
Chapter 7: Application of mRNA differential display PCR to
investigate gene expression in the thermotolerant
phenotype

7.1 Introduction

All regulatory mechanisms that control cell biology involve differential patterns of

gene expression. Reprogramming of gene activity in cells exposed to a thermal insult

results in the increased synthesis of hsps (Lindquist and Craig, 1988; Watson, 1990).

Concomitantly, cells that have been subjeci ed to a mild heat shock acquire tolerance to

subsequent, more severe stress conditions th it would otherwise prove lethal. Furthermore,

induction of thermotolerance is fully reversible, with resumption of a normal pattern of

protein synthesis occurring subsequent to return of cells to physiological temperature

(Lindquist, 1986; Chapters 5, 6). Consequently, it has become generally accepted that hsps

play vital roles in conferral of thermotolerance (Lindquist and Craig, 1988). The heat

shock response has proven an excellent model for delineating regulatory mechanisms of

gene expression (Sorger, 1991: Craig and Gross, 1991; Morimoto et al., 1992). Moreover,

extensive studies of hsps have provided insights about protein folding, oligomerization,

secretion and degradation (Ang et al., 1991; Ellis and van der Vies, 1991; Georgopolous.

1992; Hendrick and Hartl, 1993). However, in addition to hsp synthesis, an array of other

metabolic and morphological changes occur during thermal shock and as a result, the

process mediating protection and survival of the stressed cell appears to involve a multi

faceted mechanism. with many factors or erating in concert. In this context it is not

surprising that conflicting data concerning the relevance of various stress protectants is

prevalent in the literature, as previously discussed (Chapters 3, 5). For example, in

Saccharomyces cerevisiae, some reports demonstrate acquisition of thermotolerance in the

absence of newly synthesized lisps (Hall, 1583; Smith and Yaffe, 1991: Gross and Watson.

1996a). Others indicate a lack of correlation between levels of the disaccharide trehalose,

putatively involved in stress protection (Hoi tiger et al., 1989; De Virgilio et al.. 1991). and

thermotolerance (Arguelles, 1994; Nwaka et al., 1994). Furthermore, it has recently been

shown that involvement of membrane fatty acid composition in thermoprotection of yeast

appears unlikely (Swan and Watson, 1997). While the relative contributions of various

stress biomolecules and factors regulating their modes of action remain unresolved (Piper,
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1993), contradictions of this nature lead to the inference that thermotolerance and the heat

shock response, although related, are separate phenomena. Such an interpretation is not

inconsistent with early, previously expressed views (Lindquist. 1986).

As described in Chapter 3, it is well established that thermotolerance in S cerevisiae

varies with growth phase (Plesset et al., 1 . )87; Watson, 1990) and the state of carbon

catabolite repression (Elliot and Futcher, 1993; Weitzel and Li, 1993). Results presented

in Chapter 3 showed that levels of heat shock inducible tolerance in repressed cells (grown

on glucose) of inherently thermosensitive Ysen reflect the high levels of intrinsic resistance

exhibited by cells grown on derepressive substrate (acetate) (Gross and Watson. 1996a).

An elevated level of intrinsic thermotoleran ,2,e associated with growth on nonfermentable

substrate was previously proposed to be an ributable to a greater abundance of hsp 104

(Sanchez et al., 1992). However, it has been more recently shown that stationary phase.

derepressed cells of a tpsl hsp 104 mutant, deficient in both trehalose and hsp 104

synthesis, were still more resistant than wild type cells in logarithmic phase (Elliot et al.,

1996). The authors therefore concluded that other undefined mechanisms of tolerance

exist. Generally, association of either hsp., or trehalose with thermotolerance has been

based on the temporal correlation of their induction following heat shock treatment.

Definitive evidence of a causal relationship, with the possible exception of hsp 104

(Sanchez et al., 1992), has not been firmly established. It is known however that several

metabolic parameters associated with derepressive growth are induced following heat

shock in repressed cells (Werner-Washburne et al., 1993). Based on this fact and the

present results established to this point, the question arose as to whether any regulatory

mechanisms that have thus far remained elusive, are common to induced thermotolerance

in repressed cells and intrinsic thermotolerance in derepressed cells.

To investigate this concept, gene expression profiles from cells of Ysen, as well as

those of the relatively thermoresistant Yres. were surveyed using differential display of

reverse transcribed PCR amplified cDNA (DDRT-PCR) (Liang and Pardee, 1992). Since

its inception, this relatively novel technique has stimulated much work in the investigation

of gene regulation. Although originally Cevised for the identification and isolation of

genes expressed under designated conditions in mammalian cells, its now widespread use

has found application in a variety of metabolic processes in the gamut of organisms.. For

example, its application has been reported for investigations involving the bacterium

Lei,S11111ania chagasi (Lewis et al., 1996), A rabidopsis thatiana (Callard et al., 1996) and
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plant-fungus interactions (Benito et al., 1996), insect larvae (Adati et al., 1995), Xenopris

laevis (Simon and Oppenheimer, 1996) and ihe amphibian limb (Kang et al.. 1996). With

the availability of the complete yeast genomic sequence (Goffeau et al., 1996) techniques

such as DDRT-PCR, which enable rapid ft nctional analysis of genes of interest, are of

increasing importance (Winzeler, 1997). Work presented in this chapter, recently accepted

for publication (Gross and Watson, 1990, in press), provides a comprehensive

demonstration of the application of DDRT-PCR to S.cerevisiae. The successful isolation

and identification of a number of cloned expressed sequence tags (ESTs) and their possible

relevance to stress regulation is described.

7.2 Results

7.2.1 First round DDRT-PCR analysis of Ysen mRNA expression

Results for the numbers of differentially amplified cDNAs generated by specific

primer pairs from heat shocked and derepressed cells of Ysen, as compared to repressed

control cells, are presented in Table 7.1. Summations of total numbers are shown in Table

7.2. Generally, it was observed that a large number of mRNAs were induced upon heat

shock or under derepressive growth. with a substantial number of fragments common to

both conditions. A section of a typical differential display gel, generated from PCR

incubations with one anchored primer and several arbitrary primers, is shown in Fig. 7.1.

The various patterns of differential expression observed, including up and down regulation

as well as cDNAs common to both heat shocked and derepressed cells, are exemplified.

For the entire first round analysis it -was noted that, on average. 40-50 cDNA tags

occupied each lane, generating a total disphly of –10 800 PCR products for each cell type

(results not shown). In addition, it was assumed that the number of primer combinations

employed in this analysis was sufficient to have displayed the entire mRNA population

(Liang and Pardee, 1992; Bauer et al., 1993), especially considering the smaller genome

size of S. cerevisiae in comparison to higher eukaryotes. As a result it can be

approximated that, for the complete primary analysis of Ysen, – 9.6 °A (1 031/10 800) of

all mRNAs are heat shock responsive with 3.8 °A (227/10 800) exhibiting up-regulation

and 5.8 % (622/10 800) exhibiting down- egulation, upon heat stimulation (Table 7.2).

The data also suggests that – 7 % (591 + 182/10 800) of all genes are exclusive to or
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Table 7.1. Numbers of differentially amplified cDN ks generated from each primer pair for the entire first
round DDRT-PCR analysis of Ysen.

5' Arbitrary
primer

3' Oligo-d I . primer

1. AA 2. A(: 3. AG 4. CA 5. (:(' 6. CC;	 7. GA	 8. GC	 9. ((:	 TOTAL.
I HA

21111\
211.1	 711:1

111 111 211 '11	 211	 211	 1511
GATCATAGCC 2A 21	 11	 18.1

3D 51) 41) 21)	 II)	 -ID	 251)
411,1111 1111

- - III
1	 611A

111	 I!!	 411
CTGCTTGATG 5A

151)

,

41) ID III) 21)
IA	 1A	 13:1

41)	 21)	 4111)

3. - - - - - -	 II11	 31IA

GATCCAGTAC
211
731

211
1A

6H
5A

III 111	 1-111
2A	 3 4	 IA	 26.A

1613 II) 41) 5D 51) 21)	 ID	 21)	 361)
4. 811:1 114 A !HA II-IA	 'I IA	 1411A

GATCGCATTG
214
41 1,1

1211	 1411
;1	 • 4	 3\	 23.1

II) 181) SD I'D 51)	 61)	 21)	 II)	 5111)

5. 211A -
III

5141.1 - 2111	 2111	 2111	 13)1:
211	 21111

AAAC IC'C(;T(' 53 4 61 4 4 IA	 1/11	 1.1	 54A
41) ) 1"1 ,)\ 11) ID	 6I)	 151)

6. 711A 1111 2	 II	 '4 I .1	 13113

1-CGTAAAGGC
11j
21

-
2,2 41

111	 611
21	 ...,,A	 41	 25.1

21) 21) II) 441) 41) 2D	 71)	 4D	 381)
,112	 811,1

cxrcATGGrc
111\
5A 1.4

-
2 2 \

211	 411	 811
4 \	 52	 2334

- ID 5D '1I4) 51) 21)	 II)	 21)	 210
K. 1111 1111 111 I II II '1\	

411112
	 -	 SIIA

riTTGGcTcc
-

11
-

2 1
III
431

511
I A	 IA	 12A

ID 21) 2D 71) I1) ID	 71)	 21)	 1'1)	 361)
9. '11.1 1111 111,1 111 1	 1111	 711.1

GYITTcccAc
III 211

I\
III

11
III	 211	 11111

1 A	 1,\	 I8A
41) HD 41) 212	 :2	 221)

10.
T.A.ccTAAGcc;

111,1
211

111 1

141

111 

21

1111	 511.1
1111112 511

263
II) 14) ),, 2D ID	 'I)	 151)

I I. 141A WA 4411 NIA IIIIA	 81131

GATcTGAcAc 5A 1\ IA
1'1
14 2-

211	 III	 111
41,11	 11	 2,2	 28.4

ID 21) ID II)	 II)	 1)11)
12. 111-1 1111 1111	 311.1

c..vrci.A.Accc;
511
5A

211
6 \

III 111
, „4

211	 111	 111	 111	 2411
2A	 11	 21.1

IP) I'D I 212	 SI)	 41)	 3111)

13. II14 1111	 411A

TGGA-rrcGrc 4A I 11 1 32A
71) 2D 411 \2 SD	 I'M

14. 1111 II1A

cGAAccAAT(
211
1.4 IA

-	 211
41	 11	 18A

51) 413	 151)
15. 41131 1111 511A

GATCAATCGC
,11

11 2-\ 21
111	 311
,:\	 111A

413 'II) ID II) II)	 21)	 'ID	 231)
16. 17111 111/	 1811.1

TcGurc.vrAc
411
IA 21 22\

111	 411
81	 3:\	 54	 1,1	 28.1

51) 61) III) 21) 41)	 4D	 1 ID	 541)
17. 4111113 1111 111	 1 3I1A 111-1	 11111.4

GATc.rcAcic 221 11 21
411
I1

III	 III	 811
11	 4.1	 II	 151

II	 ')I' II) 61) 21) 11) 11)	 71)	 21)	 11)	 2 211
18. 2112

111
211A

111 211 211
4111

211
8113,

III	 1111
T('GATA(:AGC 7 A i■	 \ IA 21	 IA	 31:1

'II) 41) 21)	 JD	 3111)
19. 4111 -	 111,1	 711.1I .11,	

11:1.2
TAc.A.Ac.GAGc

711
2 -1 31 -1

III
	

III	 11111
11	 I\	 21	 171

11) 'D 71) 41)	 21)	 251)
20. 5111 511A

(;ATCAAGTCC
211
51
21)

1 „\
214

42, IA
-I)

511
23.1.
121)

21. 1111 111.1 III	 \ 21131 211\	 11111

GATcTcAc.“-
211
21

21) III
24

211	 411	 1611
6 1	 1,A	 1113,

21) II)	 :II)	 I'D	 ;I)	 221/
2,. 211A

I Hi r 2
111	 511A

Gt;T:1,(7FAAGG
-D

111

,f)
2 \

III
,4
ID

'III
1A	 14	 , .4	 I 8.1,

2f)	 ID	 2D	 !I)	 151)

23. 411:1 1111 2111 11141	 \	 /1114

G vrcAcc,T
till 211 III

'1 \ IA
1411

IA	 12.1
•-II) 9E) 01) )	 221)

24. 4141 411.1

c Fri c'rkcc(
411
5 A

11
141 1, 4

III
1 1 / A

411	 411	 1311
131	 :A	 2.-2	 -6A

II) II) 41)	 ID	 151)

Indicated are cDNAs exhibiting: pronounced amplification  common to heat shocked and acetate gown cells
(HA). pronounced amplification in heat shocked cells (H), pronounced amplification in acetate gown cells
(A) and down regulation in heat shocked cells (D). PCR amplification was carried out in the presence of 9
dT II VV (V A, C or G) primers with each of 24 arbitrary primers. Summations for each arbitrary primer are
shown.
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Table 7.2. Numbers of differentially amplified cDNAs from first round DDRT-PCR analysis of heat
shocked and acetate grown Ysen cells.

Pattern of differential
amplification

Oligo-dT primer

AA AC AG CA CC CC GA CC GG TOT.U.

Heat shock /acetate up-regulated 88 15 12 6 14 5 13 8 21 182
Heat shock up-regulated Ni 1i 3i 13 i6 26 iy 3L i5 227

Acetate up-regulated 70 91 79 39 39 44 93 42 94 591

Heat shock down-regulated 59 77 114 79 48 35 69 50 91 622

Total heat shock responsive 205 109 157 98 78 66 101 90 127 1031

Total numbers of heat shock responsive mRNAs exhibited by PCR amplification in the presence of 9
M I VV (V = A. C	 primers with each of 24 ar'b itr'ary primers as well as summat i ons for the entire
analysis are indicated.
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Fig. 7.1. A representative section of a DDIZT-PCR tel autoradiou.ram generated from PCIZ amplification with one anchored polvT
primer and several of 24 arbitrar y primers. PC incubations were loaded in sets of three according to the three cell t y pos of S. I.Preii.slue
Ysen: 2,11.1cose urown 2C control (C). LIlucose grown heat shocked (37 'C /30 min) (II) and 25 'V acetate urown (A) for each primer
pair. Arrows in lanes I lAc: indicate pronounced amplification common to heat shocked and acetate g rown cells. 11: indicate pronounced
amplification in heat shocked cells. Ac: indicate pronounced amplification in acetate 2ro11 n cells and I): indicate down regulation in heat
shocked cells. Approximate sizes of gel f ragments are indicated in bp.



preferentially expressed during derepressive growth, whereas – 1.7 % (182/10 800) are

common to both the heat shocked and derepressed conditions.

It was also observed throughout the analysis of Ysen, that a number of cDNA bands

exhibited consistent expression in control and heat shocked cells. with several consistent in

all three cell types (examples can be seen in Fig. 7.1). Such products could possibly be

isolated, characterized and used as future RN h loading controls.

7.2.2 Second round DDRT-PCR analysis of Ysen and Yres mRNA expression

To verify reproducibility, a second display was performed on newly and independently

isolated RNA from Ysen, using only those primer combinations that generated differential

amplification common to heat shocked and derepressed cells in the primary analysis. In

addition, these specific primer pairs were also used to amplify cDNA pools from control,

heat shocked and derepressed cells of the strain Yres. Since the present point of interest

was to determine whether any common regulatory mechanism of thermotolerance existed

between heat shocked and derepressed cells. efforts were concentrated on amplicons that

exhibited pronounced expression as compared to that of control cells.

Overall, it was noted that DDRT-PCR analysis of Ysen, despite minor variations in

cDNA banding patterns and intensities of some individual fragments, was reproducible. At

least 70 `.%o of differentially expressed cDNAs from the primary analysis could be identified

in the second round of confirmatory reaction involving primer pairs of interest (results not

shown). It was presumed that some inco tsistencies may have arisen due to the low

stringency PCR conditions employed, report ed as optimum for the technique (Bauer e/ al..

1993). Encouragingly, resolved cDNA fragments from Yres generated almost identical

patterns to those of Ysen (Fig. 7.2), with the exception of possible strain specific

differences, also apparent from previous investigations of proteins analysed by 1D SDS

PAGE (Chapter 3, Gross and Watson, 1996a). However, only 30 cDNA species, common

to the heat shocked and derepressed condithns of Ysen, were also identified in Yres. In

some cases, these particular cDNAs were also evident in repressed control cells of Yres

(Fig. 7.2 B. C), a situation of particular relevance given the intrinsically thermoresistant

phenotype of this strain as compared with Ysen (Chapter 3, Gross and Watson, 1996a). As

a result, the strategy pursued in this study was to limit further analysis to those cDNA

fragments that exhibited enhanced amplification in heat shocked and derepressed cells of

both strains.
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Ysen	 Ysen Yres

CHA CHACHA	 CHA CHA CHA

Ysen	 Ysen Yres

Fig. 7.2. Reproducibilit y of differential expiession for cDNA fragments D2-Ul1 (A), D9-
U2 (13), Dl-U9 (C), D9-U 19 (D) and Dl-U6 PCR incubations for specific primer pairs
were loaded in sets of three or six according to the three cell types of . S. cerevisiac Ysen and
Yres: glucose gown 25°C control (C), glucose 14rown heat shocked (37°C, 1 30 min) (1-1) and
25°C acetate grown. First round DDRT-PC analysis on Ysen is shown in panels on Ica
and repeat second round analysis on Ysen and Yres is shown in panels on right. Arrows
indicate respective cDNA fragments.

133



7.2.3 Confirmation of differential expression of cDNA fragments

Following excision and reamplification of the 30 cDNA fragments of interest,

radioactively labeled probes were generated to screen northerns of total RNA from the 3

cell types of both Ysen and Yres. Fragments were found to range in size from 50 - 350 bp

as estimated by comparison to a pUC 19/HpaII DNA ladder on 2 % TBE gels (examples

are shown in Fig. 7.3). Confirmation of dif erential expression was obtained for 3 of the

30 cDNAs (positives). An example of an agarose gel containing total RNA samples

extracted from each cell type, subsequently transferred to nylon membrane for

hybridization, is shown in Fig. 7.4. It should be noted that RNA of the same integrity was

extracted for first strand cDNA syntheses (see section 2.2.10). Probes designated D2-U 11.

D9412, and D1 -U6, in accordance with the primer set from which they were generated.

hybridized to transcripts of 2.4, 1.5 and 1.3 kb respectively (Fig. 7.5). Northern analysis

also detected but did not confirm the regulation of another 15 fragments (false positives)

(for example D9-U19, Fig. 7.5) while 12 prOes failed to yield any detectable hybridization

signal. The latter is a common problem of the technique, originally reported by Liang el

al., (1992) and despite continuing improvements (Liang and Pardee, 1995), appears to he

ongoing (O'Rourke et al., 1996; Blanchard and Cousins, 1996). However, the present

success rate of 17 % (3/18 cDNAs) for confirmation of differential expression is consistent

with other reports (Liang et al., 1993; Nishio et al., 1994; Appleyard et al., 1995).

Results presented in Fig. 7.5, confirming the differential expression of the 3 cDNAs,

also underlie the necessity of undertaking nNthem analysis. For example, the D9-U2 and

D1 -U6 probes hybridized to two different transcripts. Only the lower transcript

corresponded to the expression pattern of the original display for D9-U2 (Fig. 7.2 B). with

the converse occurring for D1 -U6 (Fig. E). The observation that each product of a

DDRT-PCR reaction, using the two base anchored oligo-dT primer method, is likely to be

a mix of at least two different cDNAs, has been reported by a number of researchers

(titans et al.. 1994; Sun el al., 1994; O'Rcurke el al., 1996). In the current studies this

problem was addressed by employing affinity capture (Li et al., 1994, described in Chapter

2) of the cDNA hybridized to the differentially regulated transcript.
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489

404

331

242

190

101.01..&

147

111
110
67

34

Fig. 7.3. Agarose gel electrophoresis of several of 30 cDNA fragments PCR_ reamplified
following excision and elution from DDRT-PCR gels. Fragments in lanes 2-6, varying in
size from 120-250 bp respectively, were run against a pUC 19/Hpa II DNA ladder. Sizes of
marker fragments are indicated in bp.
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kb	 1 2 3 4 5 6 7

9.49
7.46
4.40

2.37

1.35

0.24

-mai 25S rRNA, 3.4 kb

-40- 18S rRN tk, 1.7 kb

— 5S rRNA / tRNA

Fig. 7.4. Total RNA preparations from S cerevisiae strains Ysen (lanes 2-4) and Yres (lanes
5-7). Lanes 2 and 5: glucose grown 25`C control, lanes 3 and 6: glucose grown heat
shocked (37 °C / 30 min) and lanes 4 and 7: 25°C acetate grown. The positions of 25S and
18S rRNA species are indicated and serve as controls to confirm uniform loading. RNA
samples were run against a synthetic RN1A ladder, sizes of respective fragments are
indicated in kb.
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CH A CHA

D2-Ull

D9-U2

D9-U19

Dl-U6

ACTT 

Ysen	 Yres

Fig. 7.5. Confirmation of differential expression. Excised reamplified PCR products D2-
D9-U19 and Dl-U6 were used as probes to screen Northern blots. Total RNA

was isolated from glucose grown 25°C control (C), glucose grown heat shocked (37°C/30
min) (H) and 25°C acetate grown (A) cells of strains Ysen and Yres. Several filters were
stripped and rehvbridized with S. cerevi;icre AC77. a representative autoradiograrn is
shown.
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7.2.4 Cloning and sequence analysis of cDNA fragments exhibiting confirmed

differential expression

To establish the sequence identity of DDRT-PCR products, Dl-U6, Dl-U9, D2-U1l,

D9-U2 and D9-U19 fragments were eluted from hybridization membranes. reamplified,

cloned into pUC 18 and transformed into E. coll. While fragment Dl-U9 did not generate

a hybridization signal upon northern analysis. it was selected for characterization due to its

intense, reproducible DDRT-PCR pattern (Fi g,. 7.2 C) of significance to the present model

system. In addition, fragment D9-U19, which was confirmed as false positive, was also

chosen for characterization to serve as an internal control for the derepressed state. Fig.

7.6 shows digests of recombinant pUC 18 plasmids isolated for verification of presumptive

E coli transformants.

Nucleotide sequences of cloned cDNA ragments are presented in Fig. 7.7. Database

BLAST searches revealed homologies to S. cerevisiae genes of both known and unknown

function. Corresponding electrophoretograms generated from dye primer cycle sequencing

are shown in Appendix 1. Data presented s indicative of high-resolution sequence, the

output exhibiting relatively uniform peak hight. Plasmid DNA sequence flanking cDNA

inserts was readily identifiable. Clones D2-U 11 and D9-U2 were found to be 98 %

homologous over their entire length to fiSP 82 (Farrelly and Finkelstein, 1984; gb

K01387) and HKA (11)(1(1) (Stachelek et al. 1986 ., emb X0482) respectively (Fig. 7.7 A,

B). Both. D1-119 and D9-U19 exhibited 100 Vo identity over their fragment length to STA I

(Yamashita et al., 1987; emb Z38061) and y rysn (Ma and Herschman, 1995; gb S76619)

respectively (Fig 7.7 C. D). Fragment D1 -U6, 233 bp in length. exhibited 98 % sequence

identity over 84 nucleotides in the CTPI – SUL2 intergenic region on chromosome II (Fig

7.7 E). This ORF encodes a hypothetical transmembrane protein of 474 as (Feldmann et

al.. 1994; emb Z36162) consistent with the – 1.3 kb transcript detected by Di -U6 (Fig.

7.5). Corresponding primer sequences flanked all clones as expected.
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1 2 3 4 5 6 7 8

B	 C
	

D
1 2 3 4
	

1 2 3 4 5
	

1 2 3

A
bp

Fig. 7.6. Restriction endonuclease digests of recombinant pUC 18 harbouring cDNA
inserts D2-U11 (A, lanes 2-4), D1-U6 (B, Lines 2,3), D9-U19 (C, lanes 2,3) and Dl-U9 (C,
lanes 4,5) and D9-U2 (D, lanes 2,3). In each case, EcoRI/HindIII double digests were
performed to excise respective fragments. Lanes 2,3 and 4 in (A) show Fecal digested,
EcoRI/HindIII double digested and undigested recombinant plasmid respectively. Lanes 5-
7 show the same for non-recombinant pUC 18, to serve as a control. Arrows indicate 50 bp
EcoRI-Hindil1 fragment of non-recombinant plasmid. All samples were run against a pUC
19/Hpall DNA ladder (lanes 1) and also in ( A) X EcoRI-HindIII DNA size markers (lane 8).
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D2-U11 1 GATCTGACAC CGAAATGGAA GAGGTAGATT AGGTAGAACA TCATGGCCTT GAATAGGTTA

	

11111111	 1111111111	 I	 1111111	 1111111111	 111111111	 1111•1111•
HSP82 2431 CAGCTGACAC CGAAATGGAA GAGGTAGATT AGGTAGAACA TCATGGCCTT GAATAGGTTA

02-U11 61 TAAACAAAAC ATAATATAAC G-ATAGGTAT TCGAATGAAT AAATAAGTAT GTAAGTAGGG

	

1111111111	 1111111111	 1	 11111111	 1111111111	 1111111111	 1111	 11111
HSP82 2491 TAAACAAAAC ATAATATAAC G-ATAGGTAT TCGAATGAAT AAATAAGTAT GTAAATAGGG

D2-U11 121 CATCTGCATG GAAATAACTG GUTAAAAAAA AAAA 154

	

1111111111	 1111111111	 1	 11111	 I	 1	 1
HSP32 2551 CATCTGCATG GAAATAACTG GUTAAAACAT TACA 2584

B
D9-U2 1 CTGCTTGATG TTGAAGGATC AGATCTAAC CAAGTTGAAA CAACCATACA TCATGGATAC

	

11111111	 1111111111	 1	 111111	 1111111111	 1111 i 11111	 1111111111
HKA 1212 GGGCTTGATG TTGAAGGATC AGATCTAAG CAAGTTGAAA CAACCATACA TCATGGATAC

D9-U2 61 CTCCTACCCA GCAAGAATCG AGGATGATCC ATTTGAAAAC TTGGAAGATA CTGATGACAT
1111111	 11	 1111111111	 1	 , 1111111	 11111	 1111	 1111	 11111	 1111111111

HKA 1272 CTCCTACCCA GCAAGAATCG A3GATGATCC ATTTGAAAAC TTGGAAGATA CTGATGACAT

D9-U2 121 CTTCCAAAAG GACTTTGGTG TlAAGACCAC TTTGCCAGAA CGTNAGTTGA TTAGAAGACT

	

11111111;	 1111111111	 Ii11111111	 111111111	 III	 111111	 1111111111
HKA 1332 GTTCCAAAAG GACTTTGGTG T:AAGACCAC TCTGCCAGAA CGTNAGTTGA TTAGAAGACT

D9-U2 181 TTGTGAATTG ATCGGTACCA G 1GCTGCTAG ATTAGCTGTT TGTGGTATNG CCGCTATTTG

	

111111111.	 1111111111	 1111111111	 1111111111	 11111111	 1	 1111111111
HKA 1392 TTGTGAATTG ATCGGTACCA GIGCTGCTAG ATTAGCTGTT TG?GGTATTG CCGCTATTTG

D9-U2 241 CCAAAAAAAA AAA 253
111111	 I	 1

HKA 1452 CCAAAAGAGA GGT 1464

C
D1-09 1 GTTTTCGCAG TGTGTTACTG T3TGGGACTG TATAGGTGAA GCCCFATATA CTGTGTAAAA

	

11111111	 II	 1111111	 1111111111	 1111111111	 1111111111	 111111	 III
STA1 42 238 TATTTCGCAG TGTGTTACTG 12TGGGACTG TATAGGTGAA GCCCTATATA CTGTGTAAAA

	

D1-09 61 GGCGATGAAA CTTTATTATG SIAAAAAAAA AAA	 93

	

1111111111	 1111111111	 III	 1	 I	 I
STA1 42 298 GGCGATGAAA CTTTATTATG 1TATATATCA CTG 42 330

D
09-U19	 1 TACAACGAGS ATAACATACA CGAAACAAGC AGTGAAATA TCTTCGGCAG TTTCATTCTC

1111111111	 111111111	 1111111111	 11111111111	 1111111	 1111111111
YT1S11 768 TTAAACGAGG ATAACATACA CGAAACAAGC AGTGAAATA TCTTCGGCAG TTTCATTCTC

D9--U19 61 TCCACCAAAA AAAAAAA 77
111,	 111111	 11	 I	 II

YTI511 828 TCCACCAAAA AATACAA 844

E
Dl-U6 1 TGGTAAAGGG CATAGGTATA 'JATTGTTTAT CTTCTTGTTT TAGGTTTCGC CAGATTGTCT

111	 11111	 1111111111	 11H , 1111	 1111111111	 1111111111	 III	 111111
Z36162 3299 CGGTCAAGGG CATAGGTATA ATTGTTTAT CTTCTTGTTT TAGGTTTCGC CAGATTGTCT

D1-06 61 TTAAGGATGC AGAGTATCAG UGCCGCATTA TTTCTTTGAT TTCGTTTTTT TCACCAATTT
11/1111111	 11111/1111

236162 3359 TTAAGGATGC AGAGTATCAG GGCCAATGAA 3388

D1-76 12. TTTCTTGA1G TGCTTCTTGA CTTTTGTTTT CCTTTTTTCT CTTTTTGCAT CTTTAGCTTC

D1-06 18_ CTGCTTGCGC AATTTTTTTA AATCCTTGTC CTCATGTTTC TTCCCCTTTA CCA 	 233

Fig. 7.7. Nucleotide sequence homology of cloned differentially regulated cDNA fragments
to S. cerevisiae genes. Positions of homol , .)gy to each ORF are shown in bp and identical
residues are indicated by 1. For Dl-U9 (C) homology is noted for a position on chromosome
IX cosmid 9168. Flanking primer sequences are underlined.
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7.3 Discussion

The present studies have described the ase of DDRT-PCR to survey changes in gene

expression profiles induced by heat shock and carbon catabolite derepression in S.

cerevisiae. To this author's knowledge, And following preliminary data (Gross and

Watson, 1995 ., Gross and Watson. 1996b), this is the first such comprehensive analysis of

its kind in yeast and consequently, especially in light of the recent completion of the yeast

genome sequencing project (Goffeau et al., 1996), bears particular relevance. Specifically,

the current approach has successfully revealed additional genes whose expression was

differentially regulated in the thermotoleranc, phenotype.

The advantages of the DDRT-PCR technique over standard methods such as

subtractive and differential hybridization have been discussed elsewhere (Nishio et al.,

1994; Livesey and Hunt, 1996 ., Wan et al., 1996). However, of most significance to the

present studies was the fact that DDRT-PCR compared more than two RNA samples

simultaneously. As a result, identification of differentially expressed genes that were

common to heat shocked and derepressed cells of S. cerevisiae was possible (Fig. 7.1,

Table 7.0. In addition, the multiple displays performed in the present investigation served

as internal controls to minimise choosing false positives or individual cell specific genes

that were not relevant to the model system employed. From nine cDNA subpopulations, at

least 10 000 ESTs were displayed for each cell type in the first round analysis (results not

shown). Given that S. cerevisiae is endowed with 6 000 genes (Goffeau et al., 1996), the

display was obviously subject to some redundancy. This would be anticipated in a screen

that displayed the entire mRNA population of a cell due to the arbitrary selection of the

upstream primers (Bauer et al., 1993). In addition, while 10-mer upstream primers have a

high enough TM for efficient priming, they have been reported to exhibit a degree of

degeneracy, promoting amplification of A greater number of mRNA species than

theoretical (Liang and Pardee, 1992; Bauer et al., 1993). However, in the present case, a

further cause of redundancy is also apparent from sequence analysis data of isolated cDNA

fragments. It was noted, in each case, that the 3' polyT primers annealed upstream of the

polyA tail, generating areas of sequence homology within the respective gene (Fig. 7.7)

rather than at the extreme 3' end as predicted by the method. This observation has not

been commonly reported for DDRT-PCR and may be a consequence of the shorter polyA

tail of yeast, which is on average 50 nucleotides (Tuite and Oliver, 1991) compared to 300
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in mammalian RNA (Liang and Pardee, 1 995) for which the technique was originally

devised. This is an important point for cons deration with future DDRT-PCR analyses on

yeast, as random annealing of the downstream primer would suggest a heterogeneous start

in first strand cDNA synthesis, with the adverse consequence of a mixed population of

fragments in subsequent PCR amplifications. However, this does not seem to have

presented a problem in present studies as was evident from the reproducibility of the

technique (Fig. 7.2) and the successful isolation of genes known to be regulated by heat

shock and catabolite derepression (Fig. 7.7). It is noteworthy that some investigators have

increased the efficiency of DIRT-PCR by increasing primer lengths to 22 nucleotides

(Linskens et al., 1995) and increasing the annealing temperature several PCR rounds

subsequent to an initial low stringency step (1,inskens et al., 1995; Simon et al., 1996).

An alternate, more likely explanation for the degeneracy of the 3' primer is the 61 %

A + T content of the yeast genome (Dujon, 1 996). In this regard it was interesting to note

that generally., 3' polyT primers containing an adenine residue as one of the anchored bases

produced the highest number of differentially regulated fragments (Table 7.2). These

results were consistent with those of Mou et cll. (1994) who reported that the efficiency of

DDRT-PCR varies based on the anchored nucleotides of the polyT primer and specifically.

primers ending with AC and AG were the most efficient. Overall, first round DDRT-PCR

analysis indicated that different primer p firs generated different patterns (Fig. 7.1).

verifying the rationale on which the method is based (Liang and Pardee, 1992).

Encouragingly, a considerable number of cDNAs were found from cells in the derepressed

condition that were less prominent or not present in repressed cells (Table 7.1, Table 7.2).

This was of interest given that much about t le control of acetate utilization and regulation

of oxidative metabolism remains to be elucidated (Granot and Snyder, 1993: McCammon,

1996). In addition, the primary analysis revealed over 200 bands that exhibited

pronounced expression in heat shocked cells compared to their 25°C counterparts. It is

probable that a significant proportion of the latter products represent genes encoding hsps,

34 of which have been identified as such in S. cerevisiae (Johnston. 1996). Collectively,

3.8 % of all genes displayed were heat shock induced (227 + 182 i 10 800) which was in

general agreement with a report by Miller et al. (1982) who found that 4 % of a total of

500 surveyed proteins were elevated to a high level following heat shock. However, of

particular significance to the present studies was the observation that many genes subject

to up-regulation under heat shock were also present constitutively in acetate grown
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derepressed cells (Fig. 7.1, Table 7.2). In Chapter 3 it was shown that derepressed cells of

Ysen are markedly more intrinsically therrnoresistant than repressed cells (Gross and

Watson, 1996a). It follows that if regulator y mechanisms conferring thermotolerance are

not within this 1.7 % (182 / 10 800) of all displayed gene products then tolerance

mechanisms in heat shocked and derepressed cells may well be different. This concept

would derive support from previous results that demonstrated heat shock acquisition of

thermotolerance. with concomitant hsp synthesis and trehalose accumulation, even in

already thermoresistant derepressed cells (Chapter 3, Gross and Watson, 1996a).

However, the magnitude of induction was only marginal compared to that exhibited by

repressed cells and consequently may be a purely kinetic effect or buffered by further

increase in hsp and trehalose levels, as suggested in Chapter 6. Moreover, in the current

studies. the observed presence of several cDNAs exclusive to the repressed heat shocked

state of Yres (results not shown), not presen- at all in Ysen„ was indicative of either strain

specific or growth responsive mechanisms. Ras-PKA and other pathways have been

previously implicated in growth control or nutrient signalling (Thompson-Jaeger et al..

1991; Hartwell, 1994). Their involvement in the regulation of stress genes and stress

tolerance acquisition (Shin et al., 1987; E lgelberg et al., 1994; and Thevelein, 1994)

suggests that stress responses are coupled to processes controlling cell growth. Therefore,

identification of a regulatory mechanism of thermotolerance common to repressed; heat

shocked and derepressed cells would lend further support to the apparent interplay between

stress control and growth control. The current investigations demonstrate a strategy for

identifying factors that may play a central role in integrating environmental responses.

Despite a considerable level of reproducibility (Fig. 7.2), it was noted that the

intensities of some PCR products varied between the first and second round DDRT-PCR

analysis (for example, Fig. 7.2 C, E). This observation concurred with previous findings

that indicated quantitative analysis was not possible (Bauer et al., 1993). Moreover, the

numbers of false positives observed following northern hybridization analyses did not

reflect the level of reproducibility of the di:play. However, the 12 probes that failed to

generate hybridization signals masked the possible outcome for the number of true positive

differentially expressed genes of the 30 investigated. The majority of these probes were

under 200 bp in length and, as has been previously suggested (Liang et al., 1993), may

have been too short and AT-rich to have hybridized efficiently. In addition, any rare or

low abundance transcripts may also have escaped northern detection (Liang et al.. 1993;
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Blanchard and Cousins, 1996). In this regayd, a more sensitive detection method such as

ribonuclease protection assays, used in a recent investigation (O'Rourke et a/.. 1996),

could be employed in future work. A consideration in this context would be the use of

modified downstream primers, containing a 17 promoter for generation of riboprobes, for

reamplification of isolated fragments. Such primers have since been included in an

upgraded version of the Differential Display Kit (P. Warthoe, personal communication).

In addition, other improvements include a more efficient polymerase and incorporation of

single strand conformation polymorphism analysis (Orita et al., 1989, Mathieu-Daude

al., 1996) for pre-confirmation of differential expression. Furthermore, changes in the

display technique to improve resolution of higher molecular bands, crowded at the top of

gels (Fig. 7.1), may enhance detection of diff erentially regulated products.

Sequence analysis of isolated, differentially amplified cDNAs, demonstrated that the

fragments were derived from S. cerevisiae mRNA encoding gene products of both known

and unknown function (Fig. 7.7). Prior northern hybridization analyses (Fig. 7.5)

confirmed that all cDNAs hybridized to transcripts corresponding to the correct sizes for

the genes to which they exhibited homology. For example, the fragment D2-U 11 detected

a 2.4 kb signal, which is consistent with that of lisp 90 (also referred to as lisp 82) mRNA

(Farrelly and Finkelstein, 1984) (see section 1.3.2). In Chapter 5 it was demonstrated that

lisp 90 exhibits increased levels during growth on acetate (Gross and Watson, 1998b, in

press). Consequently, the pattern of expression displayed by D2-IJ 11 in both Ysen and

Yres (Fig. 7.5) reflected those already established for hsp 90. The latter has been shown to

exhibit two closely related isoforms, hsp 82 and the cognate hsc 82, at least one of which is

essential for cell viability (Borkovich et al., 1989). This explains the presence of' a faint

hybrid detected by D2-U11 in control samp es of both Ysen and Yres (Fig. 7.5). It was

also noteworthy that two mismatches occurred at the 5' end of the upstream primer for D2-

Ull and in fact for all other fragments (Fiji. This observation was consistent with

previous investigations (Bauer et al., 1993) fiat indicated one to four mismatches at the 5'

end of the primer may be tolerated for efficient annealing. Consequently, this would

enable prediction of fragment positions within the display for most known genes.

Identification of HSP 90 in the present investigation attests to the validity and efficacy of

the DD technique.

Similarly, fragments D9-U2 and D1-U9 exhibited homology to genes with well-

characterized protein products. Fragment D9-U2 appears to have been derived from a 1.5
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kb transcript (Fig. 7.5) encoding the enzyme hexokinase PI, a product of the HKA (11XK1)

gene (Kopetzki et al., 1985) (Fig. 7.7 B). This enzyme is one of two isoenzymes that can

phosphorylate glucose, fructose and mannosc (Entian, 1980). Previous investigations have

indicated. that hexokinase PI levels increase during growth on non-fermentable carbon

source (Batonle et al., 1988) and specificall: 3 , HXKI is transcriptionally activated in cells

grown on ethanol, glycerol and galactose but not glucose or fructose (Herrero el al., 1995).

The current observations of the presence of HXKI mRNA in acetate grown cells of both

strains were thus consistent with these findings. However, its presence in glucose grown

control and heat shocked cells of Yres (Fig. 7.5) was also demonstrated. This may hold

interesting implications for the thermotolerance phenotype, especially given that the

physiological role of HXKI remains unknown (Herrero et al., 1995: De Winde el al.,

1996). In this context, it was also of interest that D1 -U9, exhibiting pronounced

expression in heat shocked and derepressed cells of both strains and also present in control

cells of Yres (Fig. 7.2 C), showed homology to STAI, encoding glucoamylase (Fig 7.7 C).

The catalytic activity of glucoamylase involves successive hydrolysis of terminal glucose

residues from non-reducing ends of polysaccharide chains, with release of B-D-glucose

(Pardo el al., 1988). One might speculate that increased activity of this enzyme is partially

responsible for the increased levels of intracellular glucose observed under heat shock

conditions in yeast cells, consistent with trehalose accumulation (Neves and Francois,

1992; Piper, 1993) (see Chapters 5 and 6). An enhanced intracellular glucose content may

be important for energy production giver that heat shock may damage membrane

components and thereby limit the uptake of glucose or other nutrients (Nwaka et al.. 1995).

Identification of both HXKI and STA 1 in the present work provided a further measure of

success for the application of DDRT-PCR to identify either stress or nutritionally regulated

mRNAs.

Sequence analysis of D9-U19 revealed homology to YTIS1 1 which has only recently

been identified as the yeast homolog of the mammalian T1S11 gene family, involved in the

early growth response (Ma and Herschman. 1995). In support of earlier investigations

with TIS1 1 concerning the highly conserved, putative zinc finger motifs of its predicted

protein product (Dubois et al., 1990), it was shown that the YTIS11 protein amino terminal

region can function as a transcriptional activator. This was significant to the present

discussion as Msn2p and Msn4p, homologous zinc finger protein products of MSN2 and

AISN1 respectively, have recently been implicated as transcription factors that recognise
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stress-responsive elements (STREs) (Martinez-Pastor et al., 1996). It was shown that

MSN2 and MSN4 are required for activation of several yeast genes whose induction is

mediated through STREs. Moreover, thei disruption resulted in higher sensitivity to

carbon starvation, heat shock and osmotic ald oxidative stresses. In accordance with the

present observations, the 171811 transcrip- is approximately 1.6 kb and substantially

greater levels were evident in cells grown on acetate as opposed to glucose (Ma and

Herschman, 1995) (Fig. 7.5). Although the T1S11 gene is subject to induction by a large

number of cell stimulants, both biochemic il and physiological functions of the TISI

family of proteins remains unknown (Ma anc Herschman, 1995). However, it appears that

an interesting correlation may exist between the mammalian early growth response and

glucose repression in yeast.

The absence of both known function and structural homologs are criteria used to

define approximately 30-35 % of all the ORF s of the yeast genome, collectively referred to

as orphans (Dujon, 1996). Fragment D1 -U6 exhibited considerable nucleotide homology

to such an orphan gene on chromosome II (Fig. 7.7 E). Despite the absence of homologs,

hydrophobicity analysis of putative protein products and multiple sequence alignment

methods have indicated that this ORF (emb Z36162) encodes a hypothetical

transmembrane protein which appears to belong to the drug resistance translocase family

found in bacteria and higher eukaryotes. This was particularly relevant to current studies

as such proteins had previously not been suspected to be part of the S. cerevisiae genomic

profile (von Heijne, 1996). Moreover, it 1-as recently been demonstrated that hsp 70,

previously thought to be restricted to the cell interior, is also present in the cell wall of S.

cerevisiae (Lopez-Ribot and Chaffin, 1996). Given that lisp 70 has been implicated in

thermotolerance and in protein folding and translocation of proteins across membranes

(Craig et al.. 1993; Georgopolous and Welch. 1993) it could be speculated that the orphan

gene identified by D1 -U6 may play a role in thermotolerance. In this context, it was of

interest to note that Dl-U6 was also expressed in control cells of the more thermoresistant

Yres (Fig. 7.5).

The present novel application of DDRT-PCR has provided new candidate genes that

may be further evaluated as factors involves in stress regulation. There are few other

examples of identification of genes involved in stress metabolism in this manner. In recent

work DDRT-PCR was employed to identify a number of shear stress responsive genes in

human endothelial cells (Ando et al., 1996). In addition, other groups have recently
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identified novel mRNAs in heat shocked Leishmania cells (Lewis et al., 1996) and

hypoxically inducible mRNAs in HeLa cells (O'Rourke et al., 1996). During compilation

of this chapter and subsequent to submission of the resultant manuscript (Gross and

Watson, 1998a, in press), another report concerning identification of nutrient controlled

mRNAs by DDRT-PCR in S. cerevisiae was published (Crauwels et al., 1997). Using a

slight variation of the technique with gene specific probes for HSP 70. it has also been

demonstrated that two genes with completely different 3' untranslated regions are strongly

induced in rat cells, leading to the production of a large amount of single protein (Angeletti

et al., 1996). Techniques such as cDNA libraries, subtractive hybridization and 2D PAGE,

used previously to identify genes of unknown function, excluded scarce mRNAs which

may be expressed transiently and at very low levels. As a result, such species may have

escaped previous detection. Specifically, 2D electrophoretic mapping has been

successfully applied in the past to identify nutrient and stress regulation of protein

expression (Boucherie, 1985; Bataille et al., 1988; Bataille et al., 1991). However, whilst

the technique remains a powerful tool for investigation of protein regulation, Boucherie et

(1995b) have pointed out several disadvantages with respect to its application for

construction of a gene-protein index for S. cerevisiae. Results presented indicated that

only 25-35 % of soluble yeast proteins could be visualized on gels and this was to the

exclusion of regulatory proteins. In addition, although most major proteins could be

recognized from yeast protein patterns gene:ated in different laboratories, the correlation

became less efficient for those of average or small abundance. With respect to subtractive

hybridization, it is reported that a 5-fold change in message level is required before a

difference between conditions can be detected (Williams and Lloyd, 1979; Dworkin and

Dawid, 1980). However, it has been wee l documented that both rare and abundant

transcripts are detected by DDRT-PCR with equal efficiency (Bauer et al., 1993; Benito et

al., 1996; Wan et al., 1996). Therefore, it is probable that with continuing refinements (for

example, Averboukh. 1996; Diachenko et al., 1996) additional stress responsive mRNAs

may be identified. It was of interest to note that attributes of 2D gel electrophoresis and

DDRT-PCR were recently combined in the development of a novel technique. designated

restriction landmark cDNA scanning, which displays many cDNA species quantitatively

and simultaneously as 2D gel spots (Suzuki e: al., 1996).

To fully exploit the S. cerevisiae genome sequence data, a systematic approach lo

investigate gene function is required. As mE fly as 2 300 genes remain orphans (Hieter et
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al., 1996) and little is known about the levels of expression of – 6 000 genes comprising

the genome. Disruption of a large fraction of yeast genes (at least 50 %) may not have any

obvious consequences phenotypically (Johnston, 1996). Two approaches that would

deliver genome scale expression are serial analysis of gene expression (SAGE)

(Velculescu et al., 1995) and cDNA micrearray analysis (Shena et al., 1995), both of

which are being considered for application to the yeast genome (Bassett et al.. 1996-,

Winzeler, 1997). However, it has recently ben shown in a comprehensive comparison of

SAGE, subtractive hybridization and DDRT-PCR, that the attributes of the latter render it

more favourable (Wan et al., 1996). Since S. cerevisiae is readily amenable to

physiological and genetic manipulation, in addition to establishment of a set of ESTs,

DDRT-PCR can contribute to characterization of orphan genes. Importantly, it enables

side by side comparison of more than two cell types and generates regulatory information

about genes. Of considerable significance to the present studies, in which cells were

cultured in YN13, were preliminary experiments that indicated ESTs obtained from yeast

grown on minimal medium included many more genes of unknown function than those

obtained from cells grown on rich medium (Dujon et al., 1994). In this regard, it was of

interest to note that cells grown in YNI3 were observed to be consistentl y more

thermoresistant than those in YEP medium (Chapter 3).

In summary, it was demonstrated that the application of DDRT-PCR to investigations

with S. cerevisiae holds considerable potential and has provided a solid basis for further

study of the thermotolerant and derepressed phenotypes. This relatively novel technique is

uniquely poised to be implemented in elucic ating the function of differentially expressed

genes in any physiological or genetic background, especially within the context of this

model organism, the genome of which has ben sequenced entirely.
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Epilogue

An ode to "stressed-out" S. cerevisiae

The stress response, a protective system, so highly conserved, not many compare.

Its an inducible, transient adaptation that occurs in all cells from everywhere.

The research is extensive and literature abounds in reams, or so it seems,

Concerning gentle persuasion of organisms to survive temperature extremes.

A mild shock induces both heat shock proteins and increased thermotolerance.

Biochemical and physiological parameters that E re of considerable preponderance.

This has lead to the suspicion; these two phenomena must be inexorably linked.

In a manner of such complexity in fact, its difficult to be succinct.

Thermotolerance has been shown to occur without (de novo) hsp accumulation.

Such tenuous correlation has made them subject to contentious vacillation.

Despite abundant molecular analyses, a crystal ( lear picture has not evolved,

Well, let's be frank. its rather opaque, hsps' effect on tolerance remains unresolved.

A full picture will not emerge unless we take a light digression,

And look at other stress-induced traits alongside altered gene expression.

Stress also causes physiological changes and accumulation of trehalose.

Whilst several other metabolic systems seem to enter a state of repose.

Thermotolerance is also acquired through encounter with other stresses,

Including osmotic, chemical. growth arrest and as carbon catabolism derepresses.

Although these may cause tolerance via a different physiological effect,

The followin g is an account of stress-inducible systems and how they are thought to protect.

Stress-induced protein damage appears to trigger the heat shock response,

Where lisps facilitate repair and trehalose mobi ization, upon recovery, all at once.

A decline in pH i due to increased, stress-induce d membrane permeability,

Is counteracted by increased proton extrusion due to stimulated ATPase activity.

Intracellular acidification also stimulates RAS- ►denylate cyclase,

This may reverse glycolysis inhibition. due to increased cAMP protein kinase.

Which in turn ma y cause ATPase stimulation. 	 I think its really neat,

ATPase activity happens to be vital for hsp synthesis in response to heat.
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1	 membrane permeability	 ATPase activity

1
St mulation of RAS-
adenylate cyclase, cAMP-PK

Inhibition of
glycol ysis

Fig. E1 Regulatory circuits operatin g, in the S. cerevisitte response to hyperthermia

(adapted from Piper, 1993 ).
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Although there's a plethora of knowledge on heat shock and hsp,

Their role during stress is unclear, and yet essential constitutively.

Despite current controversy, good correlation e y isits between tolerance and hsp 104,

As mutants of this gene are stress sensitive. a defect that can be rescued by giving them more.

This concept appears erroneous and one to that ;everal workers cannot abide.

For all their work with trehalose shows that the ∎ love the disaccharide.

Recent work has shown, and several findings support the discovery,

It seems trehalose may be a thermoprotectant„ hile hsps aid in thermorecovery.

If by misapprehension, this has escaped your comprehension and you're feeling rather confused,

Don't worry, be happy, it was only intended to beep you mildly amused.

However, so that my point won't fall mute,

A concise summary may constitute:

Heat shock activation, a biological adaptation with cross-tolerance correlation, caused b3'

environmental fluctuation and nutrient limitation, involves a complex regulation of physiological

perturbation and genetic alteration that has received intense investigationl and leads to scientific

stimulatim ! !

Claudia Gross, 1995

(ore rainy afternoon while feeling inspired

b:' the indefatigable influence of stress!).
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The last word

"Any living cell carries with it the experiences of a billion years

of experimentation by its ancestors."

- Max Delbriick. 1949

(Cited from Hieter el al., 1996)

So it's a sobering thought that upon completion of this thesis

it now carries one billion and five!
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