	 (2.25)

qsR[Pfd] n d3
Dpdt' pd = 	 	 (3.1a)

6 Rd u

cR [p,d] n d3 h
Dpdt' pd = (3.1b)

6 Rd

1Dpdt pd = a l d3-48
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Dpdt 'pc[ = 0.372 hbl

bl =	
9.59	 1 °g 10 ( d )	 -	 10.29

(3.3)

(3.4)

Dpdt' pd = A 0 (1 - 13h) (3.5)

Dpdt' pd = Ao - b2h

b2

(3.6)

= (3.7)
ko

13 =	 0.175	 -	 0.0260	 d (3.8)

log k0 = -0.507 - 0.616 log p + 2.2 z	log d (3.9)

log k0 = -1.301 - 0.465 log vp + 2.24 log d (3.10)

k0 = 2.67vd - 8.07 (3.11)

13 =	 0.197	 -•	 0.0118vd (3.12)

13 = 0.0852	 -	 0.00442vd (3.13)

log k0 = 7.543 - 0.4652 log vp + 0.7025 log pm (3.14)

13 = 0.1104	 -	 0.001166 pm (3.15)

15
/	 (Ln.xpn)

n=1
(3.16)x'p

Lm

Dpdt i pd = k' pd (1 - Bdh) (3.17)

Dpdt' pd = k' pk' d (1 - Bdh) (3.18)

6 Rd u pd [1 - Bdh]
(3.19)cisR	 [ P ,d]	 =

d3
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6 Rd	 k i pk i d [h-1 - Bd]
cR	[p, d.]	 = (3.20)

(3.21)

n d3

clsR [Pfd]	 = ks R u f[h,d]

f[h,d]	 1-13d[h-hx] , hx<h<3d (3.22)

Bd =0.3119 - 0.0507d

clsR[Prd]
k f[h,d]

,r2 =0.986 (3.23)

(3.24)s
R u

he = 1.74768	 + 2.88237	 log(d) (3.25)

ks f[h,d]	 = h exp[5.7975	 -	 0.1881h] ,h�hc (3.26a)

ksf[h,d]	 h exp[5.7975	 -	 0.1881hc - b' d (h -	 h c )] ,h>hc (3.26b)

b' d = exp[C.76649	 -	 0.48251 d] (3.27)

N
E	 (f[h,d]Rd)n

n=1
f[h,r]	 = (3.29)

N
E	 (Rd)n

n=1

cisR [ s
ks =  (3.30)  

R u f[h,r]

D i = Ki R2 Sf

S f = 1.05 - 0.85 exp 1-4 sin (0)1

Di = clsR Lx-1   

cisR 
Ki = 

-
x R'[1 -0.85 exp 1-4 sin (0);]

(4.4)
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qsR = qw CR. (4.5)

cR [s,r]	 = k s R f [h, r]	 h -1

qsR = ks qw, R f[h,r]	 h-1

qsR = k 1 qw R f[S]

f[S]	 = S

(4.6)

(4.7)

(4.8)

(4.9)

qsR	 kl qw R S

qsR
k1 =

(4.10)

(4.11)
RqwS

qsR = k1 RqwS f s

qsR

for S>38%

(4.12)

(4.13)

(4.14)

s
kiRSqw

f s	 =	 0.259	 +	 0.000049	 (1.197 [90-S] )

CR

,r2=0.957

(4.15)

(4.16)

s
k1RS

1	 .4 +	 1D
WSEL 

2SL = 277.18	 - 149.16Dwsa 9

Q =	 9.02	 + 0.918Dwsa - 1.2385Dwsa 2

qsR

= k f [s r]

,r2=0.956 (4.17)

(4.18)s
Ru

ciso[P]	 = cisop[P]	 cisom[P] (5.1)

qs0D [p] = H PpD kp R u f[h,r] Wf (5.2)

qsoM [P]	 = fp	(1-H)	 Ppm kp R u f[h,r] Wf (5.3)
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f[S] = a s -f bsS

f[S] = exp (a s + bsS)
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