Chapter 7: Application of mRNA differential display PCR to
investigate gene expression in the thermotolerant
phenotype

7.1 Introduction

All regulatory mechanisms that contrcl cell biology involve difterential patterns of
gene expression. Reprogramming of gene activity in cells exposed to a thermal insult
results in the increased synthesis of hsps (Lindquist and Craig. 1988; Watson. 1990).
Concomitantly, cells that have been subjecied to a mild heat shock acquire tolerance to
subsequent. more severe stress conditions that would otherwise prove lethal. Furthermore,
induction of thermotolerance is fully rever«ible, with resumption of a normal pattern of
protein synthesis occurring subsequent to return of cells to physiological temperature
(Lindquist. 1986; Chapters 5, 6). Consequeritly, it has become generally accepted that hsps
play vital roles in conferral of thermotolerance (I.indquist and Craig. 1988). The heat
shock response has proven an excellent model for delineating regulatory mechanisms of
gene expression (Sorger, 1991: Craig and Gross, 1991: Morimoto ¢f «/.. 1992). Moreover.
extensive studies of hsps have provided insights about protein folding, oligomerization,
secretion and degradation (Ang ef al.. 1991 Ellis and van der Vies. 1991: Georgopolous.
1992: Hendrick and Hartl. 1993). However. in addition to hsp synthesis. an array of other
metabolic and morphological changes occar during thermal shock and as a result, the
process mediating protection and survival of the stressed cell appears to involve a multi
faceted mechanism. with many factors orerating in concert. In this context it is not
surprising that conflicting data concerning the relevance of various stress protectants is
prevalent in the literature, as previously discussed (Chapters 3. 5). For example. in
Saccharomyces cerevisiae, some reports demonstrate acquisition ot thermotolerance in the
absence of newly synthesized hsps (Hall, 1683: Smith and Yaffe, 1991: Gross and Watson.
1996a). Others indicate a lack of correlaticn between levels of the disaccharide trehalose.
putatively involved in stress protection (Hottiger er al., 1989: De Virgilio ef al.. 1991). and
thermotolerance (Argtielles, 1994; Nwaka ¢1 al.. 1994). Furthermore. it has recently been
shown that involvement of membrane fatty acid composition in thermoprotection ot yeast
appears unlikely (Swan and Watson, 1997). While the relative contributions of various

stress biomolecules and factors regulating their modes of action remain unresolved (Piper.



1993). contradictions of this nature lead to the inference that thermotolerance and the heat
shock response, although related, are separate phenomena. Such an interpretation is not

inconsistent with early, previously expressed views (Lindquist. 1986).

As described in Chapter 3. it is well established that thermotolerance in S. cerevisiae
varies with growth phase (Plesset er al.. 1787: Watson. 1990) and the state of carbon
catabolite repression (Elliot and Futcher, 1993: Weitzel and Li, 1993). Results presented
in Chapter 3 showed that levels of heat shocl inducible tolerance in repressed cells (grown
on glucose) of inherently thermosensitive Ysecn retlect the high levels of intrinsic resistance
exhibited by cells grown on derepressive substrate (acetate) (Gross and Watson. 1996a).
An clevated level of intrinsic thermotolerance associated with growth on nontermentable
substrate was previously proposed to be atiributable to a greater abundance of hsp 104
(Sanchez et al., 1992). However, it has been more recently shown that stationary phase.
derepressed cells of a tps/ hsp [04 mutant, deficient in both trehalose and hsp 104
synthesis. were still more resistant than wild type cells in logarithmic phase (Elliot ef al..
1996). The authors therefore concluded that other undefined mechanisms of tolerance
exist.  Generally. association ot either hsps or trehalose with thermotolerance has been
based on the temporal correlation of their induction following heat shock treatment.
Definitive evidence of a causal relationship, with the possible exception of hsp 104
(Sanchez er al.. 1992), has not been firmly =stablished. It is known however that several
metabolic parameters associated with derepressive growth are induced following heat
shock in repressed cells (Werner-Washburne et «/.. 1993). Based on this fact and the
present results established to this point, the question arose as to whether any regulatory
mechanisms that have thus far remained elusive, are common to induced thermotolerance

in repressed cells and intrinsic thermotolerarce in derepressed cells.

To investigate this concept, gene expression profiles from cells of Ysen. as well as
those of the relatively thermoresistant Yres. were surveyed using differential display of
reverse transcribed PCR amplified cDNA (DDRT-PCR) (Liang and Pardee, 1992). Since
its inception, this relatively novel technique has stimulated much work in the investigation
of gene regulation.  Although originally cevised for the identification and isolation of
cenes expressed under designated conditions in mammalian cells. its now widespread use
has found application in a variety ot metabolic processes in the gamut of organisms. For
example, its application has been reported for investigations involving the bacterium

Leishmania chagasi (Lewis et al.. 1996), Arabidopsis thaliana (Callard er al.. 1996) and
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plant-fungus interactions (Benito er al., 1990), insect larvae (Adati er al., 1995), Xenopus
laevis (Simon and Oppenheimer, 1996) and the amphibian limb (Kang e¢r al.. 1996). With
the availability of the complete yeast genomic sequence (Goffeau ef al., 1996) techniques
such as DDRT-PCR. which enable rapid functional analysis of genes of interest. are of
increasing importance (Winzeler. 1997). Work presented in this chapter. recently accepted
for publication (Gross and Watson, 1998b, in press). provides a comprehensive
demonstration of the application of DDRT-PCR to S.cerevisiae. The successful isolation
and 1dentification of a number of cloned expressed sequence tags (ESTs) and their possible

relevance to stress regulation is described.

7.2 Results

7.2.1 First round DDRT-PCR analysis of Ysen mRNA expression

Results for the numbers of differentially amplified cDNAs generated by specific
primer pairs from heat shocked and derepressed cells of Ysen, as compared to repressed
control cells, are presented in Table 7.1. Swmmations of total numbers are shown in Table
7.2. Generally, it was observed that a large number of mRNAs were induced upon heat
shock or under derepressive growth. with a substantial number of fragments common to
both conditicns. A section of a typical differential display gel, generated trom PCR
incubations with onc anchored primer and several arbitrary primers. is shown in Fig. 7.1.
The various patterns of differential expression observed, including up and down regulation

as well as cDNAs common to both heat shocked and derepressed cells, are exemplified.

For the entire first round analysis it was noted that. on average. 40-50 ¢cDNA tags
occupied each lane, generating a total display of ~10 800 PCR products tor each cell type
(results not shown). In addition, it was assumed that the number of primer combinations
employed in this analysis was sufficient to have displayed the entire mRNA population
(Liang and Pardee, 1992; Bauer et al., 1993), especially considering the smaller genome
size of S. cerevisiaue in comparison to higher eukaryotes. As a result it can be
approximated that, for the complete primary analysis of Ysen, ~ 9.6 % (1 031/10 800) of
all mRNAs are heat shock responsive with 3.8 % (227/10 800) exhibiting up-regulation
and 5.8 % (622/10 800) exhibiting down--egulation, upon heat stimulation (Table 7.2).

The data also suggests that ~ 7 % (591 + 182/10 800) of all genes are exclusive to or



Table 7.1. Numbers of differentially amplified cDN As generated from each primer pair for the entire first
round DDRT-PCR analysis of Ysen.
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Indicated arc cDNAs exhibiting: pronounced amplification common to heat shocked and acetate grown cells
(HA). pronounced amplification in heat shocked cells (H), pronounced amplification in acetate grown cells
(A) and down regulation in heat shocked cells (D). PCR amplification was carried out in the presence ot 9
dT,,VV (V = A, C or G) primers with cach of 24 arbitrary primers. Summations for cach arbitrary primer are
shown.
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Table 7.2. Numbers of differentially amplified ¢cDNAs from first round DDRT-PCR analysis of heat
shocked and acetate grown Ysen cells.

Pattern of differential Oligo-dT primer

amplification
AA AC AG CA CcC CG GA GC GG  TOTAL
Heat shock /acetate up-regulated 88 15 12 6 14 5 13 8 21 182
Heat shock up-regulated 3% 17 1 15 io Z0 19 32 i3 227
Acetate up-regulated 70 91 79 39 39 44 93 42 94 591
Heat shock down-regulated 59 77 114 79 48 33 69 50 91 622
Total heat shock responsive 205 109 157 98 78 66 101 90 127 1031

Total numbers of heat shock responsive mRNAs exhibited by PCR amplification in the presence of 9
dT;VV (V= A, C or G) primers with each of 24 arbitrary primers as well as summations for the entire

analysis are indicated.
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Fig. 7.1. A representative section ol a DDRT-PCR gel autoradiogram generated from PCR amplification with one anchored polyT
primer and severai of 24 arbitrary primers. PCR mcubations were loaded in sets of three according to the three cell types of S0 cerevisive
Ysen: glucose grown 257C control (C). glucose grown heat shocked (37 “C /30 min) (11 and 25 °C acetate grown (A) for each primer

wn cells. Heindicate pronounced

pair. Arrows in lanes HAc: indicate pronounced amplification common to heat shocked and acetate g 1
amplification in heat shocked cells. Ac: ndicate pronounced ampiiiication in acclate grown cells and D:indicate down regulation in heat

shocked cells. Approximate sizes of gel fragments are indicated in bp.
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preferentially expressed during derepressive growth, whereas ~ 1.7 % (182/10 800) are

common to both the heat shocked and derepressed conditions.

[t was also observed throughout the analysis of Ysen, that a number of cDNA bands
exhibited consistent expression in control and heat shocked cells. with several consistent in
all three cell types (examples can be seen in Fig. 7.1). Such products could possibly be

isolated, characterized and used as future RN A loading controls.

7.2.2 Second round DDRT-PCR analysis of Ysen and Yres mRNA expression

To verify reproducibility, a second display was performed on newly and independently
isolated RNA from Ysen, using only those primer combinations that generated difterential
amplification common to heat shocked and derepressed cells in the primary analysis. [n
addition, these specific primer pairs were also used to amplify ¢cDNA pools from control,
heat shocked and derepressed cells of the strain Yres. Since the present point of interest
was to determine whether any common regulatory mechanism of thermotolerance existed
between heat shocked and derepressed cells. efforts were concentrated on amplicons that

exhibited pronounced expression as compareld to that of control cells.

Overall, it was noted that DDRT-PCR analysis of Ysen. despite minor variations in
cDNA banding patterns and intensities of sorne individual fragments, was reproducible. At
least 70 % of differentially expressed cDNA« from the primary analysis could be identified
in the second round of contirmatory reactions involving primer pairs of interest (results not
shown). It was presumed that some incoasistencies may have arisen due to the low
stringency PCR conditions employed, reported as optimum for the technique (Bauer er /..
1993). Encouragingly, resolved ¢cDNA fragments from Yres generated almost identical
patterns to those of Ysen (Fig. 7.2), with the exception of possible strain specific
differences, also apparent from previous investigations of proteins analysed by 1D SDS
PAGE (Chapter 3. Gross and Watson. 1996a). However. only 30 cDNA species. common
to the heat shocked and derepressed conditions of Ysen, were also identified in Yres. In
some cases. these particular cDNAs were also evident in repressed control cells of Yres
(Fig. 7.2 B. C), a situation of particular relevance given the intrinsically thermoresistant
phenotype of this strain as compared with Yeen (Chapter 3. Gross and Watson, 1996a). As
a result, the strategy pursued in this study was to limit further analysis to those cDNA
fragments that exhibited enhanced amplification in heat shocked and derepressed cells of

both strains.



CHA CHACHA CHA CHA CHA

-~ - ¥ . ]

g

Ysen Ysen Yres

Ysen Ysen Yres

Fig. 7.2. Reproducibility of differential expression for cDNA fragments D2-UL1 (A). D9-
U2 (B). D1-U9 (C). D9-U19 (D) and D1-U6 «E). PCR incubations for specific primer pairs
were loaded in sets of three or six according to the three cell types of' S cereviviae Ysen and
Yres: glucose grown 23°C control (C). glucose grown heat shocked (37°C/30 min) () and
25°C acetate grown. First round DDRT-PCR analysis on Ysen is shown in pancls on left
and repeat second round analysis on Ysen and Yres is shown in panels on right.  Arrows
indicate respective cDNA fragments.
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7.2.3 Confirmation of differential expression of cDNA fragments

Following excision and reamplification of the 30 ¢DNA fragments of interest.
radioactively labeled probes were generated to screen northerns of total RNA trom the 3
cell types of both Ysen and Yres. Fragments were found to range in size from 50 - 350 bp
as estimated by comparison to a pUC 19/Hpall DNA ladder on 2 % TBE gels (examples
are shown in Fig. 7.3). Confirmation of dif erential expression was obtained for 3 of the
30 ¢cDNAs (positives). An example of an agarose gel containing total RNA samples
extracted from each cell type, subsequently transferred to nylon membrane for
hybridization. is shown in Fig. 7.4. It should be noted that RNA of the same integrity was
extracted for first strand ¢cDNA syntheses (see section 2.2.10). Probes designated D2-UT11.
D9-U2. and DI1-U6, in accordance with the primer set from which they were generated.
hybridized to transcripts of 2.4, 1.5 and 1.3 kb respectively (Fig. 7.5). Northern analysis
also detected but did not confirm the regulation of another 15 fragments (false positives)
(for example D9-U19, Fig. 7.5) while 12 probes failed to yield any detectable hybridization
signal. The latter is a common problem of the technique. originally reported by Liang ef
al., (1992) and despite continuing improvements (L.iang and Pardee, 1995). appears to be
ongoing (O’Rourke et al., 1996; Blancharc and Cousins, 1996). However. the present
success rate of 17 % (3/18 cDNAs) for confirmation of differential expression is consistent

with other reports (Liang ef al., 1993; Nishio er al.. 1994; Appleyard ef al., 1995).

Results presented in Fig. 7.5, confirming the differential expression of the 3 cDNAs,
also underlie the necessity of undertaking northern analysis. For example, the D9-U2 and
D1-U6 probes hybridized to two different transcripts.  Only the lower transcript
corresponded to the expression pattern of the original display for D9-U2 (Fig. 7.2 B). with
the converse occurring for D1-U6 (Fig. 7.2 E). The observation that each product of a
DDRT-PCR reaction. using the two base anchored oligo-dT primer method. is likely to be
a mix of at least two different cDNAs, has been reported by a number of researchers
(Utans e7 «al.. 1994; Sun ef al.. 1994; O’Rcurke er al.. 1996). In the current studies this
problem was addressed by employing attinity capture (Li e/ «l.. 1994, described in Chapter

2) of the cDNA hybridized to the differentially regulated transcript.
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Fig. 7.3. Agarose gel electrophoresis of scveral of 30 cDNA fragments PCR reamplitied
following excision and elution from DDRT-PCR gels. Fragments in lanes 2-6, varying in
size from 120-250 bp respectively, were run against a pUC 19/Hpa II DNA ladder. Sizes of
marker fragments are indicated in bp.
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25S rRNA, 3.4 kb
18S rRNA, 1.7 kb

024 —
5S rRNA / tRNA

Fig. 7.4. Total RNA preparations from S cerevisiae strains Ysen (lanes 2-4) and Yres (lanes
5-7). Lanes 2 and 5: glucose grown 25°C control, lanes 3 and 6: glucose grown heat
shocked (37 °C /30 min) and lanes 4 and 7: 25°C acetate grown. The positions of 23S and
18S rRNA species are indicated and serve as controls to confirm uniform loading. RNA
samples were run against a synthetic RNA ladder, sizes of respective fragments are
indicated in kb.
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Fig. 7.5. Confirmation of ditferential expression. Excised reamplitied PCR products D2-
Ul1. D9-U2. D9-U19 and D1-U6 were used as probes to screen Northern blots. Total RNA
was isolated trom glucose grown 23°C control (C), glucose grown heat shocked (37°C/30
min) (H) and 25°C acetate grown (A) cells of strains Ysen and Yres. Several filters were
stripped and rehybridized with S. cereviviae ACTI. a representative autoradiogram is
shown.



7.2.4 Cloning and sequence analysis of cDINA fragments exhibiting confirmed

differential expression

To establish the sequence identity of DDRT-PCR products, D1-U6, D1-U9, D2-U11.
D9-U2 and D9-U19 fragments were eluted from hybridization membranes. reamplified,
cloned into pUC 18 and transformed into £. co/i. While fragment D1-U9 did not generate
a hybridization signal upon northern analysis it was selected for characterization due to its
intense, reproducible DDRT-PCR pattern (Fig. 7.2 C) of significance to the present model
svstem. In addition. fragment D9-U19, which was confirmed as false positive. was also
chosen for characterization to serve as an internal control for the derepressed state. Fig.
7.6 shows digests of recombinant pUC 18 plasmids isolated for verification of presumptive

[ coli transformants.

Nucleotide sequences of cloned cDNA Tagments are presented in Fig. 7.7. Database
BLAST searches revealed homologies to S. cerevisiae genes of both known and unknown
function. Corresponding electrophoretograms generated from dye primer cycle sequencing
are shown in Appendix 1. Data presented 1s indicative of high-resolution sequence. the
output exhibiting relatively uniform peak hight. Plasmid DNA sequence flanking cDNA
inserts was readily identifiable. Clones D2-U11 and D9-U2 were found to be 98 %
homologous over their entire length to HSP 82 (Farrelly and Finkelstein. 1984; ¢b
KO01387) and HKA (I{XK1) (Stachelek ef al. 1986: emb X0482) respectively (Fig. 7.7 A.
B). Both D1-U9 and D9-U19 exhibited 100 o identity over their fragment length to S7:4/
(Yamashita ef af.. 1987; emb Z38061) and Y/1S// (Ma and Herschman. 1995; gb S76619)
respectively (Fig 7.7 C. D). Fragment D1-U6, 233 bp in length. exhibited 98 % sequence
identity over 84 nucleotides in the CTP/ — SUL?2 intergenic region on chromosome II (Fig
7.7 E). This ORF encodes a hypothetical transmembrane protein of 474 aa (Feldmann er
al.. 1994; emb Z36162) consistent with the ~ 1.3 kb transcript detected by D1-U6 (Fig.

7.5). Corresponding primer sequences flanked all clones as expected.
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Fig. 7.6. Restriction endonuclease digests of recombinant pUC 18 harbouring ¢cDNA
mnserts D2-U11 (A, lanes 2-4), D1-U6 (B, lanes 2.3), D9-U19 (C, lanes 2,3) and D1-U9 (C,
lanes 4.5) and D9-U2 (D, lanes 2,3). In each case, EcoRI/HindIIl double digests were
performed to excise respective fragments. Lanes 2,3 and 4 in (A) show EcoRI digested.
EcoRI/Hindlll double digested and undigested recombinant plasmid respectively. Lanes 5-
7 show the same for non-recombinant pUC 18, to serve as a control. Arrows indicate 50 bp
EcoRI-HindlII fragment of non-recombinant plasmid. All samples were run against a pUC
19/Hpall DNA ladder (lanes 1) and also in (A) A EcoRI-HindIIl DNA size markers (lane 8).
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Fig. 7.7. Nucleotide sequence homology ot cloned differentially regulated cDNA tragments
to S. cerevisiae genes. Positions of homolygy to each ORF are shown in bp and identical
residues are indicated by |. For D1-U9 (C) homology is noted for a position on chromosome
IX cosmid 9168. Flanking primer sequences are underlined.
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7.3 Discussion

The present studies have described the ase of DDRT-PCR to survey changes in gene
expression profiles induced by heat shock and carbon catabolite derepression in .
cerevisiae.  'To this author’'s knowledge. nd following preliminary data (Gross and
Watson, 1995: Gross and Watson. 1996b), this is the first such comprehensive analysis of
its kind in yeast and consequently, especially in light of the recent completion of the yeast
genome sequencing project (Goftteau ¢f al.. 1996). bears particular relevance. Specifically.
the current approach has successfully revealed additional genes whose expression was

differentially regulated in the thermotoleranc: phenotype.

The advantages of the DDRT-PCR technique over standard methods such as
subtractive and differential hybridization have been discussed elsewhere (Nishio er al..
1994 Livesey and Hunt, 1996; Wan ef al.. 1996). However, of most significance to the
present studies was the fact that DDRT-PCR compared more than two RNA samples
simultancously. As a result, identification of differentially expressed genes that were
common to heat shocked and derepressed cells of S. cerevisiae was possible (Fig. 7.1.
Table 7.1). In addition, the multiple displays performed in the present investigation served
as internal controls to minimise choosing false positives or individual cell specitic genes
that were not relevant to the model system employed. From nine ¢cDNA subpopulations, at
least 10 000 ESTs were displayed for each cell type in the first round analysis (results not
shown). Given that S. cerevisiae is endowed with 6 000 genes (Goffeau ef al., 1996). the
display was obviously subject to some redundancy. This would be anticipated in a screen
that displayed the entire mRNA population of a cell due to the arbitrary selection of the
upstream primers (Bauer e a/.. 1993). In addition. while 10-mer upstream primers have a
high enough Ty for efficient priming, thev have been reported to exhibit a degree of
degeneracy, promoting amplification of a greater number of mRNA species than
theoretical (Liang and Pardee, 1992; Bauer ¢f al., 1993). However, in the present case. a
further cause of redundancy is also apparent from sequence analysis data of isolated cDNA
fragments. It was noted, in each case, that the 3° polyT primers annealed upstream of the
polyA tail. generating areas of sequence homology within the respective gene (Fig. 7.7)
rather than at the extreme 3 end as predicted by the method. This observation has not
been commonly reported for DDRT-PCR and may be a consequence of the shorter polvA

tail of yeast, which is on average 50 nucleotides (Tuite and Oliver. 1991) compared to 300
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in mammalian RNA (Liang and Pardee, 1995) for which the technique was originally
devised. This is an important point for cons deration with future DDRT-PCR analyses on
yeast. as random annealing of the downstream primer would suggest a heterogeneous start
in first strand cDNA synthesis. with the adverse consequence of a mixed population of
fragments in subsequent PCR amplifications. However, this does not seem to have
presented a problem in present studies as was evident from the reproducibility of the
technique (Fig. 7.2) and the successful isoletion of genes known to be regulated by heat
shock and catabolite derepression (Fig. 7.7). It is noteworthy that some investigators have
increased the efficiency of DDRT-PCR by increasing primer lengths to 22 nucleotides
(Linskens er al.. 1995) and increasing the annealing temperature several PCR rounds

subsequent to an initial low stringency step (l.inskens er al.. 1995: Simon ¢t al., 1996).

An alternate. more likely explanation for the degeneracy of the 37 primer 1s the 61 %
A + T content of the yeast genome (Dujon, 1996). In this regard it was interesting to note
that generally. 3 polyT primers containing an adenine residue as one of the anchored bases
produced the highest number of differenticlly regulated fragments (Table 7.2). These
results were consistent with those of Mou er al. (1994) who reported that the efticiency of
DDRT-PCR varies based on the anchored nucleotides of the polyT primer and specitically.
primers ending with AC and AG were the most etficient. Overall, first round DDRT-PCR
analysis indicated that different primer pairs generated different patterns (Fig. 7.1).
verifying the rationale on which the mcthod is based (Liang and Pardee. 1992).
Encouragingly. a considerable number of cDNAs were found from cells in the derepressed
condition that were less prominent or not present in repressed cells (Table 7.1, Table 7.2).
This was of interest given that much about t1e control of acetate utilization and regulation
of oxidative metabolism remains to be elucidated (Granot and Snyder. 1993: McCammon,
1996). In addition, the primary analysis revealed over 200 bands that exhibited
pronounced expression in heat shocked cells compared to their 25°C counterparts. It is
probable that a significant proportion of the latter products represent genes encoding hsps.
34 of which have been identified as such in S. cerevisiae (Johnston. 1996). Collectively,
3.8 % of all genes displayed were heat shock induced (227 + 182 / 10 800) which was in
general agreement with a report by Miller ¢z al. (1982) who found that 4 % of a total of
500 surveyed proteins were elevated to a high level following heat shock. However. of
particular signiticance to the present studies was the observation that many genes subject

to up-regulation under heat shock were also present constitutively in acetate grown
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derepressed cells (Fig. 7.1. Table 7.2). In Chapter 3 it was shown that derepressed cells of
Ysen are markedly more intrinsically thermoresistant than repressed cells (Gross and
Watson, 1996a). It follows that if regulatorv mechanisms conferring thermotolerance are
not within this 1.7 % (182 / 10 800) of all displayed gene products then tolerance
mechanisms in heat shocked and derepressed cells may well be difterent. This concept
would derive support from previous results that demonstrated heat shock acquisition of
thermotolerance. with concomitant hsp synthesis and trehalose accumulation. even in
already thermoresistant derepressed cells (Chapter 3, Gross and Watson., 1996a).
However, the magnitude of induction was only marginal compared to that exhibited by
repressed cells and consequently may be a purely kinetic effect or buftered by further
increase in hsp and trehalose levels, as suggested in Chapter 6. Moreover. in the current
studies. the observed presence of several cDNAs exclusive to the repressed heat shocked
state of Yres (results not shown). not presen at all in Ysen. was indicative of either strain
specific or growth responsive mechanisms Ras-PKA and other pathways have been
previously implicated in growth control or nutrient signalling (Thompson-Jaeger ¢r al..
1991: Hartwell. 1994). Their involvement in the regulation of stress genes and stress
tolerance acquisition (Shin er al., 1987; Eagelberg er al.. 1994; and Thevelein, 1994)
suggests that stress responses are coupled to processes controlling cell growth. Therefore.
identification of a regulatory mechanism ot thermotolerance common to repressed/heat
shocked and derepressed cells would lend further support to the apparent interplay between
stress control and growth control. The current investigations demonstrate a strategy for

identifying factors that may play a central role in integrating environmental responses.

Despite a considerable level of reproducibility (Fig. 7.2). it was noted that the
intensities ot some PCR products varied between the first and second round DDRT-PCR
analysis (for example, Fig. 7.2 C, E). This observation concurred with previous findings
that indicated quantitative analysis was not possible (Bauer ef a/.. 1993). Moreover. the
numbers of false positives observed following northern hybridization analyses did not
reflect the level of reproducibility of the display. However. the 12 probes that failed to
generate hybridization signals masked the possible outcome for the number of true positive
ditferentially expressed genes of the 30 investigated. The majority of these probes were
under 200 bp in length and. as has been previously suggested (Liang et «a/., 1993). may
have been too short and AT-rich to have hybridized efficiently. In addition. any rare or

low abundance transcripts may also have escaped northern detection (Liang er al.. 1993:

._.
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Blanchard and Cousins. 1996). In this regard, a more sensitive detection method such as
ribonuclease protection assays, used in a recent investigation (O’Rourke et al.. 1996).
could be employed in future work. A consideration in this context would be the use of
modified downstream primers. containing a I'7 promoter for generation of riboprobes. for
reamplification of isolated fragments. Such primers have since becen included in an
upgraded version of the Differential Display Kit (P. Warthoe, personal communication).
In addition. other improvements include a more efticient polymerase and incorporation of
single strand conformation polymorphism analysis (Orita ¢/ al.. 1989; Mathieu-Daudé ¢t
al.. 1996) for pre-confirmation of different:al expression. Furthermore. changes in the
display technique to improve resolution of higher molecular bands, crowded at the top of

gels (Fig. 7.1), may enhance detection of differentially regulated products.

Sequence analysis of isolated. differentially amplified cDNAs, demonstrated that the
fragments were derived from S. cerevisiae mRNA encoding gene products of both known
and unknown function (Fig. 7.7). Prior northern hybridization analyses (Fig. 7.5)
confirmed that all cDNAs hybridized to transcripts corresponding to the correct sizes for
the genes to which they exhibited homology. For example, the fragment D2-U11 detected
a 2.4 kb signal. which is consistent with that ot hsp 90 (also referred to as hsp 82) mRNA
(Farrelly and Finkelstein, 1984) (see section 1.3.2). In Chapter 5 it was demonstrated that
hsp 90 exhibits increased levels during growth on acetate (Gross and Watson, 1998b. in
press). Consequently, the pattern of expression displayed by D2-U11] in both Ysen and
Yres (Fig. 7.5) reflected those already established for hsp 90. The latter has been shown to
exhibit two closely related isoforms. hsp 82 and the cognate hsc 82, at least one ot which is
essential for cell viability (Borkovich ef al., 1989). This explains the presence of a faint
hybrid detected by D2-U11 in control samp es of both Ysen and Yres (Fig. 7.5). It was
also noteworthy that two mismatches occurred at the 57 end of the upstream primer for D2-
Ul and in fact for all other fragments (Fig 7.7). This observation was consistent with
previous investigations (Bauer ¢7 «/., 1993) that indicated one to four mismatches at the 5°
end of the primer may be tolerated for efficient annealing. Consequently, this would
enable prediction of fragment positions within the display for most known genes.
Identification of HSP 90 in the present investigation attests to the validity and efticacy of

the DD technique.

Similarly. fragments D9-U2 and D1-U9 exhibited homology to genes with well-

characterized protein products. Fragment D9-U2 appears to have been derived from a 1.5
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kb transcript (Fig. 7.5) encoding the enzyme hexokinase PI, a product of the HKA (HXK 1)
gene (Kopetzki ef al., 1985) (Fig. 7.7 B). This enzyme is one of two isoenzymes that can
phosphorylate glucose, fructose and mannose (Entian, 1980). Previous investigations have
indicated that hexokinase PI levels increase during growth on non-fermentable carbon
source (Bataillé ef al., 1988) and specificallv, HXK/ is transcriptionally activated in cells
grown on ethanol, glvcerol and galactose but not glucose or fructose (Herrero ef al., 1995).
The current observations of the presence ot HXK/ mRNA in acetate grown cells of both
strains were thus consistent with these findings. However, its presence in glucose grown
control and heat shocked cells of Yres (Fig. 7.5) was also demonstrated. This may hold
interesting implications for the thermotolerance phenotype. especially given that the
physiological role of HXK/ remains unknown (Herrero er al.. 1995: De Winde ef al..
1996). In this context, it was also of interest that D1-U9, exhibiting pronounced
expression in heat shocked and derepressed cells of both strains and also present in control
cells of Yres (Fig. 7.2 €), showed homology to S7A4/, encoding glucoamylase (I'ig 7.7 C).
The catalytic activity of glucoamylase involves successive hydrolysis of terminal glucose
residues from non-reducing ends of polysaccharide chains. with release ol B-D-glucose
(Pardo et «l., 1988). One might speculate that increased activity of this enzyme is partially
responsible for the increased levels of intracellular glucose observed under heat shock
conditions in veast cells, consistent with trehalose accumulation (Neves and Frangois,
1992: Piper, 1993) (sce Chapters 5 and 6). An enhanced intracellular glucose content may
be important for energy production giver that heat shock may damage membrane
components and thereby limit the uptake ot g.ucose or other nutrients (Nwaka er «/.. 1995).
Identification of both HXK/ and STA! in the present work provided a further measure of
success for the application of DDRT-PCR to identify either stress or nutritionally regulated

mRNAs.

Sequence analysis of D9-U19 revealed homology to Y7757/. which has only recently
been identitied as the yeast homolog of the mammalian 7/S7/ gene family, involved in the
early growth response (Ma and Herschman. 1995). In support of earlier investigations
with 71871 concerning the highly conserved. putative zinc finger motifs of its predicted
protein product (Dubois er al., 1990), it was shown that the Y7757/ protein amino terminal
region can function as a transcriptional activator. This was significant to the present
discussion as Msn2p and Msn4p. homologous zinc finger protein products ot MSN2 and

MSN+ respectively, have recently been implicated as transcription factors that recognise



stress-responsive elements (STREs) (Martinez-Pastor e al.. 1996). It was shown that
MSN2 and MSN+4 are required for activaticn of several yeast genes whose induction is
mediated through STREs. Moreover, thei- disruption resulted in higher sensitivity to
carbon starvation. heat shock and osmotic a1d oxidative stresses. In accordance with the
present observations. the Y77S// transcrip is approximately 1.6 kb and substantially
greater levels were evident in cells grown on acetate as opposed to glucose (Ma and
Herschman. 1995) (Iig. 7.5). Although the 71S// gene is subject to induction by a large
number of cell stimulants, both biochemicil and physiological functions of the 71S//
family of proteins remains unknown (Ma anc Herschman, 1995). However, it appears that
an interesting correlation may exist between the mammalian early growth response and

glucose repression in yeast.

The absence of both known function and structural homologs are criteria used to
define approximately 30-35 % of all the ORFs of the yeast genome, collectively referred to
as orphans (Dujon, 1996). Fragment D1-U6 exhibited considerable nucleotide homology
to such an orphan gene on chromosome II (Fig. 7.7 E). Despite the absence of homologs.
hydrophobicity analysis of putative protein products and multiple sequence alignment
methods have indicated that this ORF (emb Z36162) encodes a hypothetical
transmembrane protein which appears to belong to the drug resistance translocase tamily
found in bacteria and higher eukaryotes. This was particularly relevant to current studies
as such proteins had previously not been suspected to be part of the S. cerevisiae genomic
profile (von Heijne, 1996). Moreover. it lFas recently been demonstrated that hsp 70.
previously thought to be restricted to the cell interior, 1s also present in the cell wall of S.
cerevisiae (Lopez-Ribot and Chaffin. 1996). Given that hsp 70 has been implicated in
thermotolerance and in protein folding and translocation of proteins across membranes
(Craig et al.. 1993; Georgopolous and Welch. 1993) it could be speculated that the orphan
gene identitied by D1-U6 may play a role in thermotolerance. In this context, it was of
interest to note that D1-U6 was also expressed in control cells of the more thermoresistant

Yres (Fig. 7.5).

The present novel application of DDRT-PCR has provided new candidate genes that
may be further evaluated as factors involved in stress regulation. There are few other
examples of identification of genes involved in stress metabolism in this manner. In recent
work DDRT-PCR was employed to identity 1 number of shear stress responsive genes in

human endothelial cells (Ando et al., 1996). In addition. other groups have recently
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identified novel mRNAs in heat shocked Leishmania cells (Lewis et al.. 1996) and
hypoxically inducible mRNAs in HeLa cells (O'Rourke ef al.. 1996). During compilation
of this chapter and subsequent to submission of the resultant manuscript (Gross and
Watson, 1998a. in press), another report ccncerning identification of nutrient controlled
mRNAs by DDRT-PCR in S. cerevisiae was published (Crauwels er al., 1997). Using a
slight variation of the technique with gene specitic probes for HSP 70. it has also been
demonstrated that two genes with completely different 3” untranslated regions are strongly
induced in rat cells. leading to the production of a large amount of single protein (Angeletti
et al., 1996). Techniques such as cDNA libraries. subtractive hybridization and 2D PAGE.
used previously to identify genes of unknown function, excluded scarce mRNAs which
may be expressed transiently and at very low levels. As a result, such species may have
escaped previous detection.  Specificallv, 2D electrophoretic mapping has been
successfully applied in the past to identily nutrient and stress regulation of protein
expression (Boucherie, 1985; Bataille ef al., 1988; Bataille e/ al., 1991). However, whilst
the technique remains a powerful tool for investigation of protein regulation, Boucherie ¢f
al. (1995b) have pointed out several disadvantages with respect to its application for
construction of a gene-protein index for S. cerevisiae. Results presented indicated that
only 25-35 % of soluble yeast proteins could be visualized on gels and this was to the
exclusion of regulatory proteins. In addition, although most major proteins could be
recognized from yeast protein patterns gene ated in different laboratories, the correlation
became less efficient for those of average or small abundance. With respect to subtractive
hybridization, it is reported that a S-fold change in message level is required before a
difference between conditions can be detected (Williams and Lloyd. 1979; Dworkin and
Dawid. 1980). However, it has been we.l documented that both rare and abundant
transcripts are detected by DDRT-PCR with cqual efticiency (Bauer ef /.. 1993; Benito ¢t
al.. 1996; Wan ef al., 1996). Therefore, it is probable that with continuing refinements (for
example. Averboukh. 1996; Diachenko et al., 1996) additional stress responsive mRNAs
may be identified. It was of interest to note that attributes of 2D gel electrophoresis and
DDRT-PCR were recently combined in the development of a novel technique. designated
restriction landmark ¢cDNA scanning, which displays many cDNA species quantitatively

and simultaneously as 2D gel spots (Suzuki e al.. 1996).

To fully exploit the S. cerevisiae genome sequence data, a systematic approach to

investigate gene function is required. As meny as 2 300 genes remain orphans (Hieter ef
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al.. 1996) and little is known about the levels of expression of ~ 6 000 genes comprising
the genome. Disruption of a large fraction o yeast genes (at least 50 %) may not have any
obvious consequences phenotypically (Johaston, 1996). Two approaches that would
deliver genome scale expression are serial analysis of gene expression (SAGIL)
(Velculescu e al., 1995) and ¢cDNA micrcarray analysis (Shena er a/., 1995). both of
which are being considered for application to the yeast genome (Bassett ¢r al.. 1996
Winzeler, 1997). However, it has recently been shown in a comprehensive comparison of
SAGE, subtractive hybridization and DDRT-PCR, that the attributes of the latter render it
more favourable (Wan er al.. 1996). Since S. cerevisiae is readily amenable to
physiological and genetic manipulation. in addition to establishment of a set ot ESTs,
DDRT-PCR can contribute to characterization of orphan genes. Importantly. it enables
side by side comparison of more than two cell types and generates regulatory information
about genes. Of considerable significance to the present studies. in which cells were
cultured in YNB. were preliminary experiments that indicated ESTs obtained from yeast
grown on minimal medium included many more genes of unknown function than those
obtained from cells grown on rich medium (Dujon er al.. 1994). In this regard, it was of
interest to note that cells grown in YN.3 were observed to be consistently more

thermoresistant than those in YEP medium (Chapter 3).

In summary, it was demonstrated that the application of DDRT-PCR to investigations
with S. cerevisiae holds considerable potential and has provided a solid basis for further
study of the thermotolerant and derepressed phenotypes. This relatively novel technique is
uniquely poised to be implemented in elucicating the function of differentially expressed
genes in any physiological or genetic background. especially within the context of this

model organism. the genome of which has been sequenced entirely.
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Epilogue

An ode to "stressed-out" S. cerevisiae

The stress response. a protective system. so highly conserved, not many compare.
Its an inducible, transient adaptation that occurs n all cells from everywhere.
The research is extensive and literature abounds in reams. or so it seems.

Concerning gentle persuasion of organisms to survive temperature extremes.

A mild shock induces both heat shock proteins and increased thermotolerance.
Biochemical and physiological parameters that zre of considerable preponderance.
This has lead to the suspicion; these two phenomena must be inexorably linked.

In a manner of such complexity in fact, its difficult to be succinct.

Thermotolerance has been shown to occur without (e novo) hsp accumulation.
Such tenuous correlation has made them subject to contentious vacillation.
Despite abundant molecular analyses. a crystal clear picture has not evolved,

Well. let's be frank. its rather opaque, hsps' effect on tolerance remains unresolved.

A full picture will not emerge unless we take a <light digression,
And look at other stress-induced traits alongside altered gene expression.
Stress also causes physiological changes and accumulation of trehalose.

Whilst several other metabolic systems seem to enter a state of repose.

Thermotolerance is also acquired through encounter with other stresses,
Including osmotic. chemical. growth arrest and as carbon catabolism derepresses.
Although these may cause tolerance via a ditferent physiological eftfect.

The following is an account of stress-inducible systems and how they are thought to protect.

Stress-induced protein damage appears to trigger the heat shock response,
Where hsps facilitate repair and trehalose mobi.ization, upon recovery. all at once.
A decline in pH; due to increased. stress-induced membrane permeability,

[s counteracted by increased proton extrusion due to stimulated ATPase activity.

Intracellutar acidification also stimulates RAS-denylate cyclase,
This may reverse glycolysis inhibition. due to increased cAMP protein kinase.
Which in turn may cause ATPasc stimulation. and I think its really neat.

ATPase activity happens to be vital for hsp svnthesis in response to heat.
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Although there's a plethora of knowledge on heut shock and hsp,
Their role during stress is unclear, and vet essential constitutively.
Despite current controversy, good correlation e.isits between tolerance and hsp 104,

As mutants of this gene are stress sensitive. a defect that can be rescued by giving them more.

This concept appears erroneous and one to that several workers cannot abide.
For all their work with trehalose shows that they love the disaccharide.
Recent work has shown, and several findings support the discovery,

It seems trehalose may be a thermoprotectant. while hsps aid in thermorecovery.

If by misapprehension, this has escaped your comprehension and you're feeling rather contused.
Don't worry, be happy, it was only intended to keep you mildly amused.
However, so that my point won't fall mute,

A concise summary may constitute:

Heat shock activation, a biological adaptation with cross-tolerance correlation, caused by
environmental fluctuation and nutrient limitation, involves a complex regulation of physiological
perturbation and genetic alteration that has ireceived intense investigation and leads to scientific

stimulation!!

Claudia Gross, 1995

(ore rainy afternoon while feeling inspired

b the indefatigable influence of stress!).



The last word

“Any living cell carries with it the experiences of a billion years

of experimentatior by its ancestors.”

- Max Delbriick. 1949
(Cited from Hieter ¢ ul.. 1996)

So it’s a sobering thought that upon completion of this thesis

it now carries one billion and five!

izt
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