The successful treatment of bearings relies on early detection, gentle and clean replacement and effective retention.

- A bearing that has been out for more than 48 hours is very difficult to treat successfully. If the bearing is excessively swollen and/or lacerated or ruptured the ewe should be destroyed.

- The bearing must be well cleaned before it is reduced. Diluted disinfectant in a squeeze bottle should be carried in a kit for this purpose. Gross contamination and grass should be physically removed. During the process of cleaning, the bearing should be lifted up to allow urination to occur. It is very important that the bladder is not full when the bearing is being retained.

- Replacing the bearing is easier if the back end of the ewe is elevated. Applying a small amount of lubricant to the bearing can significantly ease retention and will reduce the amount of damage sustained. Lube in a squeeze bottle should also be in the kit. Pressure will usually need to be applied and gently maintained all around the bearing to enable it to be replaced.

- Once replaced most bearings will need to be retained. In mild cases, tying of wool around the back of the ewe or the tying of other external holding systems such as string tied around the back of the ewe will retain the bearing.

- Bearing retainers that apply direct holding pressure inside the vagina can be very effective. They do require wool of at least 3cm length to be attached to.

- The application of safety pins or sutures across the lips of the vulva are only partially effective and can in themselves cause much damage.

- A purse string suture with cotton tape applied deeply around the margins of the vulva is very effective in holding the back of the vagina closed and preventing the bearing coming out again. A veterinarian should be consulted to demonstrate the application of a purse string suture. Using a specialised needle makes this retaining technique easy to apply. If such a suture is applied within 2 weeks of lambing it will need to be cut prior to lambing. If the suture is applied longer than 2 weeks before lambing it will break at the time of lambing.

- Penicillin should be given to any ewe that has a damaged bearing or if sutures have been applied.

- After the ewe has been treated she is best taken from the mob and held on short feed, ideally on a flat paddock and observed.
Appendix 2.0

CAUSES OF LAMB DEATHS

Most lamb deaths occur before, during or at birth (parturient deaths, hypoxia and dystocia and lambs found on the birth site) or in the first three days after birth (starvation and infection and lambs found off the birth site). In good weather (ie thermoneutral temperatures) mismothered lambs can survive 2-3 days without a feed. In cold wet windy weather they can die within 12-24 hours. A cold wet night which kills a lot of lambs will often hasten the deaths of lambs that are going to die. After the initial peak of losses the number falls off dramatically especially if the storm is followed by fine warm weather.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Congenital abnormalities</td>
</tr>
<tr>
<td></td>
<td>Gross anatomical abnormalities (eg no lower jaw; no anus)</td>
</tr>
<tr>
<td>2</td>
<td>Parturient deaths</td>
</tr>
<tr>
<td></td>
<td>Dead well before birth or dies early in birth process</td>
</tr>
<tr>
<td></td>
<td>autolysed (broken down) liver and kidneys; slimy red</td>
</tr>
<tr>
<td>3</td>
<td>Hypoxia</td>
</tr>
<tr>
<td></td>
<td>lack of oxygen during the birth process</td>
</tr>
<tr>
<td></td>
<td>usually associated with dystocia</td>
</tr>
<tr>
<td></td>
<td>petechiation (blood spots in tissue) of thymus, heart or lungs</td>
</tr>
<tr>
<td></td>
<td>no aeration of lungs & mucus in trachea (wind-pipe)</td>
</tr>
<tr>
<td>4</td>
<td>Dystocia</td>
</tr>
<tr>
<td></td>
<td>difficult birth resulting in birth injury</td>
</tr>
<tr>
<td></td>
<td>caused by lamb being too large for pelvic opening or abnormal presentation of lamb</td>
</tr>
<tr>
<td></td>
<td>oedema (clear jelly) on head or breach or legs</td>
</tr>
<tr>
<td></td>
<td>ruptured liver; bruising;</td>
</tr>
<tr>
<td></td>
<td>fluid and fibrin (fine clear strands) in thorax (chest)</td>
</tr>
<tr>
<td></td>
<td>blood in brain & spinal cord</td>
</tr>
<tr>
<td>5</td>
<td>Exposure</td>
</tr>
<tr>
<td></td>
<td>slight oedema on legs above hooves, tail, ears & nose</td>
</tr>
<tr>
<td></td>
<td>caused by damage to tissue when frozen</td>
</tr>
<tr>
<td></td>
<td>usually small lambs; some fat left, food in stomach/intestine</td>
</tr>
<tr>
<td></td>
<td>tends to be over diagnosed</td>
</tr>
<tr>
<td>6</td>
<td>Starvation</td>
</tr>
<tr>
<td></td>
<td>failure to feed or continue to feed</td>
</tr>
<tr>
<td></td>
<td>fat 'burnt up' (catabolised) around kidneys & heart</td>
</tr>
<tr>
<td></td>
<td>usually without milk residues in stomach or intestine</td>
</tr>
</tbody>
</table>
7 Infection — gross ulceration of liver & / or lungs;
or large amounts of fluid & fibrin in Peritoneum
(abdomen)
— often associated with catabolism of fat but
with milk in stomach/intestines
— *Fusobacterium necrophorum* is possible cause of
ulceration
— enters via navel

8 Misadventure — Bruising (ewes repelling alien lambs); mutilation of
carcass (birds, dogs); drowned in river or swamp; in
hole; caught in fence

9 No cause of
death found — not any of above but most likely infection or
metabolic disease
— often due to a *failure to make a decision*; use only
as an absolute last resort

10 Lamb missing — Lamb was tagged at birth but not present at docking
and no carcass found
— When lambs are not tagged at birth these losses
get combined with the losses from scanning to
lambing and artificially inflates these losses.

11 Metabolic disease — Iodine deficiency: goitres on neck - enlarged thyroid
gland
— Selenium deficiency: white muscle disease usually
needing veterinary diagnosis

(Source: T.Knight)
Appendix 2.1

DIAGNOSTIC PROCEDURE

- Place dead lamb with head to right (to left for left handed people) and feet pointing towards you.
- Look for overall autolysis and if membranes still over head.
- Feel neck for possible goitres.
- Check 4 feet to see if the lamb has walked and for anatomical abnormalities.
- Remove skin over legs, breach and tail looking for oedema (exposure or dystocia).
- Turn lamb over so feet point away from you and check as above.
- Remove skin over legs, breach, head and face and around the eyes looking for oedema (exposure or dystocia).
- Turn lamb onto its back and while holding both forelegs cut down in the left and right axillae so forelegs can be spread.
- Remove skin from lower jaw down neck to chest.
- Check thymus for petechiation.
- Cut trachea and check for mucus and blood stains on inner surface.
- With heel of knife carefully cut through sternum (brisket) to expose chest cavity.
- Continue incision through peritoneum to expose viscera (guts).
- While doing this keep incision as close as possible to ventral surface.
- Even so you are likely to cut a vessel going to liver and have blood in cavities.
- Check for ulceration of liver and lungs - fluid and fibrin (long clear strands in fluid).
- Check for ruptures on liver (distinguish between knife cuts).
- Check for autolysis of liver and kidneys.
- Check for degree of catabolism of fat around kidneys and heart.
- Check for blood spots (petechiation) in tissue of liver lungs and heart.
- Check for aeration of lungs.
- Check for milk or meconium in stomach and intestine. The meconium is the mustard yellow faeces present in the intestine when the lamb is born. Often coats lamb at birth especially after a stressful birth.
Appendix 2.2

Post Mortem decision diagram

DEAD LAMB

Found in stream swamp fence or under runner
MISADVENTURE

Not misadventure

Red+slimy+"rag doll"
Appearance normal
liver+kidneys+skin
breaking down

Physical abnormalities
ABNORMALITIES

appearance normal

EARLY PARTURIENT
DEATH

Oedema (jelly thickening
under skin of head or
breech or legs)
Swollen head
Possible bruising
Possible ruptured liver
DIFFICULT BIRTH
(Dystocia)

Not breathed
(dark red lungs)
Mucus in wind pipe
Not walked
(foot pads intact)
Possibly membranes
over head

DIFFICULT BIRTH
(Death during the birth process)

Breathed
(pink aerated lungs)
Walked (foot pads worn)

Little fat over
kidneys+heart
Fat brown in colour
No food in stomach or
intestines
STARVATION-
EXPOSURE

Fat over kidneys+heart
thick+white-pink

ulceration of liver or
lungs (white blotched)
yellow fluid around heart
gross oedema or blood
clots around navel

INFECTION

None of above

CAUSE OF DEATH
UNKNOWN

(Source T.Knight)
Appendix 3.0: Feed requirements of sheep.

Explanatory Notes:
These feeding tables give daily requirements of metabolisable energy in megajoules per day (MJ ME/d) for different levels of production. The ME values in the tables can easily be converted to kilograms of dry-matter per day (kg DM/d) for different feeds using the ME feed values in Appendix 4.3 and the ready reckoner in Appendix 3.6.

For example the daily ME requirement to maintain weight for a 50kg ewe grazing mixed length leafy pasture with an ME content of 10.8 (from Appendix 4.3) would be 10 MJME/d (from Appendix 3.1). Using the ready reckoner in Appendix 3.6 this comes to 0.9 kg DM/d i.e. 10 MJ ME/d at a concentration of 11 MJ ME/kg DM. (see values circled on Appendix 3.1 and 3.6 for this example).

Appendix 3.1

ME requirements for maintenance and liveweight gain in mature ewes (MJ ME/d)

<table>
<thead>
<tr>
<th>Liveweight gain (g/d)</th>
<th>Liveweight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Maintenance</td>
<td>8.5</td>
</tr>
<tr>
<td>50</td>
<td>11.0</td>
</tr>
<tr>
<td>100</td>
<td>13.5</td>
</tr>
<tr>
<td>150</td>
<td>16.0</td>
</tr>
</tbody>
</table>
Appendix 3.2

ME requirements of wether and ram lambs (MJME/d)

<table>
<thead>
<tr>
<th>Liveweight gain (g/d)</th>
<th>Liveweight (kg)</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>6.5</td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
<td>11.0</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>8.0</td>
<td>9.5</td>
<td>11.0</td>
<td>12.0</td>
<td>13.5</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>9.5</td>
<td>11.0</td>
<td>13.0</td>
<td>14.5</td>
<td>16.0</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>11.0</td>
<td>13.0</td>
<td>15.0</td>
<td>16.5</td>
<td>18.5</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>12.5</td>
<td>14.5</td>
<td>17.0</td>
<td>19.0</td>
<td>21.0</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>14.0</td>
<td>16.5</td>
<td>19.0</td>
<td>21.0</td>
<td>23.5</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>15.5</td>
<td>18.0</td>
<td>21.0</td>
<td>23.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Appendix 3.3

ME requirements of ewe hoggets (MJME/d)

<table>
<thead>
<tr>
<th>Liveweight gain (g/d)</th>
<th>Liveweight (kg)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
<td>11.0</td>
<td>12.0</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>10.0</td>
<td>11.5</td>
<td>13.0</td>
<td>14.0</td>
<td>15.5</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>12.5</td>
<td>14.0</td>
<td>16.0</td>
<td>17.5</td>
<td>19.0</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>14.5</td>
<td>17.0</td>
<td>19.0</td>
<td>21.0</td>
<td>23.0</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>17.0</td>
<td>19.5</td>
<td>22.0</td>
<td>24.5</td>
<td>26.5</td>
</tr>
</tbody>
</table>
Appendix 3.4

ME requirements of ewes (MJME/d) during different stages of lactation

<table>
<thead>
<tr>
<th>Liveweight (kg)</th>
<th>Single-suckling</th>
<th>Twin-suckling</th>
<th>Twin-suckling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>week 1</td>
<td>week 3</td>
<td>week 6</td>
</tr>
<tr>
<td>40</td>
<td>12.0</td>
<td>23.0</td>
<td>20.0</td>
</tr>
<tr>
<td>45</td>
<td>21.0</td>
<td>24.0</td>
<td>21.0</td>
</tr>
<tr>
<td>50</td>
<td>24.5</td>
<td>28.5</td>
<td>24.5</td>
</tr>
<tr>
<td>55</td>
<td>25.0</td>
<td>29.0</td>
<td>25.0</td>
</tr>
<tr>
<td>60</td>
<td>26.0</td>
<td>30.0</td>
<td>26.0</td>
</tr>
<tr>
<td>65</td>
<td>27.0</td>
<td>31.0</td>
<td>27.0</td>
</tr>
<tr>
<td>70</td>
<td>28.0</td>
<td>32.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Lamb pasture requirement</td>
<td>-</td>
<td>3.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Note:
(1) Each kg of ewe liveweight lost is equivalent to 17MJ ME while each kg of ewe liveweight gained requires an additional 65 MJ ME.
(2) For triplets or quads add 1.0, 2.0 and 4.0 MJ ME/d for weeks 3, 6 and 9 respectively.

Appendix 3.5

ME required (MJME/D) during pregnancy by ewes, in addition to maternal requirements, for a lamb birth weight of 4kg.

<table>
<thead>
<tr>
<th>Weeks before term</th>
<th>12</th>
<th>8</th>
<th>6</th>
<th>4</th>
<th>2</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ewes</td>
<td>0.4</td>
<td>1.1</td>
<td>1.7</td>
<td>2.6</td>
<td>3.8</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Note: Add 75% of these values for each additional foetus carried.
Appendix 3.6

Ready reckoner to convert metabolisable energy (MJ ME/day) to dry-matter (kg DM/day)

<table>
<thead>
<tr>
<th>MJME/d</th>
<th>kg DM per day for different ME concentrations in feed (MJME/kg DM)</th>
<th>kg DM per day for different ME concentrations in feed (MJME/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 9 10 11 12</td>
<td>8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>0.1 0.1 0.1 0.1 0.1</td>
<td>21 2.1 2.1 1.9 1.7</td>
</tr>
<tr>
<td>2</td>
<td>0.2 0.2 0.2 0.2 0.2</td>
<td>22 2.7 2.4 2.2 2.0</td>
</tr>
<tr>
<td>3</td>
<td>0.4 0.3 0.3 0.3 0.2</td>
<td>23 2.9 2.5 2.3 2.1</td>
</tr>
<tr>
<td>4</td>
<td>0.5 0.4 0.4 0.4 0.3</td>
<td>24 3.0 2.7 2.4 2.2</td>
</tr>
<tr>
<td>5</td>
<td>0.6 0.5 0.5 0.5 0.4</td>
<td>25 3.1 2.8 2.5 2.3</td>
</tr>
<tr>
<td>6</td>
<td>0.7 0.7 0.6 0.5 0.5</td>
<td>26 3.2 2.8 2.6 2.4</td>
</tr>
<tr>
<td>7</td>
<td>0.9 0.8 0.7 0.6 0.6</td>
<td>27 3.4 3.0 2.7 2.4</td>
</tr>
<tr>
<td>8</td>
<td>1.0 0.9 0.8 0.7 0.7</td>
<td>28 3.5 3.1 2.8 2.5</td>
</tr>
<tr>
<td>9</td>
<td>1.1 1.0 0.9 0.8 0.7</td>
<td>29 3.6 3.2 2.9 2.6</td>
</tr>
<tr>
<td>10</td>
<td>1.2 1.1 1.0 0.9 0.8</td>
<td>30 3.7 3.3 3.0 2.7</td>
</tr>
<tr>
<td>11</td>
<td>1.4 1.2 1.1 1.0 0.9</td>
<td>31 3.9 3.4 3.1 2.8</td>
</tr>
<tr>
<td>12</td>
<td>1.5 1.3 1.2 1.1 1.0</td>
<td>32 4.0 3.5 3.2 2.9</td>
</tr>
<tr>
<td>13</td>
<td>1.6 1.4 1.3 1.2 1.1</td>
<td>33 4.1 3.7 3.3 3.0</td>
</tr>
<tr>
<td>14</td>
<td>1.7 1.5 1.4 1.3 1.2</td>
<td>34 4.2 3.8 3.4 3.1</td>
</tr>
<tr>
<td>15</td>
<td>1.9 1.7 1.5 1.4 1.2</td>
<td>35 4.4 3.9 3.5 3.2</td>
</tr>
<tr>
<td>16</td>
<td>2.0 1.8 1.6 1.4 1.3</td>
<td>36 4.5 4.0 3.6 3.3</td>
</tr>
<tr>
<td>17</td>
<td>2.1 1.9 1.7 1.5 1.4</td>
<td>37 4.6 4.1 3.7 3.4</td>
</tr>
<tr>
<td>18</td>
<td>2.2 2.0 1.8 1.6 1.5</td>
<td>38 4.7 4.2 3.8 3.4</td>
</tr>
<tr>
<td>19</td>
<td>2.4 2.1 1.9 1.7 1.6</td>
<td>39 4.9 4.3 3.9 3.5</td>
</tr>
<tr>
<td>20</td>
<td>2.5 2.2 2.0 1.8 1.7</td>
<td>40 5.0 4.4 4.0 3.6</td>
</tr>
</tbody>
</table>
Appendix 4.1
Generalised seasonal conversion of pasture length to pasture dry matter for an average rye grass-clover pasture.

Appendix 4.2:
Minimum pasture length and dry matter quantities for different sheep production levels during the year.

<table>
<thead>
<tr>
<th>Pasture length (cm)</th>
<th>Pasture DM (kg/ha)</th>
<th>Feed intake (kg DM/d)</th>
<th>Production level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid pregnancy</td>
<td>1-2</td>
<td>400-500</td>
<td>1.0</td>
</tr>
<tr>
<td>6 weeks pre-lamb</td>
<td>2-3</td>
<td>600-800</td>
<td>1.3</td>
</tr>
<tr>
<td>Ewes and lambs</td>
<td>4-5</td>
<td>1400-1600</td>
<td>1.8</td>
</tr>
<tr>
<td>Summer</td>
<td>1-2</td>
<td>900-1000</td>
<td>1.0</td>
</tr>
<tr>
<td>Mating</td>
<td>2-3</td>
<td>1200-1400</td>
<td>1.4</td>
</tr>
<tr>
<td>Lambs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weaned-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- spring</td>
<td>3-4</td>
<td>1200-1400</td>
<td>0.8</td>
</tr>
<tr>
<td>- summer</td>
<td>2-3</td>
<td>1400</td>
<td>1.0</td>
</tr>
<tr>
<td>- autumn</td>
<td>2-3</td>
<td>1200</td>
<td>1.2</td>
</tr>
<tr>
<td>- winter-spring</td>
<td>3</td>
<td>1100</td>
<td>1.2</td>
</tr>
<tr>
<td>Hoggets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- summer</td>
<td>2-3</td>
<td>1400</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Appendix 4.3

Nutritional value of different feeds

<table>
<thead>
<tr>
<th>Feed Type</th>
<th>% DM</th>
<th>Relative ME Value on DM Basis</th>
<th>ME Concentration (MJME/kg DM)</th>
<th>% Crude Protein DM Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short leafy</td>
<td>15</td>
<td>1.1</td>
<td>11.7</td>
<td>27</td>
</tr>
<tr>
<td>Mixed-length leafy</td>
<td>18</td>
<td>1.0</td>
<td>10.8</td>
<td>21</td>
</tr>
<tr>
<td>Dry stalky</td>
<td>28</td>
<td>0.8</td>
<td>8.1</td>
<td>10</td>
</tr>
<tr>
<td>Lucerne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green vegetative</td>
<td>15-25</td>
<td>0.9</td>
<td>8.5-11.0</td>
<td>30</td>
</tr>
<tr>
<td>Bud formation</td>
<td>0.8</td>
<td>8.5-9.5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>10-20% flowering</td>
<td>0.8</td>
<td>8.0-9.5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Silages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucerne</td>
<td>19</td>
<td>0.8</td>
<td>7.1-8.5</td>
<td>21</td>
</tr>
<tr>
<td>Formic acid lucerne</td>
<td>19</td>
<td>0.8</td>
<td>8.0-9.5</td>
<td>21</td>
</tr>
<tr>
<td>Wilted lucerne</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>33</td>
<td>1.0</td>
<td>10.2-10.8</td>
<td>8</td>
</tr>
<tr>
<td>Hays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasture Good quality</td>
<td>85</td>
<td>0.8</td>
<td>8.4</td>
<td>12</td>
</tr>
<tr>
<td>Pasture Poor quality</td>
<td>85</td>
<td>0.7</td>
<td>7.3</td>
<td>12</td>
</tr>
<tr>
<td>Lucerne Poor quality</td>
<td>85</td>
<td>0.8</td>
<td>8.0-9.5</td>
<td>17</td>
</tr>
<tr>
<td>Straws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oats</td>
<td>86</td>
<td>0.6</td>
<td>7.0</td>
<td>4</td>
</tr>
<tr>
<td>Wheat</td>
<td>86</td>
<td>0.5</td>
<td>5.7</td>
<td>3</td>
</tr>
<tr>
<td>Barley</td>
<td>86</td>
<td>0.7</td>
<td>7.2</td>
<td>5</td>
</tr>
<tr>
<td>Ryegrass</td>
<td>86</td>
<td>0.7</td>
<td>7.1-8.0</td>
<td>6</td>
</tr>
<tr>
<td>Pea</td>
<td>86</td>
<td>0.7</td>
<td>7.2</td>
<td>9</td>
</tr>
<tr>
<td>Corn stover</td>
<td>84</td>
<td>0.8</td>
<td>6.9-9.4</td>
<td>5</td>
</tr>
</tbody>
</table>

Relative ME values are relative to leafy pasture with a value of 1.0 (ME concentration of 10.8 MJME/kg DM)
Crops

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Carbohydrate</th>
<th>Protein</th>
<th>Fat</th>
<th>Energy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swede tops</td>
<td>15</td>
<td>1.3</td>
<td></td>
<td>13.5</td>
<td>15</td>
</tr>
<tr>
<td>bulb</td>
<td>10</td>
<td>1.3</td>
<td></td>
<td>13.5</td>
<td>11</td>
</tr>
<tr>
<td>Turnip tops</td>
<td>13</td>
<td>1.3</td>
<td></td>
<td>14.1</td>
<td>20</td>
</tr>
<tr>
<td>bulb</td>
<td>9</td>
<td>1.2</td>
<td></td>
<td>12.9</td>
<td>12</td>
</tr>
<tr>
<td>Choumoellier</td>
<td>15</td>
<td>1.1</td>
<td></td>
<td>11.7</td>
<td>14</td>
</tr>
<tr>
<td>Rape</td>
<td>20</td>
<td>1.2</td>
<td></td>
<td>12.4</td>
<td>16</td>
</tr>
<tr>
<td>Kale</td>
<td>16</td>
<td>1.1</td>
<td></td>
<td>11.9</td>
<td>15</td>
</tr>
<tr>
<td>Mangels</td>
<td>13</td>
<td>1.1</td>
<td></td>
<td>11.9</td>
<td>10</td>
</tr>
<tr>
<td>Fodder beet</td>
<td>20</td>
<td>1.1</td>
<td></td>
<td>12.1</td>
<td>9</td>
</tr>
<tr>
<td>Carrots</td>
<td>13</td>
<td>1.2</td>
<td></td>
<td>13.0</td>
<td>9</td>
</tr>
<tr>
<td>Potatoes</td>
<td>24</td>
<td>1.2</td>
<td></td>
<td>12.6</td>
<td>8</td>
</tr>
<tr>
<td>Green maize</td>
<td>24</td>
<td>0.9</td>
<td></td>
<td>8.8-11.3</td>
<td>10</td>
</tr>
<tr>
<td>Lupins (sweet)</td>
<td>18</td>
<td>1.0</td>
<td></td>
<td>10.3</td>
<td>17</td>
</tr>
<tr>
<td>Fodder radish</td>
<td>11</td>
<td>1.0</td>
<td></td>
<td>11.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Green Feeds

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Carbohydrate</th>
<th>Protein</th>
<th>Fat</th>
<th>Energy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oats</td>
<td>17</td>
<td>1.2</td>
<td></td>
<td>13.0</td>
<td>15</td>
</tr>
<tr>
<td>Barley</td>
<td>17</td>
<td>1.2</td>
<td></td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>Ryecorn</td>
<td>17</td>
<td>1.1</td>
<td></td>
<td>12.2</td>
<td>15</td>
</tr>
<tr>
<td>Wheat</td>
<td>17</td>
<td>0.9</td>
<td></td>
<td>9.5</td>
<td>15</td>
</tr>
</tbody>
</table>

Concentrates

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Carbohydrate</th>
<th>Protein</th>
<th>Fat</th>
<th>Energy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>86</td>
<td>1.3</td>
<td></td>
<td>13.5</td>
<td>14</td>
</tr>
<tr>
<td>Barley</td>
<td>86</td>
<td>1.2</td>
<td></td>
<td>13.1</td>
<td>12</td>
</tr>
<tr>
<td>Oats</td>
<td>86</td>
<td>1.1</td>
<td></td>
<td>12.0</td>
<td>13</td>
</tr>
<tr>
<td>Maize meal</td>
<td>86</td>
<td>1.3</td>
<td></td>
<td>13.9</td>
<td>10</td>
</tr>
<tr>
<td>Linseed cake</td>
<td>86</td>
<td>1.1</td>
<td></td>
<td>12.0</td>
<td>26</td>
</tr>
<tr>
<td>Peas</td>
<td>86</td>
<td>1.2</td>
<td></td>
<td>13.1</td>
<td>26</td>
</tr>
<tr>
<td>Bran</td>
<td>86</td>
<td>0.9</td>
<td></td>
<td>9.6</td>
<td>17</td>
</tr>
<tr>
<td>Pollard</td>
<td>86</td>
<td>1.1</td>
<td></td>
<td>12.2</td>
<td>18</td>
</tr>
<tr>
<td>Brewer's grains</td>
<td>30-40</td>
<td>0.9</td>
<td></td>
<td>10.0</td>
<td>25</td>
</tr>
<tr>
<td>Molasses</td>
<td>75</td>
<td>1.1</td>
<td></td>
<td>11.8</td>
<td>4</td>
</tr>
<tr>
<td>Lucerne meal</td>
<td>86</td>
<td>0.9</td>
<td></td>
<td>9.5-10.3</td>
<td>22</td>
</tr>
</tbody>
</table>

Note: The feed values in Appendix 4.3 refer to the important components of energy and protein but it should be remembered that sheep also require a balance of vitamins, minerals and water. Fortunately good quality pasture contains about the right balance except where known mineral deficiencies such as selenium occur.

It is considered that energy is the main limiting feed component, hence its use for estimating feed quantities. As a rule, protein concentration of a sheep's diet should be around 6-8% for adult maintenance, 12-16% for young growing stock and at least 15% for lactating ewes.
Appendix 5:

Weight of gravid uterus for ewes

<table>
<thead>
<tr>
<th>Stage of gestation</th>
<th>Ewes single (kg)</th>
<th>Ewes twin (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>125</td>
<td>5.5</td>
<td>10.0</td>
</tr>
<tr>
<td>140</td>
<td>8.5</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Appendix 6: Condition scoring of sheep

Explanatory notes:

Condition scoring of sheep assesses the amount of body fat or condition by feeling the vertical (spine) and horizontal processes along the loin area as shown in the diagrams below. The technique is valuable as it relates to production ability of sheep regardless of body weight. E.g. at 55kg liveweight a small framed ewe may have a condition score of 4, a large framed ewe a condition score of 2.

As a rule for a given sheep there will be about a 5kg difference in liveweight between condition scores.

A. Condition scores 0, 1 and 2: indicate under feeding and low production

Score 0 This is seldom used as it only applies to ewes which are extremely emaciated and on the point of death. It is not possible to feel any muscle or fatty tissue between skin and bone.

Score 1 The vertical (spine) and horizontal (lumbar) processes are prominent and sharp. The fingers can be pushed easily below the horizontals and each process can be felt. The loin muscle is thin with no fat cover. *Grading 0-5mm*

Score 2 The vertical processes are prominent but smooth, individual processes being felt only as corrugations. The horizontal processes are smooth and rounded, but it is still possible to press the fingers under. The loin muscle is of moderate depth but with little fat cover. *Grading 5-8mm*
B. Condition scores 3 and 4: indicate good feeding and high production

Score 3 The vertical processes are smooth and rounded; the bone is only felt with pressure. The horizontal processes are also smooth and well covered; hard pressure with the fingers is needed to find the ends. The loin muscle is full, with a moderate fat cover.

GR 9 - 15mm

Score 4 The vertical processes are only detectable as a line; the ends of the horizontal processes cannot be felt. The loin muscles are full and have a thick covering of fat.

GR 15 - 20mm

C. Condition Score 5: overfed and overfat (GR over 21mm)

Score 5 The vertical processes cannot be detected even with pressure; there is a dimple in the fat layers where the processes should be. The horizontal processes cannot be detected. The loin muscles are very full and covered with very thick fat.

GR over 20mm
READING LIST

 A New Zealand Sheep Council Publication.
 Editor: Dr Ken Geenty.

 A Review and Report Commissioned by Wools of New Zealand & the
 New Zealand Meat Research and Development Council.
 by Emeritus Professor B.W. Manktelow (copies available from Wools of
 New Zealand and the New Zealand Meat Producers Board).

 NZ Society of Animal production. Occasional Publication no. 10.
 Editor: A.M. Nicol.

 Foundation for Continuing Education, Massey University.
 A.N. Bruere & D.M. West.

 Published by the New Zealand Institute of Agricultural Science.
 Editors: G.A. Wickham & M.F. McDonald.

 Editor: N.D. Grace.
REFERENCES

Index

Symbols

200 by 2000 programme 3
5-in-1. See Clostridial diseases

A

Abortion 67
vaccination against 67
Aeration 99
AgResearch 49
Androvax™ 41
Argentine stem weevil. See endophyte
Artificial insemination 52
cervical/intra-uterine 52
conception rates 52
technical skill 53
Artificial vagina 31
Autolysis 99
Autumn lambing 65

B

Backleg. See Clostridial diseases
Bagging off. See Lambing date
Bearings 70. See also Vaginal prolapse
after care 96
cleaning 96
replacing 96
retaining 96
seasonal variation 71
treatment 71. See also appendix 1.
Black disease. See Clostridial diseases
Bonding 86
Booroola gene 39
Breed effect 81
Brucella ovis 28
Brucellosis 28
By-pass protein. See Protein supplementation

C

Calcium borogluconate 70. See also Milk fever
Calcium deficiency. See Milk fever
Campylobacter 68
Campylobacter fetus. See campylobacter
Campylovexin® 69. See also campylobacter
Catabolism 99
Cervical inseminations 52
Cervical mucus 50
Chromosomal abnormality 54
CIDR sponges 44
CK enzyme 74. See also White muscle disease
Clostridial diseases 73
Colostrum production 93
Conception failure 53
failure to mate 53
fertilisation failure 53
heavy rain 53
Condition scoring
sheep chart 108
Congenital abnormalities 97
Constipation. See Ewe and lamb losses: means of decreasing
Contagious abortion 23. See also campylobactor; toxoplasmosis
Corpus luteum 35
Cotyledon numbers 55
Cranial haemorrhages 88. See also Dystocia
Crayon 50 See also Harnesses
Culling. See selection
for dystocia.
for lamb vigour/cold resistance 84
for lambing performance 84
optimum ewe age 83

D

Diagnostic procedure 99
Differential feeding. See Drafting: early late lambers
Dorset 43
milk production 94
Drafting
early late lambers 85
"Dry-dry" ewes. See Conception failure
Dystocia 87. See also appendix 2.0
age of ewes 83
birth weight factor 80
breed differences 81
cause 87
repeatability 87

E

Ease of lambing 88
selection for 88
Ease of shepherding. See Drafting: early late lambers
East Friesian 52
Electro-ejaculation 31
Embryonic development 54
 embryonic loss 54
 stress 56
 undernutrition 56

Embryonic loss 54
 causes 54

Endophyte 50

Ewe
 achieving high ovulation rate 26
 condition scoring 27
 feeding requirements 27
 flushing 26
 mortality/breeding performance 39
 weight recovery to next mating 25
 reproductive tract diagram 34
 useful breeding life 38

Ewe and lamb losses
 means of decreasing 85

Ewe deaths 69
 milk fever 69

Ewe live weight 37
 dynamic (flushing) effect 38
 static effect 38

Ewe milk production 93
 peaks 94

Ewe nutrition 92

Ewe:ram ratios 51
 fighting 51
 flock fertility 51
 genetic gain 51

F

Facial eczema 47
 breeding for resistance 47
 fungicide spraying 47
 sporodesmin 47

Faecal egg counting 45

Fallopian tube 35

Farm system changes 22

FecB. *See* Booroola gene

FecX. *See* Inverdale gene

Feed supplements 51

Feeding levels
 at lambing 93
 for lactating ewes 93
 table of requirements 101. *See* app.3

Feeds 106
 nutritional value table 106

Fertilisation failure 53
 due to stress 54

Fibrin 99

Finns

breed effect 82
 fecundity 40

Flabbiness 70. *See also* Milk fever

Foetal fluids 85

Foetal growth 55
 ewe feeding 60

Fusarium fungi. *See* Zearalenone

G

GGT. *See* Facial eczema

Goitre. *See* Iodine deficiency

Goitrogenic compounds 74

Gravid uterus
 weight for ewes 108

Greyface ewes
 litter size comparison 61

Grooming 86

H

Hairy Shaker disease 55. *See also*

 Teratogens

Harnesses 50

Heterosis 41, 82
 for reproductive traits 41

Heterozygous ewes 39

Hogget lambing 36

Hogget oestrus 36

Homozygous ewes 39

Hormonal synchronisation 44

Hypothermia 88

Hypoxia 97

I

Infection 98

Internal parasites 45

Intervention 85

Intra-abdominal pressure 70. *See also*

 Bearings

Introduction 3

Inverdale gene 39

Iodine 46. *See also* Iodine deficiency

Iodine deficiency 74

K

“*Ketol*” 70. *See also* Pregnancy toxaemia

Ketones. *See* Pregnancy toxaemia

L

Lactation 91
 effects of poor ewe nutrition 91
 seasonal effect 92
Lamb birth weight 79
Lamb body heat
genetic influence 91
lamb covers 90
required levels 88
Lamb deaths 78
age of ewe 83
breed effect 82
causes by percentage 78
diagnostic procedure 99
heat production 89
lactation 91
main causes 87. See also appendix 2.0
rain/wind factor 90
seasonal effects 81
sex factor 83
statistics 80
teratogens 84
Lamb heat retention 90
birthcoat 90
Lamb survival 78
age of ewes 83
birth weight factor 79
mothering 91
requirements 79
selection for 84
sire effect 83
Lamb swapping 86
Lambing date 85. See also Harnesses
accurate identification 85
Lambing paddocks 75
choosing 75
deaths from slipping 76
managing limited area 76
paddock history 78
shelter 77
slope 75
Lambing site 86
premature handling 86
Laparoscopic insemination 52
Late pregnancy
ewe nutrition 62
foetal growth 62
overfeeding 72
severe underfeeding 62
lamb growth 65
lifetime lamb performance 65
Latitude effects 41
Lipiodol®. See Iodine
Litter size
genetic increases 40
uterine efficiency 40
Lotus corniculatus 64
Lucerne 49
Lucerne silage 49
M
Malignant oedema. See Clostridial diseases
Mammary gland
development 57
Maternal behaviour 91
comparative study of 91
Maternal behaviour score (MBS) 91
ranking method 91
Mating and early pregnancy period 33
key to good lambing 33
priorities 33
underfeeding 38
MBS 91
ME requirements 101
ewe hoggets 102
in pregnancy, additional 103
lactating ewes 103
mature ewes 101
mature hoggets 102
Meconium 99
Melatonin 45
Merino ovulation 40
Metabolic disease 98
Mid to late pregnancy period 58
abortion 67
effects of shearing 61
extra energy requirements 63
feeding conclusions 66
milk production 63
physiological changes 72
protein supplementation 64
underfeeding 61
energy reserves 64
mothering ability 64
Milk fever 69
signs of 70
Milk production 63
ewe feeding effects 63
flock differences 94
pasture effect 94
with multiples 94
Milk yield 92
Mis-mothering
from high stocking 86
from low pasture cover 86
from paddock slope 75
use of salt blocks 87
with multiples 92
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misadventure 98</td>
<td>Placental membranes indication of lambs born 85</td>
</tr>
<tr>
<td>Monitoring 23</td>
<td>PMSG 44</td>
</tr>
<tr>
<td>Mothering ability 91 in Merino 92 with multiples 92</td>
<td>Post Mortem decision diagram 100</td>
</tr>
<tr>
<td>N</td>
<td>Potassium iodide. See Iodine "potential lambs" loss 18</td>
</tr>
<tr>
<td>Non-oestrogenic pastures 49</td>
<td>Pre-lamb health checks 73</td>
</tr>
<tr>
<td>O</td>
<td>Pre-lamb shearing 66 effect on birth weight 67</td>
</tr>
<tr>
<td>Oedema 99</td>
<td>shelter use 67</td>
</tr>
<tr>
<td>Oestrogenic lucerne 49</td>
<td>use of winter comb 67</td>
</tr>
<tr>
<td>Oestrogenic pastures 49</td>
<td>Pregnancy scanning 58 ultrasound 58</td>
</tr>
<tr>
<td>Oestrus 35 age of the ewe 36 effects of shearing 36</td>
<td>Pregnancy toxicaemia 70</td>
</tr>
<tr>
<td>Oestrus interval 35</td>
<td>Pregnant mare’s serum gonadotropin (PMSG) 44</td>
</tr>
<tr>
<td>Oogonia 65</td>
<td>Progestagens 44</td>
</tr>
<tr>
<td>Out of season lambing 65 FE exposure 66</td>
<td>Progesterone 35</td>
</tr>
<tr>
<td>Grazing management 65</td>
<td>Progesterone priming 35</td>
</tr>
<tr>
<td>Out of season mating 44</td>
<td>Prostaglandin injections 44</td>
</tr>
<tr>
<td>Ovulation rate 37 breed effects 40</td>
<td>Protein supplementation 64</td>
</tr>
<tr>
<td>crossbreeding 41 ewe age effect 38</td>
<td>colostrum production 64</td>
</tr>
<tr>
<td>expected litter size 37 genes affecting 39</td>
<td>mammary development 64</td>
</tr>
<tr>
<td>immunisation against hormones 41</td>
<td>using tannin containing plants 64</td>
</tr>
<tr>
<td>latitude effects 41</td>
<td>Puberty 36</td>
</tr>
<tr>
<td>percentage of singles and multiples 37 seasonality 42</td>
<td>Pulpy kidney. See Clostridial diseases</td>
</tr>
<tr>
<td>synchronisation 43</td>
<td>R</td>
</tr>
<tr>
<td>underfeeding effects 38</td>
<td>Rain and wind effect 90</td>
</tr>
<tr>
<td>zebralanone effects 48</td>
<td>Ram 28 feed supplements 51</td>
</tr>
<tr>
<td>Parturient deaths 97</td>
<td>foot problems 28</td>
</tr>
<tr>
<td>Pasture cover conversion to dry matter 105</td>
<td>genital health problems 28</td>
</tr>
<tr>
<td>for lactating ewes 93</td>
<td>inspection before buying, mating 28</td>
</tr>
<tr>
<td>for lambing 92</td>
<td>preparation for mating 28</td>
</tr>
<tr>
<td>minimum levels for production 105</td>
<td>sexual activity 32</td>
</tr>
<tr>
<td>Pelvic opening size. See Dystocia</td>
<td>Ram reproductive system 30</td>
</tr>
<tr>
<td>Petechiation 99</td>
<td>Ram vasectomy 32</td>
</tr>
<tr>
<td>Pheromones 36 to identify ewes 32</td>
<td>Ready reckoner energy:feed dry matter 104. See appendix 3.1</td>
</tr>
<tr>
<td>Phyto-oestrogens 49 to stimulate ewes 32</td>
<td>Red clover 49</td>
</tr>
<tr>
<td>lucerne 49 to stimulate hoggets 32</td>
<td>Regulin®. See Melatonin</td>
</tr>
<tr>
<td>red clover 49</td>
<td>Romney milk production 94</td>
</tr>
<tr>
<td>Pithomyces chartarum. See Facial eczema</td>
<td>Ryegrass staggers. See Endophyte</td>
</tr>
<tr>
<td>Placental development 54 ewe nutrition 55</td>
<td></td>
</tr>
</tbody>
</table>
S
Salt blocks 87
Scanning 58
 feeding recommendations 60
 gathering information 59
 identifying multiples 59
 identifying non-pregnant ewes 59
Scanning surveys
 CF2000 21
 Lamb MAX 21
 Landcorp 20
 Merino 100% 20
Scrotal circumference 29
Scrotal mange 29
Seasonality 42
 breed effects 43
 Dorset 43
 Merino 43
 Romney-based breeds 43
Selection See Culling
 for maternal behaviour 92
 for milk production 94
Selenium 45
 deficiency in new born lambs 73
Selenium deficiency
 embryonic losses from 73
Shelter 77. See also Starvation/exposure from wind/rain effects 90
Shepherding and intervention 85
 at lambing 85
Silent heat 42
Simple exposure 88
Simple starvation 88
“Sleepy sickness”. See Pregnancy toxaemia
Sperm production 29
 identifying high serving rams 31
 scrotal temperature 30
 sperm quality 31
 testicle size 29
Spermatogenesis 30
Spinal haemorrhages 88. See also Dystocia
Staggers 50
Starvation/exposure 88. See also appendix 2.0
 interaction chart 89
 poor lactation 91
 suckling when cold 89
Subterranean clover 49
Suckling drive 64
Sulla 64
Summit metabolism 88
Synchronisation 43
 hormonal synchronisation 44
 out of season mating 44
 ram effect 43
T
Tagging
 after birth 86
Teratogens 84
Testicular volume. See Feed supplements
Tetanus. See Clostridial diseases
Thyroid gland. See Iodine deficiency
Thyroid gland weights. See Iodine
Thyroxine levels 46
Toxins 47
 endophyte 50
 facial eczema 47
 phyto-oestrogens 49
Zearalene 48
Toxoplasma gondii. See toxoplasmosis
Toxoplasmosis 68
 vaccination against 68
Toxovax®. See Toxoplasmosis: vaccination against
Trace elements 45
 iodine 45
 selenium 45
U
Ultrasound scanning 58
Urine zearalenol. See Zearalenone
V
Vaccination. See Abortion
Vaginal prolapae 70. See also Bearings
Vaginal wall 72
Vibrio/sis. See campylobacter
Vitamin E deficiencies 73
W
Waihora Romneys 40
White muscle disease 73. See also Selenium deficiency
Z
Zearalenone 48
 sheep urine testing 48