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Abstract – Principal component analysis is a widely used ‘dimension reduction’ technique,
albeit generally at a phenotypic level. It is shown that we can estimate genetic principal compo-
nents directly through a simple reparameterisation of the usual linear, mixed model. This is ap-
plicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual
traits or sets of random regression coefficients to model trajectories. Depending on the magni-
tude of genetic correlation, a subset of the principal component generally suffices to capture
the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more
parsimonious, have reduced rank and are smoothed, with the number of parameters required
to model the dispersion structure reduced from k(k + 1)/2 to m(2k − m + 1)/2 for k effects
and m principal components. Estimation of these parameters, the largest eigenvalues and per-
taining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using
derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce
computational requirements of multivariate analyses substantially. An application to the analy-
sis of eight traits recorded via live ultrasound scanning of beef cattle is given.

covariances / principal components / restricted maximum likelihood / reduced rank

1. INTRODUCTION

In most quantitative genetic analyses we are interested in multiple, corre-
lated genetic effects per individual. Predominantly, these are additive genetic
effects for different traits, but recently applications which model trajectories
for traits measured repeatedly per individual through sets of correlated, (ge-
netic) random regression (RR) coefficients, have found increasing use. Tradi-
tionally, the corresponding genetic covariance matrices have been considered
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unstructured, i.e. for k traits (or RR coefficients) there were k(k + 1)/2 distinct
(co)variance components to be estimated. By and large, restrictions on esti-
mates were imposed only to ensure that estimates were within the parameter
space, i.e. that all variances and conditional variances were positive, that all
correlation estimates were in the range of −1 to +1, and that all partial corre-
lations were consistent with each other. In statistical terms, this was equivalent
to the requirement that the estimated covariance matrix was positive semi-
definite, i.e. that none of its eigenvalues was negative.

In contrast, other areas of statistics have long since assumed and estimated
structured covariance matrices. On the one hand, these have been associated
with longitudinal or spatial data, or simply ‘repeated’ records. Jennrich and
Schluchter [21] and Wolfinger [57], for instance, discuss a number of common
structures, including compound symmetry, autoregressive and factor-analytic
structure, and random coefficient models (or see books by Diggle et al. [5]
and Lindsey [32]). On the other hand, principal component (PC) analysis, and
the closely related factor analysis, applied to records for several traits, have
found widespread use, both as a dimension reduction technique and to identify
common factors.

Analyses of quantitative genetic data have the added complexity, not shared
by other fields, that we want to partition the phenotypic variance into its genetic
and non-genetic components, using information on covariances between rel-
atives to do so. For ‘standard’ multi-trait analyses, considering records for
multiple characteristics usually measured only once per individual, little atten-
tion has been paid to estimation assuming any structural relationship. However,
for traits with repeated records, measured potentially infinitely many times
along some continuous scale such as time, also referred to as function-valued
or functional traits, there has been substantial interest in modelling changing
covariances along the associated trajectory, both at the genetic and environ-
mental level. Following suggestions by Kirkpatrick et al. [29], covariances
were described through covariance functions, based on orthogonal polynomi-
als of the continuous covariable, which were generally estimated to reduced
rank, i.e. involving polynomials of lower order than the number of points on
the trajectory. It was shown that covariance functions could be estimated ef-
ficiently fitting mixed linear models which included sets of RR coefficients
for all levels of random effects, and estimating the coefficients of the covari-
ance functions as covariances among RR coefficients [39]. A recent review of
applications in animal breeding is given by Schaeffer [48].

The parametric structures, widely used elsewhere [21, 57], have been con-
sidered as well in genetic analyses of such data. Pletcher and Geyer [46]
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teamed parametric correlation functions involving low numbers of param-
eters with variance functions to accommodate heterogeneous variances, to
model genetic and non-genetic covariances between records taken at different
ages, dubbing the resulting models ‘character process’ models. Alternatively,
‘hybrid’ models have been described, which model genetic trajectories through
sets of RR coefficients, but assume a parametric correlation structure, e.g. an
auto-regressive or an ante-dependence structure, for the within subject covari-
ances [8,40]. However, applications of the latter two types of model have been
limited so far [1, 2, 18].

Eigenvalues and -vectors of covariance matrices per se have received
relatively little attention. Hayes and Hill [12] used the so-called ‘canonical
decomposition’, which involves simultaneous diagonalisation of two covari-
ance matrices through an eigen-decomposition, to examine sampling proper-
ties of genetic selection indexes. Subsequently, Hayes and Hill [13] proposed
a modification of eigenvalues on the canonical scale (‘bending’) to constrain
non-positive definite estimates of genetic covariance matrices to the parameter
space. In mixed model analyses, both genetic evaluation and variance compo-
nent estimation, the transformation given by the associated matrix of eigenvec-
tors has been used extensively to reduce computational requirements.

For models without additional random effects, with all traits measured
on all animals and with equal design matrices, the canonical transforma-
tion reduces the multivariate analysis to a series of univariate analyses; see
Jensen and Mao [23] for a review. Extensions to models with multiple ran-
dom effects and missing data have been considered, in particular for genetic
evaluation [6, 7, 31]. Whilst it was recognised that canonical indices, i.e. lin-
ear combinations of the original variables which are independent of each other
and explain maximum amounts of genetic variation, have an interpretation in
their own right (see Meyer [36] for an example), this has found little use. For
instance, Wiggans and Goddard [55] developed six linear combinations of test
day records on dairy cows for milk, fat and protein yields to represent most
genetic variation in 60 measures based on a canonical decomposition of the
genetic covariance matrix.

Popularity of RR analyses for function-valued traits has sparked interest
in the eigendecomposition of covariance matrices of RR coefficients, espe-
cially at the genetic level. Eigenfunctions are the ‘infinite-dimensional’ equiv-
alents to the eigenvectors, and can be estimated by evaluating the eigenvec-
tors of coefficient matrices for the range of covariables fitted [29]. Genetic
eigenfunctions then describe the expected deformation of the mean trajectory
due to selection, i.e. the change in any point along the trajectory likely to occur
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when selecting on estimated breeding values for this eigenfunction; see Kirk-
patrick et al. [29] and Kirkpatrick and Lofsvold [28] for further details. This
implies that selection strategies to optimise changes along the complete curve
are most easily determined considering the eigenfunctions directly [27, 54].
Furthermore, we are not interested in estimates of the RR coefficients them-
selves, only in the resulting curve. Hence, as suggested by Kirkpatrick and
Meyer [30], it is logical to estimate the values of eigenfunctions directly. This
can be done by a simple reparameterisation of the model, as shown in this
paper.

Estimating eigenvectors and -values of covariance matrices is equivalent to
PC analysis [25]. PC analysis goes back to Hotelling [17] and Pearson [44]
(both reprinted in Bryant and Atchley [3]). PC analysis is widely used as a
dimension reduction technique, but so far has had only limited applications in
quantitative genetic analyses. Eigenvectors define independent linear functions
of the variables considered, the so-called principal components, which succes-
sively explain the maximum amount of variation, measured by the correspond-
ing eigenvalues. This implies that for a given number of components consid-
ered, PCs minimise the mean square of deviations or, conversely, approximate
the multivariate data most accurately. It follows that PCs with variances (eigen-
values) close to zero contribute virtually no information to the analysis, that is
not already contained in the PCs with large eigenvalues. Hence, these compo-
nents can be ignored, resulting in, by and large, equivalent analyses involving
fewer variables, i.e. traits or RR coefficients, and often reduced sampling vari-
ation. Reducing the dimension of analyses by considering fewer variables can
considerably decrease the associated computational requirements.

This is applicable for both genetic evaluation and variance component esti-
mation, and to all models involving multiple, correlated effects, i.e. ‘standard’
multivariate analyses as well as RR analyses. In terms of variance components,
such analyses provide estimates of covariance matrices which are of corre-
spondingly reduced rank and are smoothed. Kirkpatrick and Meyer [30] con-
sidered a derivative-free algorithm to estimate reduced rank genetic covariance
matrices by restricted maximum likelihood (REML), using a PC parameteri-
sation. James et al. [19] applied a PC model at the phenotypic level to sparse,
function-valued data, using maximum likelihood estimation.

This paper extends the approach of Kirkpatrick and Meyer [30] to algo-
rithms using derivatives of the likelihood, in particular the so-called ‘average
information’ (AI) algorithm, and gives an application for a multivariate analy-
sis of ‘live’ carcass traits in beef cattle, recorded by ultrasound scanning.
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2. METHOD

2.1. Linear model

In the usual notation, let

y = Xβ + Zα +Wγ + ε (1)

denote the mixed linear model, with y the vector of observations on N animals,
β the vector of fixed effects, α the random vector of additive genetic effects for
NA animals (including any parents without records), γ the random vector of
animals’ permanent environmental effects (including any non-additive genetic
effects), ε the vector of residual errors, and X,Z and W the incidence matrices
pertaining to β, α and γ, respectively.

Assume y, α, γ and ε are ordered according to traits within animals, and
let ΣA, ΣR and ΣE denote the k × k matrices of additive genetic, permanent
environmental and temporary environmental covariances for the k traits. Tem-
porary environmental effects are usually assumed independently distributed,
i.e. ΣE = Diag{σ2

i }.
Assumed covariances are then

Var(α) = A ⊗ ΣA = G (2)

Var(γ) = IN ⊗ ΣR = T (3)

Var(ε) =
N∑

j=1

+ Σ
nj

E = R (4)

with A the numerator relationship matrix between animals, IN an identity
matrix of size N, Σ

nj

E the submatrix of ΣE for the jth animal with nj ≤ k
observations, obtained by deleting any rows and columns pertaining to traits
not recorded, and ‘⊗’ and ‘Σ+’ denoting the direct matrix product and sum,
respectively. Covariances between random effects α, γ, and ε are taken to be
zero. This gives

Var(y) = ZGZ′ +WTW′ + R = V. (5)

2.1.1. Implicit permanent environmental effects

In the simplest case, (1) represents a ‘standard’ multivariate model for k
traits, with rows of Z and W containing a single non-zero element of unity
only. If there are single records per trait, temporary environmental effects and



6 K. Meyer, M. Kirkpatrick

permanent environmental effects due to the individual cannot be separated.
This implies that we need to amalgamate Wγ and ε in (1) into a single effect
ε� =Wγ + ε with variance

Var(ε�) =
N∑

j=1

+
(
Σ

nj

R + Σ
nj

E

)
= R� (6)

where Σ
nj

R is the submatrix of ΣR corresponding to Σ
nj

E , and phenotypic vari-
ance V = ZGZ′ + R�.

Alternatively, we might choose to fit an equivalent model to (1) which
accounts for permanent environmental covariances between repeated records
for the same individual through the residual covariances, instead of explicitly
fitting a random effect γ to model permanent environmental effects. This might
be preferable if the number of equations in a mixed model analysis are of con-
cern, if only some of the traits have repeated observations, or if we want to
impose a parametric correlation structure on ΣR [40].

2.1.2. Extensions

Extensions of (1) and the algorithm described below to more complicated
models including additional random effects, such as genetic or permanent en-
vironmental maternal effects, are straightforward. Note, that (1) encompasses
RRmodels, where we describe the trajectories for individuals over the range of
continuous covariable(s) through corresponding sets of regression coefficients.
For instance, in a univariate RR model, we might fit kA genetic coefficients
αi j for each animal and kR permanent environmental coefficients γi j for each
individual with records, with covariance matrices ΣA and ΣR, respectively. In
contrast to the simple multivariate model, incidence matrices for RR models
have elements corresponding to the vector of covariates, i.e. are considerably
less sparse. For example, if we modelled the additive genetic trajectory for
each animal through kA coefficients, regressing on Legendre polynomials of
age at recording, each row of Z would have kA non-zero elements consisting
of Legendre polynomials of degree 0 to kA − 1, evaluated for the age at which
the corresponding record was taken. Computations, however, are analogous.

2.2. Reparameterisation

Consider a covariance matrix Σ, of dimension k × k. An eigenvalue decom-
position of Σ gives

Σ = E Λ E′ (7)
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with Λ the diagonal matrix of eigenvalues of Σ, λi for i = 1, . . . , k, and
E = (e1|e2| . . . |ek) the pertaining matrix of eigenvectors ei. For a particu-
lar eigenvalue λi, the corresponding ei is only determined to proportionality.
Hence, standard procedures for eigenvalue decomposition usually report the ei

standardised to a length of unity, so that E is orthonormal. In addition, eigen-
values and -vectors are usually given in descending order of magnitude of the
λi, and this is assumed to hold in the following.

If Σ represented the covariance matrix of a vector of variables v, the linear
function e′1v with variance λ1 would be the combination of the original vari-
ables which explained the maximum amount of variation. Similarly, with E
orthogonal, E′v with covariance matrix Λ gives k uncorrelated variables with
the ith new variable explaining most variation, given counterparts 1 to i − 1.
Hence, if we considered only the first m eigenvectors, we would obtain m lin-
ear combinations E′

mv capturing the maximum of the original variation (with
Em the k ×m submatrix of columns 1, . . . ,m of E). This is the principle under-
lying the use of principal components as a ‘dimension reduction’ technique.
Moreover, if λm+1, . . . , λk are close to zero, the ‘reproduced’ matrix

Σ� = EmΛmE′
m =

m∑
i=1

λieie′i (8)

with Λm the submatrix of Λ corresponding to Em, is a close approximation of
Σ which has rank m and is smoothed.

Assume Σ above stood for ΣA. We can then reparameterise (1) to

y = Xβ + Z(INA ⊗ Em)(INA ⊗ E′
m)α +Wγ + ε = Xβ + Z◦α◦ +Wγ + ε (9)

with Var(α◦) = A ⊗ Λm. A corresponding reparameterisation, based on the
decomposition of ΣR, can be applied to γ. For m = k, (9) is an equivalent
model to (1). Otherwise, i.e. for m < k, it has reduced dimension, considering
the first m principal components only.

In other words, estimating α◦ instead of α in a mixed model analysis directly
yields estimates of breeding values for the linear combinations of the original
variables given by the first m eigenvectors. This is of particular interest when
(1) represents a RR model, so that the eigenvectors of ΣA describe deforma-
tions of the mean trajectory due to selection [29]. Misztal et al. [42] considered
the parameterisation shown in (9) for RR analyses of test-day records on dairy
cattle, but failed to recognise the interpretation of α◦.

Alternatively, as suggested by Kirkpatrick and Meyer [30], we can reparam-
eterise (1) so that the random effects fitted have variances of unity.

Qm = Em(Λm)
1/2 =

( √
λ1e1| . . . |

√
λmem

)
so that Σ� = QmQ′

m (10)
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Qm is the k × m matrix of the first m ≤ k eigenvectors of the k × k covariance
matrix Σ, scaled by the square root of the corresponding eigenvalues. Note
that the columns of Qm do not have a norm of unity and, for m < k, Qm is not
square. For m = k, Q−1 = Λ−1/2E′ = Λ−1Q′.

Introducing subscripts A and R to distinguish between genetic and environ-
mental effects and, for convenience, omitting subscript m in the following, we
can then reparameterise (1) to

y = Xβ + Z(INA ⊗ QA)α
� +W(IN ⊗ QR)γ

� + ε

= Xβ + Z�α� +W�γ� + ε (11)

with α� of length NA × mA, α = (INA ⊗ QA)α� and Var(α�) = A ⊗ ImA , and
γ� of length N × mR, γ = (IN ⊗ QR)γ� and Var(γ�) = IN ⊗ ImR . Again, for
mA = kA and mR = kR, (11) is equivalent to (1).

2.3. Variance component estimation

Kirkpatrick and Meyer [30] described how estimates of the parameters
defining the dispersion structure for model (11) can be estimated by REML,
using a derivative-free algorithm. They employed a step-wise procedure to
maximise the likelihood with respect to only the elements of the ith eigen-
vectors in the ith step, to reduce the dimension of search and thus the number
of likelihood evaluations required. This was teamed with a final maximisation
with respect to all parameters. Using a graphical interpretation, i.e. considering
changes in the directions and lengths of the eigenvectors through small rota-
tions, allowed a maximisation with respect to the rotation angles, thus keeping
the number of parameters to be estimated low.

In the following we describe REML algorithms to estimate the ‘variance
components’ for model (11) utilising information on derivatives of the likeli-
hood. The AI-REML algorithm, described by Johnson and Thompson [24] and
Gilmour et al. [9] for univariate scenarios, utilises the average of observed and
expected information in a Newton-Raphson type iterative estimation scheme.
The average information is equivalent to second derivatives of the data part of
the likelihood only, and is thus considerably easier to compute than either of
the two former values. Multivariate implementations have been described, for
instance, by Jensen et al. [22] and Meyer [38]. Whilst most implementations
relied on computing the inverse of the coefficient matrix in the mixed model
equations (MME) [9, 22, 24], the latter utilised a Cholesky factorisation of the
coefficient matrix, and this approach is adopted in the following.
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2.3.1. Parameters to be estimated

In contrast to other parameterisations, the ‘variance components’ for the
random effects in (11) are incorporated into their design matrices, Z� and W�.
Let θ of length p denote the vector of (variance) parameters to be estimated.
On the original scale, there were k(k + 1)/2 covariance components for each
covariance matrix Σ of size k × k. On first glance, it might appear that parame-
terisation (11) might have increased the number of parameters to be estimated,
unless m was substantially smaller than k. Whilst each matrix Q has mk ele-
ments, it is a matrix of eigenvectors, albeit scaled, and we require eigenvectors
ei for i = 1, . . . ,m to be orthogonal. This implies that we have k parameters
for the first eigenvector q1 =

√
λ1e1. For the second eigenvector, q2 =

√
λ2e2,

however, there are only k – 1 ‘free’ elements, with the kth element determined
by the restriction that q′1q2 =

√
λ1λ2e′1e2 = 0. Analogously, for the ith column

of Q, there are only k – i + 1 elements to be estimated, with the remaining
i – 1 elements fully determined by columns 1, . . . , i – 1 of Q which are already
estimated. Let elements 1 to k – i + 1 of qi be the elements to be estimated.
Elements k – i + 2 to k are then obtained as solutions to the i – 1 equations
given by q′rqi = 0 for r = 1, . . . , i – 1.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qi,k−i+2

qi,k−i+3

...

qi,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1,k−i+2 q1,k−i+3 · · · q1,k

q2,k−i+2 q2,k−i+3 · · · q2,k

...
...

. . .
...

qi−1,k−i+2 qi−1,k−i+3 · · · qi−1,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k−i+1
r=1 q1,rqi,r∑k−i+1
r=1 q2,rqi,r

...∑k−i+1
r=1 qk,rqi,r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

with qi, r the rth element of qi (commas shown here for better separation of
subscripts only). Hence, the number of parameters to be estimated for Q is
m(2k − m + 1)/2 ≤ k(k + 1)/2, i.e. for a reduced dimension parameterisa-
tion, the number of variables describing the covariance structure is reduced by
(k−m)(k−m+1)/2. The reduction increases quadratically with the difference in
dimension. In specific cases, the matrix to be inverted in (12) can become sin-
gular, which implies that the corresponding elements of qi are undetermined.

The number of parameters to be estimated in total is then

p = mA (2kA − mA + 1) /2 + mR (2kR − mR + 1) /2 + mE (13)

where mE is the number of distinct elements ofΣE . Parameters are the elements
of QA, qAi j with i = 1, mA and j = 1, kA − mA + 1, the elements of QR, qRi j

with i = 1, mR and j = 1, kR − mR + 1, and the temporary environmental
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variances, σ2
1, . . . , σ

2
mE

. Note, that there are no constraints on the parameter
space for the former. Variances σ2

i have to be positive, but estimating log (σ2
i )

instead of σ2
i yields a parameterisation, for which maximising the likelihood

is an unconstrained optimisation problem.

For a univariate RR analysis, mE might be as low as 1 when measurement
error variances are assumed homogeneous. For standard multivariate analy-
ses of k traits, usually mE = k and kR ≤ k − 1. If there are only single
records per trait, there is no information to separate temporary and perma-
nent environmental covariances, i.e. mE = 0 and mR = k. Alternatively, we
might impose a structure of QRQ′

R + Diag {σ2
i } on ΣR + ΣE . This facili-

tates estimation of temporary environmental variances even though there are
no repeated records per animal, but mR must be chosen small enough, so that
mR(mR + 1)/2 + mE ≤ k(k + 1)/2.

2.3.2. Likelihood

The MME for (11) are then

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
X′R−1X X′R−1Z� X′R−1W�

Z�′R−1X Z�′R−1Z� + A−1 ⊗ ImA Z�′R−1W�

W�′R−1X W�′R−1Z� W�′R−1W� + IN ⊗ ImR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
β̂

α̂�

γ̂�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
X′R−1y

Z�′R−1y

W�′R−1y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

or Cû = r.
Whilst the part of the coefficient matrix C arising from the covariances

among random effects is sparser than in the corresponding MME for (1), it has
to be borne in mind that Z� and W� can be considerably denser than matri-
ces Z and W, although there is a ‘trade-off’ as the covariance matrices among
random effects proportional to identity matrices generate fewer links between
random effects levels. Hence computational savings in manipulating the MME
arise mainly from the reduction in the number of equations when mA < kA or
mR < kR.
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The REML log likelihood (logL) can be written in terms of the MME [10].
On the original scale,

− 2 logL = const. + NA log |ΣA| + kA log |A| + N log |ΣR|
+ log |R| + log |C| + y′Py. (15)

For the reparameterised model (11),

−2 logL = const. + mA log |A| + log |R| + log |C| + y′Py (16)

with P = V−1−V−1X(X′V−1X)−1X′V−1 a projection matrix, so that Py = R−1ε̂
with ε̂ = y −Xβ̂ −Z�α̂� −W�γ̂�. Contributions to logL from the covariance
matrices among random effects, ΣA and ΣR, are now contained in log |C| and
y′Py.

For a given model, mA log |A| is a constant and is not required when max-
imising logL. However, log |A| is readily obtained as a by-product when set-
ting up A−1. With R blockdiagonal for animals, its (log) determinant is readily
determined considering blocks for one animal at a time. If there are animals
with the same combinations of traits (ages) recorded, the number of determi-
nants which need to be evaluated is the number of combinations, and log |R|
is equal to the sum of products of individual determinants and the respective
number of animals [37].

As shown by Graser et al. [10], both y′Py and log |C| can be evaluated simul-
taneously by factoring the so-called mixed model matrix (MMM) M, which is
the coefficient matrix in the MME augmented by the vector of right hand sides
and its transpose, and the weighted sum of squares of the data. A Cholesky
factorisation requires the matrix to be factored to be positive definite. If multi-
ple, fixed effects are fitted, X is generally not of full rank, resulting in a matrix
M which is not positive definite. Hence it is assumed in the following, without
changing notation, that, if applicable, X has been replaced by a full rank sub-
matrix (or that the factorisation procedure has been modified to accommodate
matrices of reduced rank).

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X′R−1X X′R−1Z� X′R−1W� X′R−1y
Z�′R−1X Z�′R−1Z� + A−1 ⊗ ImA Z�′R−1W� Z�′R−1y
W�′R−1X W�′R−1Z� W�′R−1W� + IN ⊗ ImR W�′R−1y
y′R−1X y′R−1Z� y′R−1W� y′R−1y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(17)

If γ is not fitted, the corresponding rows and columns in (14) and (17) are
omitted, and R is replaced by R�.
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Let L denote the Cholesky factor of M, i.e. M = LL′, with diagonal el-
ements lrr for r = 1, . . . ,M. Terms required in (16) can then be calculated
as [41]

log |C| =
M−1∑
r=1

log(lrr) and y′Py = l2MM . (18)

Employing sparse matrix techniques together with an appropriate ordering of
rows and columns of M, logL can be evaluated for large data sets and models
of analyses.

2.3.3. Maximising the likelihood

One of the most widely used methods to optimise non-linear functions is
the Newton-Raphson (NR) algorithm. Let θ̂

t
be an estimate of θ from the tth

iterate. An update is then given by

θ̂
t+1
= θ̂

t − κt
(
−I(θ̂

t
) + τtIp

)−1
g(θ̂

t
) (19)

where I(θ̂
t
) and g(θ̂

t
) are the matrix of second derivatives of logL and the

vector of first derivatives of logL, respectively, both evaluated at θ̂
t
, and kt

and τt are parameters of the optimisation procedure.
If second derivatives in (19) are replaced by their expected values, the algo-

rithm is referred to as Fisher’s Method of Scoring. Similarly, for the AI-REML
algorithm, the average of observed and expected values is used instead of the
second derivatives in (19). Calculation of derivatives of logL with respect to
the parameters of the PC parameterisation is described in the Appendix.

For τt = 0 and kt = 1, (19) reduces to the standard NR algorithm. Gen-
erally, however, it is used with some modifications to avoid ‘overshooting’ or
to enforce an increase in logL. kt ≤ 1 is a step size scaling factor. Jennrich
and Sampson [20] suggested a ‘step halving’ procedure, i.e., for τt = 0 to try

successive values of kt of 1, 0.5, 0.25. . . until a value of θ̂
t+1

was found which
increased logL.

For τt � 0 and kt = 1, (19) gives Marquardt [35]’s modification, resulting in
a search step which is intermediate between a NR step, and a step in the method
of steepest descent (ascent). If required, a simple search for an optimal value
of either τt or kt can be carried out to maximize the increase in logL achieved.
This is especially advisable when observed second derivatives rather than AI
are used, as the ratio of computational efforts required for simple function
evaluations and calculation of second derivatives is wide.
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Other, more sophisticated, modifications of the NR algorithm, aimed at
making it more robust and efficient enough to cope with starting values far
from the optimum and nonconvex regions, are described by Nocedahl and
Wright [43] (Chap. 6).

3. APPLICATION

The method described is illustrated using records for ‘carcass traits’ mea-
sured by live ultrasound scanning for a herd of Australian beef cattle. Traits
recorded were eye muscle area (EMA; in cm2), fat depth at the 12/13th rib
(RIB; in mm) and at the P8 site (P8; in mm), and percentage intra-muscular
fat (IMF; in % × 10). Treating records on heifers and bulls as different traits
yielded eight traits in the analysis. Ages at recording from 300 to 700 days
were considered. After basic edits, the data comprised 20 171 records on 2335
heifers and 3702 bulls, i.e. 5605 animals in total. Generally, all four measures
for an animal were taken at the same time. However, IMF recording was intro-
duced some time after the other traits. Hence, only 57% of bulls and 69% of
heifers had all four traits recorded, with most of the remainder having records
for P8, RIB and EMA. In addition, there was a small number of animals with
other combinations of traits, due to missing observations or deletion of dubious
records. Table I gives further details.

The model of analysis was a simple animal model, fitting contemporary
groups (CG), birth type effects and a dam age class effect (heifers vs. cows) as
cross-classified fixed effects, and age at recording and age of dam as linear and
quadratic covariables. CG were defined as herd-management group-sex-date
of recording subclasses, with further subdivisions so that each CG comprised
ages at recording no more than 60 days apart. Animals’ additive genetic effects
were the only random effects considered. Extracting pedigree information for
up to four generations backwards yielded 2439 ancestors to be included after
‘pruning’ of pedigrees, i.e. a total of 8044 animals in the analysis. Animals
with records were progeny of 239 sires and 2284 dams.

REML estimates of covariance components among the eight traits were
obtained fitting 1, 2, . . . , 8 principal components for genetic effects, using
an AI-REML algorithm to locate the maximum of the likelihood. This was
supplemented by simple, derivative-free search steps at convergence or when
AI-REML failed to improve logL, although first derivatives different from
zero suggested that a maximum had not been attained.

Residual covariances matrices were modelled as full rank matrices through-
out. As traits were measured on two distinct subsets of animals, there were



14 K. Meyer, M. Kirkpatrick

Table I. Characteristics of the data structure (P8: fat depth at P8 site, RIB: fat depth at
12/13th rib, EMA: eye muscle area, and IMF: percentage intramuscular fat).

Heifers Bulls
P8 RIB EMA IMF P8 RIB EMA IMF

(mm) (mm) (cm2) (% × 10) (mm) (mm) (cm2) (% × 10)
No. of records 2335 2334 2335 1634 3236 3235 3235 1827
Mean 6.808 5.071 55.723 38.182 3.724 2.864 73.613 16.311
S.D.a 3.132 2.780 7.579 22.232 1.918 1.113 12.005 17.096
No. CGb 57 57 57 42 117 117 117 66

a Standard deviation; b contemporary group subclasses.

no environmental covariances between traits 1 to 4 and traits 5 to 8. Hence,
four eigenvectors of length 4 were fitted separately for each of the two diag-
onal blocks of the residual covariance matrix, resulting in only 20 parameters
for residuals to be estimated (16 zero covariances). REML forms of Akaike’s
(AIC) and Schwarz’ Bayesian (BIC) information criterion [56] were calculated
for each analysis. In addition, 28 corresponding bivariate analyses amongst all
pairs of traits were carried out. Results from the latter were pooled using the
‘iterative summing of expanded part matrices’ procedure of Mäntysaari [34],
as implemented by Henshall and Meyer [14].

Table II summarises characteristics of the analyses. In essence, fitting m < 8
PCs reduces the mixed model equations and computational demands per like-
lihood evaluation to those of a corresponding m-variate, full rank analysis. As
requirements increase quadratically with the dimension of analysis (m), even
a small reduction resulted in a substantial decrease in the number of opera-
tions needed for numerical factorisation of the MMM and its derivatives. With
the design matrices for random effects for the PC parameterisation comprising
the eigenvectors and thus being markedly denser than for standard multivari-
ate analyses, more elements in the MMM arise from the data part. However,
this is balanced by substantially fewer elements contributed by the inverses of
covariance matrices of random effects. In our example, fitting eight principal
components, there were 1 322 063 non-zero off-diagonal elements in the lower
triangle of M from the data part and 164 568 from the inverse of the genetic
covariance matrix. Corresponding figures for the usual parameterisation were
571 675 and 1 541 776. Whilst this resulted in fewer elements in M for the
PC parameterisation, numbers of non-zero elements in its Cholesky factor and
operation counts per factorisation were of comparable magnitude.

Likelihoods increased significantly with the number of PCs fitted up to a
fit of 6. Similarly, AIC was lowest for 6 PCs, suggesting this was the best
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Table II. Characteristics of analyses fitting 1, 2, . . . , 8 principal components and a
standard multivariate analysis (MV8), together with maximum log likelihood (logL)
and Akaike (AIC) and Bayesian (BIC) information criteria.

Analysis Number of
rows elements elements in operationsa para- logL AIC BIC
in MMMb Ch. factor (in 106) meters +30 400 –61 000 –61 300

Fit 1 8731 182 043 674 816 122.1 28 −197.01 250.03 170.61
Fit 2 16 775 351 590 1 339 004 292.7 35 −112.42 94.84 70.56
Fit 3 24 819 526 751 2 151 401 565.4 41 −80.88 43.77 66.76
Fit 4 32 863 707 517 3 074 970 951.6 46 −61.43 14.87 77.25
Fit 5 40 907 893 888 4 136 889 1469.4 50 −56.41 12.81 106.70
Fit 6 48 951 1 085 864 5 124 419 2243.3 53 −51.82 9.65 127.17
Fit 7 56 995 1 283 445 6 776 224 3056.1 55 −50.86 11.72 145.00
Fit 8 65 039 1 486 631 8 257 550 4090.5 56 −50.85 13.71 154.86
MV 8 65 039 2 086 463 8 220 700 4235.1 56 −50.85 13.71 154.86

a For numerical factorisation of the MMM; each operation is equivalent to one multi-
plication and addition; b mixed model matrix.

Table III. Estimates of eigenvalues of the genetic covariance matrix (λi) together with
their total and the proportion of variance explained by the first three eigenvalues, for
analyses fitting 1, 2, . . . , 8 principal components and a pooled covariance matrix from
bivariate analyses (Bi).

Anal. Eigenvalues Total Prop. var. (%)
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

∑
λ λ1 λ2 λ3

Fit 1 78.454 78.5 100.0
Fit 2 83.187 13.428 96.6 86.1 13.9
Fit 3 114.894 15.359 3.307 133.6 86.0 11.5 2.5
Fit 4 155.786 19.393 3.262 0.744 0.744 179.2 86.9 10.8 1.8
Fit 5 157.275 19.691 3.533 0.830 0.330 181.7 86.6 10.8 1.9
Fit 6 157.740 19.244 14.123 1.737 1.135 0.187 194.2 81.2 9.9 7.3
Fit 7 157.740 19.252 14.123 1.733 1.136 0.184 0.066 194.2 81.2 9.9 7.3
Fit 8 158.144 19.202 14.065 1.734 1.133 0.182 0.066 0.000 194.5 81.3 9.9 7.2
Bi 155.882 18.123 14.374 1.693 0.743 0.145 0.036 0.000 191.0 81.6 9.5 7.5

fitting model. Involving a more stringent penalty for the number of parameters
estimated, a more parsimonious model fitting the first 3 PCs only would be
chosen on the basis of BIC. Whilst estimates of the fourth (λ4) and fifth (λ5)
eigenvalue, shown in Table III, were low for analyses fitting 4 and 5 PCs,
respectively, there appeared to be some repartitioning of variation, resulting
in estimates of λ4 and λ5 being higher for analyses fitting 6 or more PCs.
Estimates of eigenvalues from pooled bivariate analyses agreed well with those
from analyses fitting 6 or more PCs.
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Figure 1. Estimates of genetic (�) and residual (�) variance components for traits
measured on heifers (P8: fat depth at P8 site, RIB: fat depth at 12/13th rib, EMA: eye
muscle area, and IMF: percentage intra-muscular fat), for analysis fitting 1, 2, . . . , 8
principal components together with pooled estimates from bivariate analyses (Bi).

As the sum of genetic eigenvalues shows, the total variance attributed to
genetic effects increased with the number of PCs fitted, implying a biased par-
titioning, i.e. that residual covariances have been overestimated, for the lowest
orders of fit. This is further illustrated in Figure 1, which shows that estimates
of phenotypic variances for individual traits were essentially the same for all
analyses, while estimates of genetic variances increased and estimates of the
residual variances decreased with increasing number of PCs considered (up
to 6). Figure 2 shows corresponding changes in estimates of selected genetic
correlations. Results suggest that 6 PCs may be required to estimate covari-
ances between the eight traits adequately, but, conversely, that the first three of
these PCs suffice to explain 98.4% of genetic variation between animals.

4. DISCUSSION

Multi-dimensional analyses involving more than a few correlated genetic
effects are inherently difficult. Typically, computational requirements are large.
In addition, sampling variances and probabilities of parameter estimates out-
side the boundaries of the parameter space, increase with the dimension of
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Figure 2. Estimates of genetic correlations between the same trait measured on dif-
ferent sexes (a) and between eye muscle area and the other traits measured on heifers
(b) for analysis fitting 1, 2, . . . , 8 principal components together with pooled estimates
from bivariate analyses (Bi).
(�: fat depth at P8 site, �: fat depth at 12/13th rib, �: percentage intra-muscular fat,
and •: eye muscle area).

analysis and magnitude of genetic correlations [15]. The model proposed is
capable of alleviating both problems. Estimating only the most important prin-
cipal components allows a more parsimonious parameterisation than standard
multivariate analyses, while still capturing the bulk of variation and smooth-
ing estimates of the corresponding covariance matrices. In a small simulation
study for a RR model, Kirkpatrick and Meyer [30] showed that the first eigen-
vector and -value tended to be estimated accurately regardless of the number
of principal components fitted, and that this dominated the sampling errors in
the associated covariance function. Further work is required to evaluate the
sampling behaviour in more practical situations.

In addition, computational demands can be decreased markedly, when fit-
ting reduced numbers of PCs. This could prove especially advantageous for
RR analyses, where regression on higher order polynomials has frequently re-
sulted in ‘end-of-range’ problems. Lower order, segmented polynomials, i.e.
splines, may provide a more flexible and less sensitive alternative. In particu-
lar, Rice and Wu [47] recommended the so-called ‘B-splines’ [4] as base func-
tions, and Torres and Quaas [53] presented an application for test day records
of dairy cows. A drawback of spline models is that, depending on the number
of segments or ‘knots’ used, the number of regression coefficients and thus
parameters to be estimated is often increased compared to polynomial models.
However, when the first few PCs suffice to estimate covariance functions, re-
duced rank RR analyses using spline base functions do not need to be any more
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complex than current, full rank analyses using polynomials. James et al. [19]
considered this scenario at a phenotypic level.

The model and algorithm presented are closely related to the factor-analytic
(FA) model and AI-REML algorithms considered by Smith et al. [49] and
Thompson et al. [51]. In particular, if specific variances are assumed zero,
the FA model collapses into a reduced rank model [51]. However, both authors
assumed the random effect with FA structure to be distributed proportionally to
an identity matrix, and necessary constraints on the number of parameters to be
estimated were imposed by setting the k(k−1)/2 elements in the upper triangle
of the matrix of factor loadings to zero [49]. In addition, both algorithms relied
on calculation of C−1, the inverse of the coefficient matrix in the MME.

4.1. Convergence behaviour

Initial experience with the algorithm described, using an AI-REML algo-
rithm together with simple ‘step halving’, showed that a modification of the
step size was required for most iterations, sometimes substantially so. This
lead to slower convergence than the quadratic convergence expected and often
observed; see Hofer [16] for a summary of literature results. For the example
presented, estimating all eight principal components required more than twice
as many iterates than the corresponding standard, multi-trait analysis. Hence,
the PC parameterisation is most advantageous for a reduced rank fit, where any
increase in iterations required is off-set by a smaller number of parameters to
be estimated, and much lower computational requirements to evaluate logL
and its derivatives.

Comparing various transformations of covariance matrices, Pinheiro and
Bates [45] encountered slower convergence in obtaining maximum likelihood
estimates for a parameterisation using eigenvalues and Givens rotation angles
of the matrix than for the alternatives considered. The NR algorithm and its
modifications are based on a quadratic expansion of the likelihood function
about its maximum, i.e. they work best when the shape of the likelihood sur-
face is unimodal and close to quadratic. Little is known about the shape of
the likelihood surface for the principal component parameterisation suggested.
James et al. [19] commented briefly on difficulties of maximising logL due to
non-convexity of the optimisation problem, but gave no further details.

4.2. Variance matrix non-linear in vector of parameters

Results given by Hofer [16] by and large referred to models in which the
covariance matrix of observations (V) was linear in the parameters to be
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estimated. In this case, the AI is an exact average of observed and expected
values of second derivatives of logL [9]. Otherwise, contributions from non-
zero second derivatives of V are omitted. No reports of convergence rates for
V non-linear in θ were available.

For a full rank fit, derivatives of logL with respect to the elements of Q can
be obtained by evaluating derivatives with respect to covariance components
σrs (elements of Σ) and then transforming these to the eigenvector scale. Using
the chain rule of differentiation for parameters θv = qrs and θw = qtu and
covariances φx = σr′s′ and φy = σt′u′ [33]

∂2 logL
∂θv∂θw

=

k(k+1)/2∑
x=1

k(k+1)/2∑
y=1

∂φx

∂θv

∂φy

∂θw

∂2 logL
∂φx∂φy

+

k(k+1)/2∑
x=1

∂2φx

∂θv∂θw

∂ logL
∂φx

· (20)

The first component in the right hand side of (20) is the average information
given by (A.13). The second part arises from the fact that some second deriva-
tives of αxy with respect to the elements of the corresponding eigenvectors, qrs,
are non-zero. As (20) clearly shows, this component is the more important the
larger first derivatives are, i.e. the further we are away from the maximum of
the likelihood. With σxy =

∑m
r=1 qrxqry, partial derivatives in (20) are simple

to evaluate, non-zero values being ∂σ2
s/∂qrs = 2qrs and ∂σsy/∂qrs = qry, and

∂2σ2
s/(∂qrs)2 = 2 and ∂2σ2

sy/∂qrs∂qry = 1, for r, s, y = 1, . . . , k.

4.3. Alternative parameterisation

In constructing our algorithm to maximise the (log) likelihood, we have
adopted the conventional approach of taking derivatives of logL with respect
to the parameters to be estimated. Alternatives exist and may be advantageous.

Kirkpatrick and Meyer [30] considered a search strategy to exploit the
orthogonality of PCs: after first estimating the last (mth) PC conditional on
those (1, . . . ,m− 1) already estimated, they suggested a final optimisation step
consisting of small rotations and perturbations of all PCs simultaneously. For
m PCs, this involved maximisation of logL for m(m−1)/2 rotation angles and
m perturbation factors, i.e. m(m + 1)/2 parameters. Earlier, Juga and Thomp-
son [26] teamed rotations and a canonical transformation in a derivative-free
search scheme for bivariate analyses.

It is straightforward to rewrite the mixed model and MMM, in terms of fixed
eigenvectors and variable rotation angles and perturbation factors as the param-
eters to be estimated. Derivatives of logL with respect to the new variables are
readily evaluated in the same manner as described above for the elements of
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eigenvectors, and the likelihood can be maximised accordingly. Further re-
search is planned to implement such algorithm and examine its efficacy.

For consistency, the algorithm has been presented assuming a reparameter-
isation to scaled eigenvectors for all covariance components to be estimated,
other than temporary environmental variances. This is not mandatory, and in
some instances we may want to combine the eigenvector parameterisation for
genetic effects with a different form for other random effects. For covariance
matrices fitted to full rank, it may be advantageous to compute the average
information for the covariance components themselves first, and then trans-
form these to derivatives with respect to the elements of the scaled eigenvec-
tors (shown above), as this would capture the non-linear part of (20) ignored
otherwise.

Indeed, for random effects where we are not interested in the eigen-structure
per se, another parameterisation may be preferable. In particular, for the
Cholesky decomposition, Σ = LΣL′

Σ
, a parameterisation to estimate the ele-

ments of the lower triangular matrix LΣ, taking log values of the diagonals
to remove constraints on the parameter space, has been used [33, 41, 45] and
been found to yield good convergence rates [11,45,52]. Pivoting on the largest
diagonal, this parameterisation can be used to estimate reduced rank covari-
ance matrices, by estimating the first m columns of LΣ only [39]. Again, more
work is required to determine the best strategy and optimisation procedure to
be used.

5. CONCLUSIONS

Estimation of genetic principal components directly is appealing. It has
several advantages over the estimation of individual genetic effects and their
covariance components, including reduction in the number of parameters to be
considered, sampling variation and computational requirements. Apart from
offering greater parsimony, it provides readily interpretable results characteris-
ing the patterns of genetic covariation in multiple dimension. It is expected to
facilitate routine analyses considering more than a few traits simultaneously.
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APPENDIX

A.1. First derivatives

First derivatives of the log likelihood are

−2∂logL
∂θt

=
∂ log |R|
∂θt

+
∂ log |C|
∂θt

+
∂y′Py
∂θt

(A.1)

= tr

(
R−1∂R
∂θt

)
+ tr

(
C−1∂C
∂θt

)
+ y′P

∂V
∂θt

Py for t = 1, . . . , p.

As outlined by Meyer and Smith [41], the last two terms required in (A.1)
can be evaluated simultaneously, using the ‘automatic differentiation’ of a
Cholesky factor proposed by Smith [50] (see also Nocedahl and Wright [43],
Chap. 7). This requires the corresponding derivatives of M to be specified.

Let ∂M/∂θt = (∂L/∂θt)(∂L′/∂θt) with ∂lrr/∂θt the diagonal elements of the
derivative of the Cholesky factor, ∂L/∂θt. Derivatives of log |C| and y′Py are
then [41]

∂ log |C|
∂θt

= 2
M−1∑
r=1

l−1rr
∂lrr

∂θt
and

∂y′Py
∂θt

= 2lMM
∂lMM

∂θt
· (A.2)

A.1.1. Derivatives of design matrices and log |R|
For a covariance matrix Σ = QQ′, first derivatives with respect to the ele-

ments of Q are

∂Σ

∂qrs
=
∂Q
∂qrs

Q′ +Q
∂Q′

∂qrs
= DrsQ′ +QDrs′ = Hrs (A.3)
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with Drs a matrix of the same size as Q, k ×m, with a single non-zero element
of unity in position rs. Hence Hrs is a symmetric matrix of the same size as Σ,
k × k, with elements hss = 2qrs and hst = hts = qrt for t � s = 1, . . . , k, and
zero otherwise.

Introducing subscripts to distinguish between matrices Drs pertaining to QA

and QR, the non-zero derivatives of the design matrices are

∂Z�

∂qA rs
=
∂Z

(
INA ⊗ QA

)
∂qA rs

= Z
(
INA ⊗ Drs

A

)
(A.4)

for r = 1, . . . ,mA; s = 1, . . . , kA − r + 1;

∂W�

∂qR rs
=
∂W (IN ⊗ QR)
∂qR rs

=W
(
IN ⊗ Drs

R

)
(A.5)

for r = 1, . . . ,mR; s = 1, . . . , kR − r + 1.

As for log |R|, its derivatives can be evaluated for one animal or one combina-
tion of records at a time.

tr

(
R−1∂R
∂θt

)
=

N∑
j=1

tr

⎛⎜⎜⎜⎜⎜⎜⎝(Σnj

E )−1
∂Σ

nj

E

∂ log
(
σ2

s

)
⎞⎟⎟⎟⎟⎟⎟⎠ =

N∑
j=1

ns
j (A.6)

where ns
j is the number of records for the jth animal which have temporary

environmental variance σ2
s .

A.1.2. Derivatives of M

With the design matrices Z� and W� incorporating the ‘variance compo-
nents’ for the random effects fitted, derivatives of M for the reparameterised
model (11) have a less simple structure than those for model (1) [41]. For ele-
ments of QA and QR, the derivatives are

∂M
∂qA rs

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 X′R−1 ∂Z
�

∂qA rs
0 0

∂Z�′

∂qA rs
R−1X

∂Z�′

∂qA rs
R−1Z�+Z�′R−1 ∂Z

�

∂qA rs

∂Z�′

∂qA rs
R−1W� ∂Z�′

∂qA rs
R−1y

0 W�′R−1 ∂Z
�

∂qA rs
0 0

0 y′R−1 ∂Z
�

∂qA rs
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.7)
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and

∂M
∂qR rs

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 X′R−1 ∂W
�

∂qR rs
0

0 0 Z�′R−1 ∂W
�

∂qR rs
0

∂W�

∂qR rs
R−1X

∂W�

∂qR rs
R−1Z�

∂W�

∂qR rs
R−1W� +W�′R−1 ∂W

�

∂qR rs

∂W�

∂qR rs
R−1y

0 0 y′R−1 ∂W
�

∂qR rs
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.8)

∂M/∂ log(σ2
s), the corresponding matrix of derivatives for the temporary envi-

ronmental variances, has the same form as M given in (17) but with each R−1
replaced by its derivative ∂R−1/∂ log(σ2

s), for s = 1, . . . ,mE.

∂R−1

∂ log
(
σ2

s

) = −R−1 ∂R

∂ log
(
σ2

s

)R−1 (A.9)

=

N∑
j=1

+ − (Σ
nj

E )−1
∂Σ

nj

E

∂ log
(
σ2

s

) (Σnj

E )−1.

For individual j with nj records, the submatrix of (A.9) is −σ−2s Ds
j, where Ds

j
is a matrix of size nj × nj, which has a diagonal element of unity for each
record which has temporary environmental variance σ2

s , and elements of zero
otherwise.

A.1.3. Implicit permanent environmental effects

Again, if γ is not fitted, (A.7) and ∂M/∂ log(σ2
s) are reduced accordingly,

omitting rows and columns pertaining to γ, and R is replaced by R�. In that
case, blocks of R� are submatrices of ΣR +ΣE which is assumed to have struc-
ture QRQ′

R+ Diag{σ2
i }. Hence, derivatives ∂R�/∂qR rs are non-zero, with the

block for the jth animal equal to

−
(
Σ

nj

R + Σ
nj

E

)−1 (
Hrs

R

)nj
(
Σ

nj

R + Σ
nj

E

)−1
(A.10)

where (Hrs
R )nj is the submatrix of Hrs

R = ∂ΣR/∂qR rs, as defined above
(see (A.3)), corresponding to the combination of traits recorded for indi-
vidual j. Alternatively, we may have assumed ΣR + ΣE = QRQ′

R with
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mR = kR. In that case, we do not estimate separate components σ2
s , i.e.

p = (mA(2kA − mA + 1) + kR(kR + 1))/2 and ∂M/∂σ2
s do not exist. Similarly,

derivatives of log |R�| are

tr

(
(R�)−1

∂R�

∂θt

)
= σ2

s

N∑
j=1

tr
((
Σ

nj

R + Σ
nj

E

)−1
Ds

j

)
for θt = log(σ2

s ); (A.11)

tr

(
(R�)−1

∂R�

∂θt

)
=

N∑
j=1

tr
((
Σ

nj

R + Σ
nj

E

)−1
(Hrs

R )nj

)
for θt = qR rs. (A.12)

A.2. Average information

As shown by Gilmour et al. [9] and Johnson and Thompson [24], the ‘av-
erage information’ is proportional to the second derivatives of the data part of
logL, y′Py.

∂2y′Py
∂θt∂θu

= y′P
∂V
∂θt

P
∂V
∂θu

Py = b′tPbu with bt =
∂V
∂θt

Py. (A.13)

A.2.1.Work vectors bt

For derivatives with respect to elements of the eigenvectors, vectors bt can
be rewritten in terms of estimates of the corresponding random effects

bt = Z
(
INA ⊗ Hrs

A (Σ�A)
−) α̂ = Z

(
INA ⊗ Hrs

A (Σ�A)
−QA

)
α̂�

for θt = qA rs; (A.14)

bt =W
(
IN ⊗ Hrs

R (Σ�R )
−) γ̂ =W

(
IN ⊗ Hrs

R (Σ�R)
−QR

)
γ̂�

for θt = qR rs. (A.15)

For derivatives with respect to temporary environmental variances

bt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

+Ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ε̂ for θt = log(σ2
s) (A.16)

i.e., bt has elements equal to the estimated residuals for records which are
assumed to have error variance σ2

s and zero otherwise.
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A.2.2. Calculation of average information

As outlined above, y′Py is readily calculated from y′R−1y by factoring the
mixed model matrix M. As described in more detail in Meyer [38,40], this can
be extended to determine products b′tPbu.

Define a matrix B with columns br for r = 1, . . . , p. Replacing each vec-
tor y and y′ in M with B and B′, respectively, then yields a matrix MB with
M − 1 + p rows and columns. Factoring MB or, equivalently, ‘absorbing’ the
first M − 1 rows and columns into the last p rows and columns of MB, then
replaces B′R−1B with B′PB, which, to proportionality, is the average informa-
tion matrix. As the Cholesky factorisation of the first M − 1 rows and columns
of MB has already been determined in calculating logL, this is computation-
ally undemanding.

A.2.3. Implicit permanent environmental effects

For γ not fitted, derivatives of R� with respect to qR rs are non-zero, and the
equivalent to (A.15) is

bt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

+(Hrs
R )nj

(
Σ

nj

R + Σ
nj

E

)−1⎞⎟⎟⎟⎟⎟⎟⎟⎠ ε̂ for θt = qR rs. (A.17)

A.3. Second derivatives

Analogously, second derivatives of the log likelihood are

−2∂
2 logL
∂θt∂θu

=
∂2 log |R|
∂θt∂θu

+
∂2 log |C|
∂θt∂θu

+
∂2y′Py
∂θt∂θu

for t, u = 1, . . . , p. (A.18)

As above, the last two terms required in (A.18) can be evaluated si-
multaneously, taking second derivatives of the a Cholesky factor of M.
Again, these can be obtained through ‘automatic differentiation’ [50], pro-
vided the second derivatives of M can be specified. For ∂2M/(∂θt∂θu) =
(∂2L/(∂θt∂θu))(∂L′/(∂θtθu)) with diagonal elements ∂2lrr/(∂θt∂θu) [41],

∂2 log |C|
∂θt∂θu

= 2
M−1∑
r=1

l−1rr
∂lrr

∂θt∂θu
− l−2rr

∂lrr

∂θt

∂lrr

∂θu
and (A.19)

∂y′Py
∂θt∂θu

= 2

(
lMM
∂2lMM

∂θt∂θu
+
∂lMM

∂θt

∂lMM

∂θu

)
. (A.20)
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A.3.1. Derivatives of log |R|
The first term in (A.18),

∂2 log |R|
∂θt∂θu

= tr

(
R−1 ∂2R
∂θt∂θu

)
− tr

(
R−1∂R
∂θt

R−1 ∂R
∂θu

)
, (A.21)

can again be evaluated considering submatrices for one animal at a time. As
for the corresponding first derivatives (see (A.6–A.12) above), simplifications
of (A.21) exist and are straightforward, but are not developed here.

A.3.2. Derivatives of M

Second derivatives of M have non-zero elements only in blocks for random
effects. In the 4× 4 grid representing M, diagonal blocks corresponding to α�,
i.e., in position (2,2), are ∂2M/(∂qA rs∂qA tu) which expand to(

INA ⊗ Drs′
A

)
Z′R−1Z

(
INA ⊗ Dtu

A

)
+

(
INA ⊗ Dtu′

A

)
Z′R−1Z (A.22)(

INA ⊗ Drs
A

)
.

Similarly, in position (3,3), diagonal non-zero diagonal blocks
∂2M/(∂qR rs∂qR tu) are(

IN ⊗ Drs′
R

)
W′R−1W

(
IN ⊗ Dtu

R

)
+

(
IN ⊗ Dtu′

R

)
W′R−1W (A.23)(

IN ⊗ Drs
R

)
.

In addition, there are non-zero off-diagonal blocks corresponding to α� and
γ�. Blocks in position (3,2) are(

IN ⊗ Dtu′
R

)
W′R−1Z

(
INA ⊗ Drs

A

)
in ∂2M/(∂qA rs∂qR tu) (A.24)(

IN ⊗ Drs′
R

)
W′R−1Z

(
INA ⊗ Dtu

A

)
in ∂2M/(∂qR rs∂qA tu) (A.25)

and blocks (2,3) are their respective transposes.
Second derivatives of M with respect to parameters modelling residual co-
variances again have the same structure as M, but with R−1 in (17) replaced
by [41]

∂2R−1

∂θt∂θu
= R−1

(
∂R
∂θt

R−1 ∂R
∂θu
+
∂R
∂θu

R−1∂R
∂θt

− ∂2R
∂θt∂θu

)
R−1, (A.26)

with obvious simplifications if R is a diagonal matrix of temporary environ-
mental variances.
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A.3.3. Implicit permanent environmental effects

If γ is not fitted, second derivatives with respect to the elements of QR can be
evaluated using Hrs

R = ∂ΣR/∂qR rs as defined above, and that second derivatives
of ΣR with respect to the elements of its scaled eigenvectors are

∂2ΣR

∂qR rs∂qR tu
= Drs

R Dtu′
R + Dtu

R Drs′
R = H̃rstu

R (A.27)

where H̃rstu is a symmetric matrix of same size as ΣR with elements hss = 2
for r = t and s = u, hsu = hus = 1 for r = t and s � u, and zero otherwise.
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