
Chapter 1

Introduction

Success when selecting livestock for a particular breeding goal depends upon correctly

identifying the superior animals from among their contemporaries. During the last twenty-

five years significant improvements have been made in the process of evaluating livestock

for their genetic potential. These improvements result from the use of Best Linear Unbi-

ased Prediction (BLUP). Its use is now widespread among species and countries.

The development of BLUP is largely due to Henderson (1973). Among other properties

BLUP is able to combine information from a variety of sources - observations of the chosen

trait and correlated traits on self and relatives - in the 'best' way. Its general acceptance

is due to two developments. Firstly, Henderson's (1975, 1976) discovered a method to

write the inverse of the covariance matrix between animal effects directly from a list of

animals and their parents. Secondly, rapid developments in the power of computers have

allowed the evaluation of large numbers of mirriais with more complicated and multi ple-

trait models.

The aim of this thesis is to develop some algorithms that implement BLUP procedures

more efficiently than has been done in the past and therefore add to the size and com-

plexity of models that can be analysed.

It begins with a review of the literature relating to BLUP, its properties and algorithms
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commonly employed in its application in Chapter 2. Chapter 3 presents an alternative

method of inverting A using partitioned ma- rixtheory. This method is used in Chapter 4

to demonstrate how gametes can be analyse I with an animal model. Chapter 5 describes

an efficient method for finding inbreeding coefficients of the animals in a population. The

following three chapters (6-8) describe methods for representing, factoring and transform-

ing the mixed model equations (MME) which allow significant savings in both the time

and memory required to find solutions to the MME. The study is concluded with a dis-

cussion of the relative value of these methods as compared with other available methods

and the scope for other improvements in efficiency.

Because chapters 4-8 have been published ai papers, there is some overlap of contextual

settings contained in the introductions and also with Chapter 2. Some alterations to the

published forms of these chapters have been made so that the nomenclature throughout

the thesis is consistent. As well as a general appendix, there is an appendix to Chapter

5 that was part of the published paper. ilapters 3 and 4 describe work completed

with Johann SOlkner and Chapters 6 and with Hans-Ulrich Graser. In all cases the

fundamental ideas contained therein were m:ne, but the contribution of both Johann and

Hans in developing these ideas and with the proofs and examples I gratefully acknowledge.



Chapter 2

Literature Review

2.1 Introduction

The mechanism of inheritance -- whereby offspring receive half of each of their parents'

genetic material - provides animal breeders with a powerful tool for the manipulation

of livestock populations. This tool is selection and it is the process of choosing, from

among the available candidates, superior animals to be the parents of the next generation.

Successful selection depends on accurate predictions of the genetic worth of the available

animals.

For many industries and species, the method of choice for evaluating livestock is Best

Linear Unbiased Prediction (BLUP). It was derived by Henderson (1.949, 1950, 1953,

1963, 1973, 1984, 1990) between 1949 and [973 from selection index theory. This review

considers the basis for BLUP as the method of choice and examines some of the practical

problems associated with its implementation.

3
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2.2 Best Linear Unbiased Prediction

BLUP is a method of estimating random effects based upon a mixed linear model such

as:

y	 X1)	 Zu e	 (2.1)

where y is the vector of observations, b is the vector of fixed effects, X and Z are incidence

matrices, u is a random vector of additive ,?;enetic effects and e is the random vector of

residuals such that

E(u) = 0,

E(e) = 0

and

	

Var u
	

GI, 0

	

e	 0 It

where G and R are known positive definite matrices.

b is the best linear unbiased estimate (BLUE) of b and u is the BLUP of u. b and II are

the solutions to the mixed model equations (MME):

X'R-137 

Z11-1 X 	 +
(2.2)

which result from differentiating the joint density of y and u with respect to b and u and

equating them to zero (Henderson, 1973).

BLUP is best in that the mean square error of the residuals is minimised; it is linear in

that the elements of u are a linear combinat on of the data and it is unbiased in the sense

that the mean of the estimate is equal to the mean of the quantity being estimated. Proofs

of these properties were developed by Henderson et al. (1959) and Henderson (1963).
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For single trait models the matrix G is commonly assumed to be Amu, where A is the

numerator relationship matrix and au2 is ale additive genetic variance, and R is assumed

to be Icr e'!, where I is the identity matrix and ae is the residual variance. In multiple trait

models these are assumed to be A * Go and I * R.0 where Go and R0 are the genetic and

residual covariances among traits respecti\ ely and * symbolises the Kronecker product.

Before Henderson (1973) derived BLUP, selection indexes were widely used to combine

information from an individual and its relatives and from correlated traits as a predictor

of an animal's performance, viz.

= E(wly) = a + CV-1 (y — 0)	 (2.3)

where * is the index, a is the column vector of means of w, C is the covariance matrix

between w and y, V is the covariance matrix of y and 0 is the vector of means of y. When

calculating the selection index, it was generally assumed that the means of y and w were

known, which was valid when equal information was available on all candidates but not

so when the information available on candi lates was unequal. When the generalised least

square (GLS) estimates of these means obtained from the data were used in their place

such that O = Xb and a = PC), an estimable function of the data, then Equation 2.3 is

the BLUP of w (Henderson, 1973).

The b were obtained as one set of solutions to the GLS equations

=	 (2.4)

where V = ZGZ' R. With Equation 2.2, Henderson (1973) demonstrated that CI W

and Xb could be obtained without inverti lg V which, for large populations, would even

now be infeasible.
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2.3 The Numerator Relationship Matrix A and its

inverse

The numerator relationship matrix, A, describes the genetic relationships between all

animals in a population as described by the pedigree. It is a matrix with the following

properties (Henderson, 1975, 1976):

1. it is symmetric.

2. + Fi where a ii is the i th diagonal of A and Fi is the inbreeding coefficient of

the 'ith animal, Wright (1922).

3. aij =-• pig (a ii ajj ) where pig is Wrigh-,'s (1922) coefficient of relationship between

animals i and j .

Thus it describes the probability that one allele chosen at random from each of the ith

and jth animals are identical by descent.

Recursive rules for building A require that animals are numbered so that parents precede

their progeny and are:

aii = 1 +	 (2.5)

a, i3 , aji = 0.5(aip + a J O, j <	 (2.6)

where Fi = 0.5apq is the inbreeding coefficient of animal i with parents p and q. i and j

are rows and columns in A corresponding to the ith and jth animals. If either parent is

unknown then alp ( ) and o,	 re omitted and F, = 0.P4 a '

Quaas (1984) and Dempfle (1990) describe how A is used in the interpretation of the

random variables in u. Consider an animal's breeding value u i as a function of its parents'

breeding values usi„ and uda„, viz.

a i = 0 .5usire Mud. +
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where O i represents the deviation of the ith animal from the mean breeding value of its

parents due to mendelian sampling. In matrix form

u = ).5Pu	 (2.7)

where P is a lower triangular matrix with is in the columns of each row relating to the

parent of the animal represented by that row and zeroes elsewhere. Rearranging

u =	 - 0.5P)-11

and

var(u) = (I — 0.5P) -1 1/ (43)(I	 0.5P')-1

= (I — 0.513) -1 D(I —

where Do is the variance matrix of 41.

The elements of D are (0.5 — 0.25(Fsi„	 when both parents are known, (0.75 —

0.25(Fparent)) when one parent is known and 1 for base animals (Henderson 1975, 1976).

Alternatively Quaas (1984) showed that

di	var(0i)1 o-„2

	

(2.8)

1 + F2 — 0.21►a pp — O.Sapq — 0.25au

1 — _ • _	 pp	 qg0 25(a	 a )

Because the elements of it. are independent. D is diagonal. Now

A = (I — 0.513 ) -1 D(I — 0.5P')-1

and

A-1 = (I — 0.5P')D - (I — 0.5P)

Because (I-0.5P')-1 is triangular and D is c iagonal, A is readily invertible as Henderson's

(1976) simple rules show. These rules requite generating a lower triangular matrix L such
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that LI.:= A (L could also be obtained from a more computationally expensive Cholesky

decomposition of A). Henderson (1976) also showed that .L = TD where T is derived on

a row by row basis as

Ti
	 T;_1	 0

si ri-1 1

D is the diagonal of L and s i is half the ith row of P up to, but riot including, the diagonal

element. Now D 2 = D (Quaas, 1984).

Quaas (1976) demonstrated how two vectors the length of the number of animals in the

population could be used to build D and sub sequently A- 1 . Golden et al. (1991) modified

this algorithm so that operations involving zeroes were avoided, but this algorithm re-

quired a considerable amount of sorting once the ancestors of each animal were identified.

One limitation of this approach was that at di needed to be recomputed each time A-1

was required.

Meuwissen and Luo (1992) used an approach based on the rows of TD and were thus

able to avoid recomputing old d i s unless new ancestors had been added to the population.

Quaas (as cited by Mrode, 1996) implemented a more efficient algorithm, based upon lists

of ancestors for this method.

(The source code of such a list based impl ementation of the column approach for this

method is shown in the appendix together wi . ,h my source code as published by Meuwissen

and Luo (1992))

Computing D is the only difficult part of computing A- 1 and it is trivial if the Fi are

known. Until methods for computing D were available, two methods for computing Fi

were commonly employed. The first was the path coefficient method (Wright, 1922)

which required identifying all the ancestors that each animal's parents had in common

and determining the length of each path bet weer the animal's sire and dam through all

common ancestors (Falconer, 1981). This :nethod was adequate when pedigrees were

short and animals had few common ancestors but became very complicated once there

were many common ancestors and pedigrees were deep. (Source code for this method can
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be found in the appendix.) The second method for computing the Fps was the tabular

method outlined in equations 2.5 and 2.6.

2.4 Solving the Mixed Model Equations

One reason which delayed implentation of BLUP was the lack of sufficient computing

power. Although Henderson originally derived BLUP in 1949, it was not until the early

1970's that it was first applied to industry (Henderson, 1990). Schaeffer (1976) describes

how to build and solve the MME. In his example a simple sire model with one fixed effect

per animal was used and the fixed effects were absorbed into the sires' equations. By

processing the animal records in order of fixed effects, most memory was retained for

the sires' equations and hence the number of sires evaluated was maximised. Because

the coefficient matrix is symmetric, only one triangle needed to be stored. Nevertheless,

matrices were frequently constructed by computing contributions to elements and right

hand sides, writing them to tape and then accumulating them once they had been sorted.

This was even done when building A- 1 as described by Quaas (1976). If the order of the

coefficient matrix was large then solutions to the MME would be found by iteration.

By absorbing animals without progeny the reduced animal model (Quaas and Pollak,

1980) reduced both the number of equations and the number of (non-zero) elements in

the coefficient matrix. This method was developed for use in the beef industry in which

the majority of animals have no progeny. This is one example of how the use of equivalent

models (Henderson, 1985) can expedite finding predictions of genetic merit.

Quaas (1983, pers. comm.) demonstrated how the non-zero elements in a triangle of the

coefficient matrix of the MME could be stored as a series of linked lists. This allowed

the available memory to be used more efficiently and could also reduce the amount of

computation in each round of iteration.

A new method, commonly called iteratinc, on the data, was described by Schaeffer and

Kennedy (1986a, 1986b). In this implemeHtation only parts of the MME are stored and
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the data are read from memory or disk at least once per iteration. Combining Gauss-

Seidel and Jacobi iteration can limit the number of times data need to be read to once

each iteration. Although Schaeffer and Kennedy's (1986a, 1986b) description concerned a

single trait model, they indicated how it could be applied to models with multiple traits.

Other methods, all designed to reduce eithe:• the time or memory required to obtain solu-

tions have been proposed. One package (PEST, Groeneveld et al., 1990) allows the prac-

titioner to choose from a variety of ways of )oth representing and solving the MME. The

different strategies for solving the MME usually amount to different methods of iteration.

Gauss-Seidel or Jacobi iteration are used frequently with some form of over-relaxation.

`Block' iteration is sometimes used to update parts of u and expedite convergence. In

some implementations (Schaeffer and Kennedy, 1986; Groeneveld et al., 1990) new solu-

tions to small parts of the solution vector are found simultaneously which can also result

in faster convergence of the equation systerr

2.5 Multiple Trait Models

Multiple trait models are preferred to single trait models because they increase the accu-

racy of the predictions as information from other traits is included, provided that good

estimates of the correlations among traits in the base population are available. This is

particularly important for animals with limited information, but may have little effect for

parents with many progeny. Multiple trait models also account for selection bias if the

trait(s) which was used as the basis for selection is included in the analysis (Sorensen and

Kennedy, 1984).

Multiple trait analyses impose a significant computational cost as although the number

of equations increases in proportion to the number of traits, the number of (non-zero)

elements in the coefficient matrix of the MME increases in proportion to the square of

the number of traits. There is also a signifi ;ant cost in the number of parameters that

are required as that also increases with the square of the number of traits (Quaas, 1981).
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2.6 Transformations of the Mixed Model Equations

Significant effort has been aimed at reducing the cost of multiple trait analyses. These

methods have focussed largely on ways to transform the MME. One method is the use

of canonical transformation. The use of this transformation turns a t-trait multiple trait

analysis to t single trait analyses by transforming the set of correlated traits into a set

of new traits with uncorrelated genetic effects and residuals. Solutions from the t single

trait analyses are then `backtransformed' to obtain solutions on the original scale.

Quaas (1984) describes a triangular (Cholesky) transformation which can be useful when

data are recorded sequentially such that all animals with the ith trait observed have all

previous traits observed. Quaas (1984) described a similar, triangular transformation that

could be used when there were some traits observed on all animals, and different subsets

of the remaining traits recorded on different subsets of animals.

Until recently the use of a canonical transformation was unfortunately limited to situations

with:

1. only one random effect,

2. all traits observed on all measured animals, and

3. the same incidence matrices used for all fixed effects and traits (Ducroq and Besbes,

1993).

Methods which relax these constraints are described by Ducroq and Chapuis (1997).

Gengler and Misztal (1996) proposed augmenting the fixed effects to remove the third

restriction. Their implementation required replicating the data as many times as there

were traits, requiring additional (dummy) Fixed effects. Ducroq and Besbes (1993) de-

scribe a method to augment the data vectcr when some data are missing. Missing data,

are replaced by their expected values and t qen canonical transformation can be applied.

It should then be preferred to the triangular transformation. Ducroq and Chapuis (1997)

extended the canonical transformation for use with reduced animal models and more than
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one random effect. By constraining the auvmented effects to be zero, they extended the

method of Gengler and Misztal (1996) so that replicating the records was not required.

The transformations of Lin and Smith (19 )0) also allowed the analysis of models with

more than one random effect.

Ducroq and Chapuis (1997) found that when some data were missing and the data. per-

mitted use of the triangular transformation (Quaas, 1984) then augmenting the data and

using the canonical transformation is preferable. 'Wiggans and Goddard (1997) take the

canonical transformation to its logical conclusion whereby they transform the traits for

analysis into a smaller subset of traits by setting all but the largest eigenvalues in the

transformation matrix to zero.

2.7 Conclusion

The statistical properties of BLUP together with the power of computers .have made

BLUP the method of choice for the evaluation of livestock for additive genetic effects.

Developments in the way that the MME are stored and solved have evolved and the ratio

of computing power to computing cost has increased. Improved methods for solving the

MME will continue to be useful as more complicated models and larger amounts of data

are used.

Much of the emphasis on the canonical transformation arises from applications in the dairy

industry where cows are recorded often and whole herds are recorded simultaneously.

In this situation, models for analysis and incidence matrices are frequently similar for

different traits and missing records are unusual. In more extensive industries than the

dairy industry, data available for analysis may not be so well structured.



Chapter 3

Inverting A using partitioned matrix

theory

3.1 Introduction

This chapter illustrates how partitioned matrix theory can be used to build the inverse

of the relationship matrix. This method is used in chapter 4 as the basis for analysing

gametic variation with an animal model.

3.2 Rules for A in matrix form

The recursive rules in Equations 2.5 and 2.6 for building A require that animals are

numbered so that parents precede their prog my. They are:

aii = 1 +

a i3 ,a37 = 0.5(6 3p	a3q ), j <

where p and q are the parents of animal i and i and j are rows and columns in A

corresponding to the ith and jth animals.



AT ii 0

0	 0

AT', 0

0
	

0

AT1 -

(an —	 1]
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A matrix representation of these rules when building A row by row is:

=
	 Ai-1	 Ai_isi	

(3.1)
S i A i l aii

where s, is a vector containing two elements, : I; corresponding to the sire or dam (if known)

and zeroes elsewhere (s i corresponds to half the ith row of the matrix P in Equation 2.7

up to but not including the diagonal elemen-.).

When computing the diagonal elements of A, it is useful to consider s i as the sum of two

vectors p i and = pi + qi , which are vectors of zeroes except for one half at the

position of the animal's sire or dam respectively. The expected inbreeding coefficient of

an individual is: Fi =	 cf,Ai_ip, which is equivalent to 0.5avq.

3.3 Inverting the numerator relationship matrix: the

partitioned matrix approach

Rather than decomposing A, we may investi4ate the effect of adding each additional row

(animal) to A on the elements of A -1 via pa rtitioned matrix theory.

Applying the standard matrix result (e.g. SEarle, 1982)

A B
	

0	 —A-1B 
(D — CA -1 B) -1 [—CA -1 I]

C D
	

0 0

to Ai in Equation 3.1 we get
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A;-1 1 0	
(azi —
	 SiS. -Si	

(:.2)
0	 0
	

1

Since a ii is assumed to be 1+0.5apq and is equal to 0.25(a pp +apq +aqp +aqq ), when

s i is defined as a vector of zeroes except f)r two halves at the positions of the parents,

this may be rewritten as

A-1
11 0

+ (1 — 0.25(app	aqq))-1
0	 0

This is equivalent to the result of Henderson (1975, 1976) as was shown implicitly by

Smith and Maki-Tanila (1990).

An alternative, equivalent reduction of the icalar term in Equation 3.2 is given by

	

d : = (1 +	 si)-1
	

(3.3)

	

= (1 +	 +	 Pi —. (p i +	 (13, + q, ))-

	

= (1 —	 —	 )

This derivation of A- 1 identifies the terms that contribute to di explicitly. The result is the

same as that of Equation 2.8 and is essentia to the next chapter. The ability to describe

alternative forms for p and q has been applied by others (e.g. Van Arendonk et al.,

1994) to modify A for different probabilities that alleles might be inherited. Equation :►.3

illustrates simply the terms that need to be calculated to compute A- 1 when modifying p

for multiple-sire mating (Henderson, 1988; Dempfle, 1990; Famula, 1992 and Kerr, 1993).

This technique also illustrates that if the animals from the base population are not a

random sample, then Henderson's (1975, 1975) rules can be applied to descendants of the

base population once the partition of A relating to the base population has been inverted,

as shown by Henderson (1984).
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