
PART ONE

CHAPTER 1 — INTRODUCTION

1.1. Introduction

The close relationship between the disciplines of music and mathematics has been

explored consistently throughout the history of Western music. An early commentator on

this relationship was Pythagoras in the 6th century BC. In the teachings of Pythagoras and

his followers:

the understanding of numbers was thought , o be the key to the understanding of the whole
spiritual and physical universe, so the system of musical sounds and rhythms, being ordered
by numbers, was conceived as exemplifyinl the harmony of the cosmos and corresponding
to it (Grout 1980, p.6).

In the Middle Ages, music was considered as a branch of mathematics, one of four

branches comprising the Quadrivium: arithmetic, geometry, astronomy and music (Grout

1980, p.24). From within this period of Western music there are many examples of

compositional formalism, that is, the systematic ordering and organisation of musical

parameters, examples of the embodiment of proportion and abstract numerical relationships

(Dodge and Bahn 1986, p.185). In the 20th Century, composers continue 'the custom of

borrowing systems of organisation from oul side the musical realm' (Burns 1994, p.2). This

is most evident in the works of computer music composers who have, since the mid-1950s,

programmed computers with various mathematical and scientific processes for the purposes

of generating musical works.

Since the introduction of commercially available music software programs in the

mid-1980s, non-computer programmer composers are no longer, perforce, compelled to

master programming languages to achieve musical results. To make programs commercially

viable, contemporary programmers are incorporating a broad range of algorithms based on

scientific or mathematical principles, thus allowing composers access to such principles

without the need for programming, and often without the need to know programming

languages.

Four example works are presented within this study, works composed specifically to

demonstrate a range of extra-musical principles applied with composition algorithms. The

four example works span the three primary iypes of computer music environments: electro-

acoustic music; electronic music; and computer-assisted composition of acoustic music. The

works are: Study for Triangles, for three triangles and computer controlled triangle samples,

an electro-acoustic work developed with a software program entitled M; Etude in Memoriam

Allan Dagg, for computer-generated tape, n electronic work developed with the software

program Jam Factory; Descendant Lines, for two piano accordions, an acoustic work

developed with the software program Symbolic Composer; and When Cinderella's Monkey

Comes Here I'll Feed Him, an acoustic work developed with the software program Phrase

Garden. This program was developed specifically for this study using the algorithm

development program MAX.

1.2. Rationale

Algorithms used in music composed in conjunction with computers are generally

developed by composers with computer programming experience as practical solutions to

composition problems arising within their own musical works, or are developed in order for

the composer to explore musical possibilities of extra-musical principles. Until the advent of

the micro-computer in the early 1980s, this composer/programmer paradigm represented the

primary induction method of new algorithms into the community of composers concerned

with producing music with computers. With the current generation of fast and economically

viable personal computing systems, such solutions are made available to composers other

than the original developers, increasingly appearing in commercially available software

programs as standard composition tools. As discussed in Chapter Two, there is a paucity of

studies pertaining to the applications of commercially available algorithms, a paucity that

calls for a study providing a detailed examination of approaches to the use of algorithms

within the context of commercially available software programs.

The MAX program provides a middle-ground in the paradigm, presenting composers

with the ability to assemble algorithms in a visually-based programming environment,

2

without the need to learn traditional programming languages such as C or LISP. This study

demonstrates the manner in which composers without traditional programming experience

can employ MAX to develop algorithms suited to their own compositional styles.

1.3. The Study and Main Elements

The purpose of this study is to examine algorithms within automated composition

software programs and to provide descriptions of the application of algorithms in the four

example works. The examinations focus on both the historical background of algorithms and

technical descriptions of each algorithm, while the applications of algorithms are detailed

through the functions each algorithm carries out within the context of an example work.

The study is broadly divided into two main sections. The first section details the

application of algorithms available in the commercial software programs of M, Jam Factory

and Symbolic Composer. The second section details the development and application of new

algorithms using the development program MAX. The two sections of the study are divided

into five separate parts, the first section containing Parts One and Two, the second, Parts

Three to Five.

Part One of the study provides defin: tions of terms related to the field of automated

composition, details the existing literature on automated composition using historical

surveys, and provides overviews of the corn mercially available software used in the study.

Part Two details the applications of algorithms in the compositions written with the software

programs M, Jam Factory and Symbolic Composer.

In the second section, Part Three details the personal compositional style used in the

works composed with M and Symbolic Composer, along with brief analyses of two further

instrumental works composed without computer software. These analyses serve to

demonstrate incompatibilities between composition processes provided in commercially

available software and those used in the compositional style. Part Three serves as a

background to the substantial Part Four, in which the development of the Phrase Garden

program is detailed with reference to the cc mpositional style, and details an example work

3

composed with the Phrase Garden program. Part Five presents conclusions drawn from the

examinations carried out in the study.

In the parts of the study involving the Symbolic Composer and MAX programs, LISP

functions and definitions within Symbolic Composer, and objects within MAX are, for clarity,

differentiated from the main text font with he default fonts of the programs. In Symbolic

Composer the font used is courier, and in MAX the font is Geneva.

1.4. Limitations of the Study

The software programs employed in this study were chosen to illustrate a broad

range of algorithms developed for control over pitch and rhythmic structures in music. The

study is limited to software systems developed on the Apple Macintosh platform, one of the

earliest personal computing platforms to provide a graphic user interface (GUI), an interface

ideally suited to on-screen control of musical parameters within the computer composition

environment. While graphic user interfaces or GUIs have been subsequently incorporated on

various computing platforms, the Macintcsh platform, in initially providing a graphic

interface, has had developed for it a range of composition software programs that have

become significant in the computer music community.

In the field of automated composition there is a diverse range of software offering the

composer a wide range of algorithms. In adopting a software program, the composer

embarks on a learning curve to facilitate the use of algorithms inherent within a program,

and while some programs have moderate curves, others have steep curves involving an

investment of many hours. For this study a limit of five software programs was decided on,

to facilitate an effective study of algorithms with learning curves appropriate for the use of

interactive arid algorithmic software, the two primary types of software in the field of

automated composition. The initial two example works in the study are developed with

interactive software, while the third work uses algorithmic software, reflecting the short

learning curves required for the chosen interactive programs and a substantially steeper

curve required for an algorithmic program. The fourth example work is developed with the

4

interactive Phrase Garden program, this program itself developed with the fifth program

used in this study, MAX.

In the development of the example works, a minimal hardware/software

configuration was employed so that the study would be relevant to as broad an audience as

possible within the computer composition community. Such a configuration forms the core

of systems used in the development of irneractive and algorithmic works, the specific

requirements of which are detailed in Chapter Three of the study.

A further delimitation of the study is its primary focus on deep-level compositional

structures of pitch and rhythm as opposed to the high-level area of timbre. In the examples,

the area of timbre is seldom developed or controlled algorithmically. Rather, the examples

are either performed with acoustic instruments, or synthesised and sampled timbres are used

in performances activated with the MIDI (Musical Instrument Digital Interface) protocol

(Loy, 1985).

The commercially available software programs used in the study fall into two main

categories. M and Jam Factory are both non-development programs in which the user only

has access to algorithms supplied with the programs. MAX and Symbolic Composer are both

development programs in which the user does have access to the underlying programming

languages (C and LISP respectively) and can develop new algorithms within the software

programs. Within this study, Symbolic Composer was used as a non-development program,

primarily to illustrate the wide variety of algorithms supplied with the program, whilst MAX

was used as a platform for the development of new algorithms. Software versions were

current at the time of the initial use of each .software program throughout the development of

the study. Software versions used were M -version 2.2, Jam Factory version 2.01, Symbolic

Composer version 2.32 and MAX version 2.5.

1.5.]Definition of Terms

1.5.1. Algorithm

The term algorithm is a derivative of the term algorism, used to describe the rules of

calculating with Arabic numerals (Knuth 973, p.1). The term algorithm describes a set of

5

rules or sequence of operations, an explicit, f nite procedure for accomplishing a task (Roads

1985c, p.xv). Knuth (1973, pp.4-6) gives the following criteria for determining an algorithm:

Finiteness	 an algorithm must always terminate after a finite number of steps.
Definiteness Each step of an algorithm must be precisely defined; the actions to

be carried out must be rigorously and unambiguously specified for
each case.

Input	 An algorithm has zero or more inputs, i.e. quantities which are given
to it initially before it begins.

Output	 An algorithm has zero or more outputs, i.e. quantities which have a
specified relation to the in uts.

Effectiveness	 The algorithm must be sufficiently basic that [it] can in principle be
done exactly and in a finite length of time.

Until the 1950s, the term algorithm was traditionally associated with Euclid's

algorithm for finding the greatest common divisor of two integers, but since that time has

been used for a wide variety of purposes (Guttman 1977, p.135), and in a broad sense can

theoretically apply to any sequence of actions taken to achieve a goal. As an example, a set

of travel directions qualifies as an algorithm: it is finite, terminating with the arrival at a

destination, each step is precisely defined, it has inputs (steps to reach the destination), and

outputs (the completion of each step), and is effective (the destination can be reached within

a finite length of time). In a strict sense, however, the term is normally associated with

computational processes for mathematical problem solving. In relation to computer music

programs, algorithms are finite computational procedures that can be applied at any level of

the compositional hierarchy via a computer programming language. Algorithms can range in

function from the production of a single tone, through to descriptions of entire pieces or

entire genres of pieces (Yavelow 1992, p.834). Throughout this study, the strict sense of the

term algorithm applies. In each of the example works the algorithms described are those that

apply computational procedures to the development of musical parameters at various levels

of the musical hierarchy, primarily the parameters of pitch and rhythm.

1.5.2. Algorithm classifications

Compositional algorithms fall into five main categories: stochastic; rule-based;

chaos-based; grammar-based; and Artificial Intelligence based. The term stochastic is

literally synonymous with the term random, however where random implies a short term

6

process in which outcomes are unpredictable and patternless, stochastic processes 'typically

reflect a concern for the large scale distributions of outcomes' (Ames 1987, p.185). The

remaining four categories are broadly classified as deterministic. As opposed to stochastic

processes, deterministic processes are those in which outcomes are known or predictable.

Rule-based algorithms are confined to one or more steps that simply perform a task:

An elementary example of a rule-based process would centre around a series of tests, or
rules, through which the program progresses. These steps are usually constructed in such a
way that the product of the step leads to the next new step (Burns 1994, p.19).

Chaos--based algorithms draw on the scientific inquiry of chaos theory which

`presents a universe that is deterministic, obeying the fundamental physical laws, but with a

predisposition for disorder, complexity and unpredictability.' (Hall 1991, p.8). Grammar-

based algorithms, derived from the study of linguistics, contain sets of rules determining

how the whole of a statement relates to its parts (its phrases, clauses etc.) (Ames 1987

p.185). Artificial Intelligence (AI) systems 'tire those in which the computer algorithms are

able to "learn" which solutions are retainable/useable by a series of comparisons with

previously-stated material' (Burns 1994, p.22).

1.5.3. Automated composition

The term automated composition broadly refers to composition methodologies in

which computers and computer programs 'undertake decisions affecting the content of a

musical composition' (Ames 1987, p.185). Over a 30 year history two primary types of

automated composition have evolved, referred to as interactive and algorithmic composition.

1.5.4. Real-time/Interactive composition

A real-time computer music system is one in which an event sequence is processed

by a computer and heard in the same time-space by a listener or audience, a system in which

`behaviour is dependent upon time' (Dannen berg 1989, p.225). By analogy the term real-

time can apply to an acoustic instrument performance, or the simple playing of a compact

disc recording, both of which fit the above criteria. However, the term is normally associated

7

with performances employing electronic and computer music systems. Real-time music

systems can be broadly classified into two primary areas, simple real-time systems and

interactive systems. Simple real-time systems are computer-based performances wherein

pre-programmed event sequences are controlled by the computer and performed with an

output device such as a synthesiser, sampler or sound module.

`Interactive systems are those whose behaviour changes in response to musical input'

(Rowe 1993, p.1): systems in which pre-programmed material is subject to real-time

manipulation by a live performer/composer, and systems in which the computer generates

musical materials in response to a live performer. Algorithms within interactive systems are

programmed to respond to human input, transforming, in real-time, pre-programmed musical

materials according to inherent computational procedures pre-defined for individual

algorithms.

1.5.5. Algorithmic composition

The term algorithmic composition refers to a method of composition whereby

musical procedures are expressed within a computer program as algorithms, in the form of

alpha-numeric data. Once the procedures are established for all parameters of a composition,

the computer compiles the data, converting alpha-numeric information into musically

relevant data that is transferable via the MIDI protocol to a notation- or performance-based

format (Yavelow 1992, p.864). Algorithmic composition as such represents a non-real-time

system of composition, a system in which the processing of computer event sequences is not

heard in the same time-space by a listener or audience, but after the computer has compiled

and converted alpha-numeric data into a musically recognisable format. Throughout this

study the term algorithmic composition represents a non-real-time procedural method of

composition wherein abstract specifications for musical process are pre-defined before

compilation to a final output.

8

1.6. Summary

This study originates from a paucity of studies pertaining to the applications of

algorithms using software from the field of automated composition, and examines the

application of algorithms to deep-level compositional structures of pitch and rhythm. Four

example works are presented, each developed within the confines of a minimal

hardware/software configuration. The examples include three works developed with

interactive composition software and one work developed with algorithmic composition

software, each example illustrating various applications of compositional algorithms. The

settings for the example works span the three primary types of computer music

environments: electro-acoustic music; electronic music; and computer-assisted composition

of acoustic music.

9

CHAPTER 2 — LITERATURE REVIEWS

2.1. Historical Overviews

2.1.1. Introduction

Literature pertaining to the broad historical development of automated composition is

primarily documented in three surveys: Lejaren Hiller's 'Music composed with computers

— a historical survey' (Hiller 1970); Charles Ames' `Automated composition in retrospect:

1956-1986' (Ames 1987, pp.169-85); and Gareth Loy's 'Composing with computers -- a

survey' (Loy 1989a, pp.291-396). A more recent doctoral dissertation by Kristine Burns

provides a comprehensive historical account of algorithms in music composition, tracing

algorithm developments from 1957 to 1993 (Burns 1994). Brief overviews of automated

composition systems are documented in various monograph introductions arid chapters

(Cope 1991; Dodge & Jerse 1985; Moore 1990; Roads 1985c).

In the surveys of Ames and Loy the main focus is on automated composition systems

developed by individual composer/programmers for the production of their own musical

works, systems that were generally developel prior to the widespread availability of micro-

computers and prior to releases of commercial, MIDI-based software systems developed to

run on micro-computers. The survey by Loy, whilst mentioning the 'impressive attributes' of

MIDI-based commercially available systems (Loy 1989a, pp.324-5) remains focused on the

composer/programmer paradigm. The Burns dissertation expands upon the paradigm to

include 'universal algorithmic composition programs' based on the MIDI protocol. The

focus of the Burns dissertation is historical, pertaining to algorithms available within

commercial automated composition programs. Particular applications of such algorithms in

the context of musical examples are not included in the scope of the document. Similarly,

further literature pertaining to commercially available software is limited to reviews of

individual programs such as those provided by Yavelow (Yavelow 1987, 1992), these

reviews detailing algorithms within programs, but without a provision of specific examples

of the applications of algorithms. This broad focus on commercially available software

programs and algorithms results in the paucity of studies pertaining to the applications of

algorithms that this study seeks to address. Periodic comprehensive literature searches have

10

searches have been undertaken during the course of this study, the last in September 1997,

and have substantiated the lack of literature pertaining to the applications of algorithms in

commercially available composition software.

The following brief historical overviews of algorithmic and interactive composition

summarise the cited surveys and include literature from the composer/programmer paradigm

pertaining to the development of automated composition. The overviews provide a

background to the development of commerc [ally available automated composition software

programs, leading directly to the specific interactive and algorithmic composition programs

that are used in the current study.

2.1.2. Algorithmic composition

Initial instances of computer composition with algorithms arose in the United States

in the 1950s, most importantly in the work of Lejaren Hiller and Leonard Isaacson (Hiller

1970, pp.42-96). In Hiller's Illiac Suite (1957), algorithms developed by Hiller and Isaacson

generated musical parameters with stochastic processes, the results printed in alpha-numeric

code and subsequently transcribed for string quartet (Dodge & Jerse 1985, p.292). Following

the Illiac Suite, Hiller in association with Robert Baker, developed Musicomp, a

programming system employing stochasi is processes similar to those used for note

generation in the Illiac Suite, but also providing libraries of algorithms that allowed, for

example, the manipulation of pitch series via the normal serial transforms of retrogrades and

inversions, and various permutation techniques (Loy 1989a, p.368). Hiller and Baker's

Computer Cantata (1962) is based on stochastic procedures derived from probability theory,

a theory in which the uncertainty of isolated random incidents is circumvented by predicting

distributions of outcomes from many similar incidents taken together. Probability numbers

indicate the likelihood that a random incident will produce a specified outcome, and range

from zero (impossibility) to unity (certainly), with a continuum of gradations in between

(Ames 1988, p.186). Probabilities in the Computer Cantata are derived from Charles lves'

Three Places in New England and are imposed upon pitch, duration, dynamics, notes versus

rests and playing styles (Ames 1988, p.176). In addition to probabilities, serial procedures

11

derived from Pierre Boulez's Structures for two pianos are implemented within the work

(Dodge & Jerse 1985, p.293-4). Musicomp, and the system's algorithm library, was further

developed during the 1960s by Hiller, Herbert Brun and John Myhill. Briin's Soniferous

Loops (1964) for example, included a rest/play algorithm in which the activity of each

instrumental part was controlled by percentages of rest/play probabilities: in the opening

measures of the piece the flute part rests 26% of the time, while unpitched percussion rests

68% of the time (Ames 1987, p.172).

While the above American systems were developed to generate and realise particular

musical works, more general systems were developing in Europe, geared towards the

development of numerous and varied works (Ames 1987, p.173). Iannis Xenakis developed

his 1962 stochastic music program for the purposes of employing statistical procedures to

deduce musical works, to use the computer as an aid to composition, as opposed to the

computer simulating composition processes, the latter concept a focus of Hiller and Isaacson

in the Illiac Suite. While these two approaches to the use of the computer are markedly

different, the algorithms employed were s- milar: on each continent the use of stochastic

processes formed the basis of the compositional style. In the case of Xenakis, the composer

controls means and variances in probability distributions to shape a work. In Hiller's case,

the composer controls rule sets that are appli ed to random sequences (Loy 1989a, p.311).

Another European composer, Gottfried Michael Koenig, in 1964 began to develop

his Project I and Project II, systems that again employed combinations of stochastic and

serial procedures (Loy 1989a, p.314). Koelig's systems furthered the use of algorithms to

include control over various musical parameters. Within them, elements could be brought

together to form a musical context (Roads 1985a p.570). Project I and Project II were used

by Koenig to develop numerous compositions throughout the 1960s, his Obung fiir Klavier

composed in 1969 demonstrating various applications of algorithms to pitch, duration,

dynamics and register (Ames 1987, pp.176-7; Laske 1981, p.57).

Developments in algorithmic composition in the 1970s led to applications of

deterministic procedures, initially with musical applications of formal grammars, primarily

adopted from Noam Chomsky's phrase structure grammars:

12

This approach enables a composer to describe musical forms economically, by first providing
a general archetype (or axiom) of the form and by further listing a set of productions for
deriving details from generalities. The full power of such an approach can he attained only if
the productions are capable of acting upon their own results (i.e. capable of recursion) (Ames
1987, p.180).

Grammars relate to recursive computer programming techniques wherein a

computational procedure is defined in terms of itself (Jones 1989, p.185). Initial theoretical

work associated with grammars arose in the work of Curtis Roads (Roads 1985a, p.403),

Steven Holtzman (Holtzman 1981, p.51) and Kevin Jones (Jones 1981, p.45). Roads,

Holtzman and Jones each applied various Chomskian classifications of productions, while an

initial application of grammars occurs in Charles Ames' Crystals (1980) in which recursive

grammars are applied within the context of Gestalt hierarchies, derived from Gestalt

psychology, a precursor to cognitive psychology (Ames 1982, pp.46-64).

Further developments with recursive techniques arose in the early 1980s with the

application of procedures derived from chaos theory. A branch of chaos theory is fractal

geometry, categorised in the work of the Fre rich mathematician Benois Mandelbrot. Fractals

exhibit the phenomenon of self-similarity. 'flat is, characteristics of a fractal at a macro-

structural level are reflected in similar characteristics at a micro-structural level. Such self-

similarity is classified as statistical, 'where characteristic features are perceivable as being

generally the same, but not identical', or literal, 'where the detail precisely models the shape

characteristics of the overall structure' (Jones 1989, p.180). Initial works employing fractal

procedures include Larry Austin's Canadian Coastlines (1981) which employs statistical

self-similarity (Dodge & Jerse 1985, pp.301-3), and Charles Dodge's Profile (1984), which

employs literal self-similarity (Dodge 1988, pp.10-14).

Ongoing developments in computer science have been incorporated into algorithmic

composition programs. An important example is the application of Artificial Intelligence

techniques which rely on recursive programming to 'implement decision making processes

that employ searches to discriminate actively between multiple options' (Ames 1987, p.181).

Several branches of Artificial Intelligence have been developed and have had subsequent

applications in music systems. Examples of these are Connectionist systems that 'employ

13

"brain-style" computation, capitalising on the emergent power of a large collection of

individually simple interconnected processors operating and co-operating in a parallel

distributed fashion' (Todd & Loy 1991, p.ix), and Neural Networks in which 'knowledge is

represented by the connection strengths between processing elements in a network, and the

mutual reinforcement or inhibition of elements by other elements' (Loy 1989b, p.25).

While a detailed survey of composition algorithms is not within the scope of this

study, two primary areas of development in algorithmic composition are related in the above

overview. In essence, these areas include algorithms that are based on stochastic processes,

in the systems of Hiller, Xenakis and Koenig, and deterministic processes, in the formal

grammars described by Roads, Holtzmann and Jones, the fractal processes used by Austin

and Ames, and AI techniques. In practice there are many convergences of these two primary

areas, for example stochastic processes are applied in the formal grammars described by

Jones (Jones 1981, pp.45-61), and in the fractal methodologies used by Austin (Dodge &

Jerse 1985, pp.301-03).

The implementation of the MIDI specification in the early 1980s led to a realisation

by commercial companies of algorithmic compositional possibilities inherent in the

combination of MIDI-linked computers and digital synthesis hardware (Loy 1989a, p.372).

Commercial MIDI-based software programs began to appear in the mid-1980s. These

incorporated both stochastic and deterministic processes as models to represent musical data.

The commercial programs were based on general purpose programming languages rather

than the music specific software employed within the composer/programmer paradigm,

programs such as Hiller's Musicomp and Koenig's Projects I and H. Examples of

commercially available algorithmic software systems developed in the 1980s include

Charles Ames' Compose written in the C programming language (Ames 1992, p.57), and

Tonality Systems' Symbolic Composer, written in the LISP programming language (Sica

1994, p.107). Such systems offer the composer a diverse range of both stochastic and

deterministic algorithms, implementing anJ extending an extensive range of algorithmic

compositional techniques developed since the 1950s.

14

2.1.3. Interactive composition

Interactive systems were originally developed for real-time manipulation of timbre

during the late 1960s. These were 'hybrid' sy stems in which 'the computer provided control

signals for analog sound synthesis equipment' (Risset 1985, p.130). An example of such a

system is Groove (Generating Real-time Operations On Voltage-controlled Equipment)

developed by Max Mathews and Richard M,)ore (Mathews & Moore 1970, p.715-21). The

concept of real-time processing of high-level musical structures progressed through the

1970s in conjunction with the obsolescence of batch-oriented computers using punched

cards, the development of on-line computers with increased computational speeds, and 'a

desire to facilitate rapid interaction between composer and sound' (Ames 1987, p.178).

While initially devoted to high-level sound synthesis structures, real-time systems began to

be applied, in the mid-1970s, to deep-level musical structures in the works of Emmanuel

Ghent and Laurie Spiegel. In the works of both composers Groove was used to manipulate

pitch and rhythmic motives in real-time, applying inversions, retrogrades, augmentations,

diminutions and transpositions to Spiegel's pre-composed melodic and rhythmic patterns,

and to Ghent's pitch and rhythmic patterns originally produced with random functions

(Ames 1987, pp.178-9)

By the late 1970s, digital synthesis, techniques were available and attention was

increasingly focused on deep-level structures. In American composer Joel Chadabe's Solo

(1978) both timbre and duration were controlled by the position of the performer's hands in

relation to proximity-sensitive antennae. His Rhythms (1980) took the interactive process

further, with the performer, via the computer keyboard, controlling transpositions, melodic

variation, rhythms and orchestration (Chadal)e 1984, pp.22-7).

Both Solo and Rhythms were conceived following the development of Play, a 1977

program by Chadabe and Roger Meyers for control of an analog synthesiser. This program

was described as functioning in two stages:

(. 1) a design stage, where the composer designs a specific composition process, using any of
the modules available in the program, and (2) an operation stage, where the composer
interacts with the playback according to the design (Chadabe & Meyers 1977, p.12).

15

This design/operation paradigm forms the basis of Chadabe's interactive composing,

a process that involves firstly, the programming of the computer to respond in real-time to

performer actions and generate materials not controlled by the performer, and secondly, the

simultaneous composition and performanc,.'; resulting from human interaction with the

program.

Following his success with initial experiments in interactive systems, Chadabe

founded Intelligent Music, a company providing a commercial outlet for interactive

composition software employing the MIDI rrotocol. The first two software systems, M and

Jam Factory, were released in 1986. In bi3th systems the design/operation paradigm is

employed. The difference between these programs and earlier interactive systems is that pre-

programmed algorithms 'provide a wide and flexible range of controls that give the user the

opportunity to personalise the results produced by the program' (Zicarelli 1987, p.13).

In addition to M and Jam Factory, numerous commercially available interactive

software systems using pre-programmed algorithms have been released. Laurie Spiegel's

Music Mouse represents one of the earliest examples, in which the mouse of the computer

(i.e. the spatial location input device, usually with one or more on-board switches, which on

the Apple Macintosh, is attached to the Analog Data Bus) 'controls the location of points of

intersection of the x y axis, which are used to control pitch and tempo respectively' (Loy

1989a, p.372). A more recent example is Miller Puckette's MAX, released commercially in

1990. Within this program algorithms are realised by manipulating graphic objects on screen

and making connections between them (Rowe 1993, p.25). As shown in Chapter Eight of

this study, MAX provides an array of Fre-programmed algorithmic objects, enabling

manipulation of musical structures in real-time. In all of these interactive systems, as in

algorithmic composition systems, a broad range of both stochastic and deterministic

algorithms are implemented, providing the composer with a diverse array of composition

tools.

16

2.2. Software Overviews

2.2.1. Introduction

The specific software systems employed in this study are M, Jam Factory, Symbolic

Composer and Phrase Garden, developed with MAX. A software overview of Phrase

Garden is not given in this chapter as an extensive discussion of the program is provided in

Chapter Eight. Primary literature sources pertaining to the remaining software systems are

the manuals supplied with each software program, and descriptive articles from software

authors relating their system configurations and details of their software. Secondary sources

are in the form of software reviews, monograph overviews and surveys. Both primary and

secondary literature sources provide detailed information on inherent system features and the

following overviews summarise the existing literature on each of the software systems.

2.2.2. M

M' was developed in 1986 by David Zicarelli, Joel Chadabe, John Offenhartz and

Antony Widoff (Zicarelli 1987, p.13). Following on from Chadabe's previous work, the

program is based on the design/operation paradigm developed in the Play program (Chadabe

& Meyers 1977, p.12). In M however, the process is elaborated, providing an ability to

modify the design of a work so that the distinction between the design and operation stages

becomes blurred. 'At certain times the user is in the design stage, at others the user is in the

performance stage' (Zicarelli 1987, p.13).

The procedure in using M is to enter musical ideas such as melodies, chords and

rhythms, and then work with the program to transform those ideas into finished

compositions, the real-time environment of ihe program allowing the composer to 'explore

musical ideas quickly, efficiently and with immediate satisfaction' (Chadabe & Zicarelli

1986b, p.29). In an initial design stage:

the user determines the basic musical material for four separate parts — e.g., melodic patterns
and/or pitch distribution (input can be in step or real-time, monophonic or polyphonic),
rhythmic patterns, accent patterns, articu ation patterns, intensity ranges, orchestration
(program numbers as well as MIDI chan lel assignments), transposition configurations,
proportions of pattern-variation methods Original order/permutation/random), and tempo
range (Yavelow 1987, p.221).

17

The four separate parts are collectively labelled as a pattern group, the software

allowing six individual pattern groups that can each contain four different pitch patterns.

Similarly, six separate positions contain alternative configurations for each of the remaining

parameters (Zicarelli 1987, p.19). Figure 2.1 shows the main screen of M, the six

configurations for each variable are shown in miniature on the main screen, while enlarged

versions of the configurations (as shown in Figures 2.2-2.4) are used for editing

configurations.

Figure 2.1 M, Main screen

Patterns	 Frac
I+ wal

1	 2
9 10

3 4 5 6 7
11 12 13 14 15 16

0 "e/
8 Slain Screen

..	 4 	 • 	

....----__

::::.::::Src Use 4: :IV Select EL/AcurAn 	 	 	,--I-.
All ° 4: r A• . 0 1	 1 4 0 4 --,,

•

II

:11

M1 : r 44 • 1	 I 4 0 Sync ihi	 15

All • 4: r	 dA, . 0
O

1	 1 4 0
All - 'I: r 04 . 1	 I 4 O 11 10 Tempo 1 20 130 I o
Variables	 / Cyclic Variables

Rhythm
--
—

Pattern
Group

NotDensity
Vel

Range
NoteOrder

Trans-position
Time

Distort

a
Accent	 4•---.---"---..— • —

•—•
.--
•---

Legato	 4•---4-s— — —
'I—
.--
•---
.---
.---.-"--/

4 ...—.--.—.-4

_...„—.

MI

_, I....	 I. 1;---4
—..	 --.	 —-a—, .---. --. a.

11

—4

.rj I)11	 *	 [
a)	 *X30/	 •

NOI
. NW

i x.
WM I .- -•_.....;---

■—8--.---.
4-.-----._.---

rati........._ IINI71=1111■1
IIMMON400.*** 1--1111101119101 IMMO*0•0100)M

1111•100.■
■11,000-.III•40)■••

ill„
•	 - ...
•	 -4--

III	 114'0. 111 "—.---.--6,---
-- -11..-

'—/1/
, / /1// /1/ / I/ /I/ /1//1/ /1/ /1/

.-- -.---•--•	 -
--.- __.------

_
diMidi Sound

Choice
4 10 11 12	 13 14	 15 16

i	 	 Skp.Chan
Orch

". 	 WO 	 ••• 	 	 	 1	 .. 	
4	 -•• 	 		 1•11.•	 1....	 le	

In the operation stage the settings for each of the above parameters are alterable in

real-time, thus effecting an immediately audible design alteration and blurring the distinction

between design and operation stages. As an example, four pitch patterns can be established

in the four parts of a pattern group and subject to two different settings of M's Note-density

algorithm (or variable) 'which controls the percentage of random skips that occur in playing

a pattern' (Zicarelli 1987, p.20). In Figure 2.2:

18

z7T■rote Density/ ■■111111■
93

1 100
2 25
3 32
4 0

0 25 50 75 100

O

O

•	 0
•

0 •

Note Density
93	 0 25 50 75 100
0 	 1	 1 	 .>..

2	 0	 •	 • 	 •••

	

3 0 •	 • 	 •
4 100

position 1 can be interpreted as follows: pattern 1 plays all the time, patterns 2 and 3 play
very rarely, and pattern 4 doesn't play at all. Thus switching to position 1 of the note-density
variable causes pattern 1 to play much more than all the other patterns. Svvitching to position
2 effectively cuts off all patterns except pattei n 4 (Zicarelli 1987, p.20).

Figure 2.2 M, Note-density settings (Zicarelli 1987, p.21)

The variables that affect musical output in M are classified within the program as

either variables or cyclic variables, and are implemented as stochastic and/or rule-based

deterministic algorithms. The Note-density algorithm in Figure 2.2 is classified as a variable

and implements a stochastic algorithm that, when the value is less than 100%, makes a

probabilistic decision whether to skip a note based on the percentage (Zicarelli 1987, p.20).

The Note-order variable shown in Figure 2.3 implements both deterministic and stochastic

processes. The pitch pattern in Part 1 is deterministic, continually presenting the pattern

assigned to the part in its original order. The pattern in Part 2 is stochastic, with a single re-

ordering of pitch material occurring before a more deterministic repetition of the re-ordered

pattern. The pattern in Part 3 is stochastic, presenting continuous re-orderings of the Part 3

19

Note Order MM.
100 0 0

0
	

100 0

o I O	 I::::::: ::::::::	 ::::::11001

1

2

3

4
Original
Order

• •

Cyclic
Random

1331
Utterly
Random

Transposition
Note Octave

1 C 4
2 C 3
:3 C 3

C 2

MEN
Middle C = C3

(No Transposition)

pitch material. The Part 4 pitch pattern is subject to all three re-ordering processes,

combining both stochastic and deterministic processes.

Figure 2.3 M, Note-order variable

The Transposition variable in Figure 2.4 is an example of a purely deterministic

algorithm, containing a fixed offset, 'expressed as a note above or below middle C, which is

added (or subtracted) to the note values of each pattern' (Zicarelli 1987, p.20). The pitch

pattern in Part 1 is always performed one octave higher than the original, Parts 2 and 3 are at

pitch, and Part 4 is played one octave lower.

Figure 2.4 M, Transposition variable

20

Cyclic variables in M are data structures that have some number of scalar or random

ranges, and are applied to duration, articulation (legato versus staccato), and accent (MIDI

velocity) (Zicarelli 1987, pp.20-1). Cyclic variable settings are applied to each of the four

parts independently as determined by the selection of each part's x and y matrix within the

Cyclic editor. The x and y matrices, as shown in Figure 2.5, are positioned vertically on the

left side of the Cyclic editor. On the x axis the numerals 0 to 4 correspond to numerals in the

multiplier vertical array in the upper right of the Cyclic editor. The numerals in this array

multiply or divide a clock speed which is set on the main screen. On the y axis of the Cyclic

editor matrices the numerals 1-16 represent time steps, the user selecting up to 16 time steps

to be cycled through by highlighting a desired number of steps. Figure 2.5 illustrates

rhythmic settings for the four pitch parts, the array at the upper right indicating, for example,

1/16th notes as 0.5 through to whole notes as 8. Following this example, Parts 1-3 are

deterministically based: Part 1 will sound as continuous 1/16ths (0 on the x axis), Part 2 as

continuous 1/8ths (1 on the x axis), and Part 3 as 1/8th, 1/8th, 1/4, 1/8th, 1/4 (1,1,2,1,2 on the

x axis). Part 4 however has the full range of rhythmic values (0 to 4 on the x axis),

representing a stochastic process in which any of the defined rhythmic values are randomly

used within the part. Cyclic variables, like the variables, also have six available

configurations.

Figure 2.5 Al, Rhythm Cyclic variable editor

/ Cyclic Editor Rhythm 4 = 8

4	 	 •	 :	 :	 :	 :	 :' :	 : :	 : :	 •	 :	 :	 4 3= 4
21?

3	 	 :
:	:	

•	 •	 :	 •	 •
:	 :	 :	 i	 :	 ::	 :	 :	 :	 :	 :

'	 •
:	 ::	 :

:	 •
;	 ::	 :

•	 :	 :	 :	 3	 111111 2=
1 =:	 :	 ;	 :1.11?:	 :	 :	 •	 •	 MN 1

1 0= 0_569

2 21
3	 	

2

,
•	
•

LI	 5;	1;	El	 9;
	

10
i 	

3	 6

.	 .	 .	 ;	 :	 :	 ,	 .
:	 ;	 ;	 :	 •	 :	 :	 i•	 '

11 12

:	 .
:	 :•

13 l i4 15	 l	 mi9	 .

.	 :	 .	 . 3	 Legato
:	 :	 :	 2

.

=
3=

100•'	 '	 •	 :	 1. 69
331	 2 3 4 5 EI 1 El 9 10 1112 2=13 14 15 lb

4
33 2

•	 : :	 •:	 !
;	 :

:	 :;	 :
:	 ;

•	 : :	 : 4	 MI 1=
0=

18III
INV

MN 	 	 :ger 	III 	 ;	 :
;	 : :	 : 3	 EN 13: i i ; 	 MN1 di MA 		 10

4 2
a

1	 	
1	 234

.
 	 5 6 1;	0;

:	 	 ::	 ::	 ::	 :.	 ::1 :

	 	 :	 :	 :	 :	 :	 :
0

9 10

::	 ::
:	 :

111;21

!	 !
:	 :

1	 2
II

i

3 4
sol	 6 ...I

er

:
31;41;57

1	
miAccent

!	 !	 !	 ! 2	 min
:	 :	 :	 :	 0	 II_IIN

13 14 15 161	 2 3 4 5 b 1 9 10 1112 ris

21

The array and combinatorial possibilities of parameter settings in M provide an

interactive composition environment in which users 'can impose arbitrary distinctions

between composing and performing by restrcting their actions at specific times' (Zicarelli

1987, p.14). As in the Note-density variable, variables for velocity range (dynamics), note

ordering, transposition, rhythm, articulation, and tempo are each independently configurable.

In the operation stage, adjustments to any variable configuration may be made at any time to

affect the musical output of pitch material within pattern groups. As such, the user of the

program is free to manipulate an array of variable parameters, 'conducting an orchestra of

ideas and transformational processes' (Yavelow 1987, p.222).

2.2.3. Jam Factory

Jam Factory was developed by Davi] Zicarelli in 1986, and like M, the program is

based on the design/operation paradigm developed by Chadabe (Zicarelli 1987, p.13).

Similar to M 's four part patterns, Jam Fa, story implements 'four polyphonic sequencer

modules, called players, which the user "teaches" by playing MIDI data into them'

(Yavelow 1987, p.222). Each of the four players has a variety of controls for pitch, rhythm,

dynamics and articulation, implemented with both stochastic and deterministic processes.

Pitch and rhythmic controls for eacil player are stochastically based. Each player

`holds an input stream of pitches and durations, each with its own set of transition tables'

(Zicarelli 1987, p.23). 'The transition table is a way of storing the probability that a certain

action happened given some number of preN ious actions' (Zicarelli 1987, p.24)„ and allows

the computer to "improvise" on pitch and rhythmic materials stored in the table (Burns 1994,

p.114). The number of previous actions is referred to as an order. As an example with pitch,

in a 1st- order transition table the probability that one pitch will occur is based on the

occurrence of an immediately preceding pi g ch. In a 2nd-order table, the probability that a

pitch will occur is based on the occurrence of two preceding pitches. A 3rd-order 3 table is

based on the occurrence of three preceding pitches. Jam Factory allows 1st-order through to

4th-order transition tables.

22

• • • • • • • • • • • • • • • •

P1
0 Pct
	 Skip

Sus
Time :
1
0 Phase

IMap_

100%

	

50% 	

	

0 	1 Cycle	 1	 3	 4.
Fol Lead Start End Reset Pitch E:

quantl	 JI 	1 Dur

ISilenc7s71 Durations:

Figure 2.6 shows the controls for one of Jam Factory's four players, the graph in the

upper right referring to entries in transition tables. The darker portion of the graph refers to

pitch transition tables, the lighter portion to durations. Numerals beneath the graph refer to

the orders. The graph indicates that, for pitch. a 1st-order table will be used 25% of the time,

and a 2nd-order table used 75% of the time. For durations, a 1st-order table will be used 50%

of the time and a 2nd-order table used 50% of the time. The probabilistic processes for pitch

and rhythm control in Jam Factory are known as Markov chains, named after the 19th

century Russian mathematician, Andrei And •eievich Markov who conceived the process as

`a means by which decisions could be made based on probability' (Burns 1994, p.15).

Markov processes are further detailed in Chapter Five of this study.

Figure 2.6 Jam Factory, Player 1 settings

Durations in Jam Factory, apart from being controlled by transition tables, can be

stochastically controlled using the Silences algorithm shown in Figure 2.7. This algorithm

implements the same process as the Note-density algorithm in M, but in reverse, 'the

percentage is of silence, not playing' (Zicare [Ii 1987, p.25). More deterministic controls add

variety to a performance:

Skip, when enabled, causes the next note in the sequence from the transition tables to be
"thought of" when it isn't played (producing the effect of skipping a note in the melody).
Sustain, when enabled sustains any notes tl- at might be playing through a random silence,
giving the impression that the notes have a longer duration (Zicarelli 1987, p.25).

23

Silences
Pet
Skip
Sus

Velocity range

Articulation range

100% marker (Articulal ion)

Figure 2.7 Jam Factory, Silences algorithm

Similar to the variables and Cyclic variables in M, further algorithms within Jam

Factory allow combinations of stochastic and deterministic processes for control over

numerous musical parameters. The Velocity-range (dynamics) and Articulation-range

algorithms shown in Figure 2.8 allow settings for both of these parameters to be determined

as a singular setting, or can be set to include a range of values that vary randomly within a

chosen range. In Figure 2.8 the overall range of velocities is from 0-127. The bar graph is set

to include random velocities from an approximate range from '70 to 104, as indicated

graphically by the width of the grey rectangle. The articulation range is expressed as a

percentage from 0 to 800% of time between pitches, the small vertical marker on the border

immediately below the articulation range line indicating 100%. If the articulation range were

set deterministically as a singular value (by narrowing the width of the grey rectangle down

to a single line) from 100% to 100% (immediately above the 100% marker) the result would

be that each pitch would last the full duration until the following pitch. Higher percentages

result in overlaps of pitches (legato) and lower percentages result in shortened pitches

(staccato). The setting in Figure 2.8 is approximately between 20% and 60%, resulting in

staccato articulations within the set range.

Figure 2.8 Jam Factory, Velocity/Articulation algorithm

24

As in M, each algorithm in Jam Factc ry can be manipulated in real-time. The initial

input of pitches, chords and durations in each of the four players is subject to degrees of

variation depending on the player settings, the provided algorithms allowing the user to

interact with the four players as they "improvise" on the initial materials (Chadabe &

Zicarelli 1986a, p.3,1). The combinations of stochastic and deterministic algorithms in both

M and Jam Factory, along with their implementation using the MIDI specification, led to a

`phenomenal response' to the programs, the first time any effort at automated composition

had met 'with the slightest commercial success' (Ames 1989, p.175).

2.2.4. Symbolic Composer

Symbolic Composer was developed by Peter Stone of Tonality Systems, and is

described as 'a powerful modelling and development system suitable for all kinds of music'

(Morgan 1990b, p.4). The program implements an alpha-numeric interface which allows

symbolic and numeric expressions of musical parameters, and the manipulation of such

expressions:

with both common and experimental routines of composition... The software contains a full
set of mathematical, symbolic and conversion functions facilitating the creation of any
internal mathematical or symbolic model[s] and their mapping onto musical parameters
(Morgan 1990a).

Symbolic Composer's manual tutorials present a series of examples, the first of

which is presented in the following overview of the software, tutorials that methodically

expand in conjunction with skills gained by the user. While some examples in the numerous

Symbolic Composer tutorials may be considered as compositions in their own right, they are

didactic in nature and serve to expose the user to a small proportion of algorithms available

within the program. The full extent of the program's algorithmic capability is only visible

after considerable time spent with the tutorials, papers and a Hypercard 'stack' supplied with

the program (Sica 1994, p.108).

The philosophy of Symbolic C9mposer is that composition involves symbol

manipulation. In Western music notation, symbols are traditionally used deterministically to

represent musical parameters. With computer-based alpha-numeric languages, 'the meaning

25

that a symbol assumes can vary according to the representation to which it is bound' (Sica

1994, p.108). As an example, the symbols a b c and d may be mapped onto a C major scale-

based note series of C D E and F. Alternatively, these same symbols may map to a

chromatic-based scale of F# G G# and A. Similarly, symbols may be used to represent

rhythmic structures, for example abed may represent rhythmic values of 1/8 1/16 1/16 1/4,

or 1/4 1/4 1/8 1/8. Simple representations such as these form the basis of Symbolic

Composer's system of mapping symbols to musical parameters. A process of conversion

provides an ability to 'transform one representation into another without loss of meaning in

the data (i.e. converting a symbol pattern into a numerical pattern or vice versa)' (Sica 1994,

p.108).

A wide variety of stochastic and deterministic algorithms within the program allow

symbolic representations to form the seeds of a musical composition. The processes of

mapping and conversion are used to 'generate, process, analyse and reprocess any kind of

object' (Sica 1994, p.108). Generators, for example, allow symbolic and numeric patterns to

be generated using a variety of processes including recursive, fractal- and random-based

algorithms, while processors allow various transformations of symbolic and numeric

patterns such as retrogrades and inversions. Further functions within the program include

Artificial Intelligence-based neural networking facilities, libraries of symbol patterns, chords

and scales and a 'Visualizer' which presents visual interpretations of symbolic and numeric

data.

Figure 2.9 is a Symbolic Composer 'score' taken from the manual (Thomas &

Morgan 1990, pp.102-03), and provides an overview of the Symbolic Composer layout.

Alpha-numeric data is presented in chunks, enclosed in parentheses according to LISP

syntax rules. Each chunk in the example represents a definition of symbolic or musical

parameters, and the order of the chunks has its own particular logic:

variable structures
instrument definitions
tonality mapping definitions
compilation instructions
timesheet
(Thomas & Morgan 1990, p.103).

26

; tutorial example 1 - mctestl

(setq symbols '(abcdefg))

(def-instrument-symbol
testl symbols
test2 symbols
testa symbols
test4 symbols

(def-instrument-length
default 1/16

(setq tonals (activate-tonality chromatic c
6) (plues1 c 4)))

(compile-song "cc1;output:" 1/4 :;eparate

; BARS
changes tonals
testl	 changes
test2	 changes
test3	 changes
test4	 changes

I- - I - - - I	 -

A semicolon at the start of a line disables any compilation of information on that line,

enabling the user to write in memos, titles, guides etc. that are not required for the running of

the program.

Figure 2.9 Symbolic Composer, Tutorial example (Thomas & Morgan 1990, pp.102-3)

The first chunk (setq symbols i(a b c de f g)) ' is a variable structure and

simply defines a set of symbols used within the example. The defined symbols at this stage

could apply to any number of musical parameters such as pitch, rhythm or dynamic level.

The activation of symbols is incorporated within later chunks that define separate parameters

individually. The function setq allows a variable to be created. The word symbols is user

defined and may be any word. If the defined symbols are applied to pitch, the word used can

refer to the symbols' control over that parameter: the word melody for example, would be

appropriate. While the Figure 2.9 chunk defines a single symbol pattern, any number of

27

(def-instrument-length
testi '(1/8	 1/16 1/16)
test2 '(1/16)
testa '(1/4	 1/4 1/8	 1/8)

test4 '(1/2	 1/4)

symbol patterns can be defined with the setq variable, allowing, to follow the previous

example, definitions for a melodyl, a melody2, a me 	 etc. Each definition may have a

different symbol pattern, as shown in Figure .10.

Figure 2.10 Symbolic Composer, Alternative symbol patterns

(setq melodyl '(abcdef g)
melody2 '(hijklm n)
melody3 '(azbycx d)

The second chunk in Figure 2.9 defir es a name for each instrument (in this example

instrument names are replaced with tes1 1 through to test4) and a symbol pattern

associated with each instrument's pitch structure. While each of the four instruments in

Figure 2.9 uses the same symbol pattern, instruments can adopt any defined symbol pattern.

For example, if the symbol patterns defined in Figure 2.10 were used, testi could be

assigned to either melodyl, melody2 or melody3.

The third chunk in Figure 2.9 defines the rhythmic material of the example. Here the

rhythmic unit is a 1/16th note value. The word default is a shortcut to defining the 1/16th

note value for all four instruments, saving the user the more lengthy writing of each

instrument name and its corresponding rhyth nic unit. Instruments are not limited to singular

rhythmic values, as they are in Figure 2.9 but may have multiple rhythmic values and

differing rhythms from other instruments, as shown in Figure 2.11.

Figure 2.11 Symbolic Composer, Alternative length patterns

28

chromatic c 6

a	 b	 c

bluesl c 4
a	 b	 c	 d

•2
•

The fourth chunk in Figure 2.9 defines the variable tonals which describes a

particular tonality consisting of two separate scales: a chromatic scale starting on the C one

octave above middle C (middle C in Symbolic Composer is defined as c 5) and a blues scale

starting on the C one octave below middle C, (c 6 and c 4 respectively). The function

activate-tonality calls up the two scales from Symbolic Composer's pre-defined scale

library.

At this stage of the Symbolic Composer score, the defined symbols (abcdef

g) are mapped to either the blues scale or the chromatic scale with a continuous 1/16th note

rhythm, as shown in Figure 2.12. Where there are more symbols than scale pitches, Symbolic

Composer restarts the scale up one octave as shown with the blues1 scale and the symbol g

in Figure 2.12..

Figure 2.12 Symbolic Composer, Symbol to pitch mapping

The fifth chunk in Figure 2.9 begins with directions for storing MIDI files on

compilation of the score. In this example, i he MIDI file will be stored in a folder named

`output'. Next in the chunk is a Symbolic Composer timesheet that shows when each

instrument plays or is muted. The vertical and horizontal lines within the timesheet represent

time periods according to a defined resolution which is stated after the previous compilation

directions. In this example this resolution is 1/ 4, indicating that each line within the

timesheet lasts for a 1/4 note duration. The vertical lines in the timesheet represent the first

29

test 1

test 2

test 3

test 4

1/4 note in measures of 4/4 time, the following three horizontal lines represent the remaining

three 1/4 notes in each measure. An absence of lines (i.e. blank space) indicates muting of

instruments. With the previous rhythmic definition of 1/16 for each instrument, each line in

the timesheet will represent a statement of four 1/16th notes. The result of the fifth chunk is

that testi plays four semiquavers on the first beat of the measure, test2 plays four

semiquavers on the second beat, test 3 plays on the third beat and test4 on the fourth.

The word changes is a variable that relates to the two scales defined in tonals. This

variable functions between the double quotation marks that follow the words changes

tonals. The period marks, which in Figure 2.9 occur in relation to the second and third

beats of the 4/4 measure, indicate where changes occur from one scale to another, whilst

blank spaces, which occur on the first and fourth beats, indicate that no change of scale

occurs on those beats. In Figure 2.9 the initial tonality is the chromatic scale, the first scale

defined in the previous chunk. The first change point occurs on the second beat of the

measure and activates the blues scale. The second change point occurs on the third beat and

returns the tonality to the chromatic scale. The blank space on the fourth beat indicates that

the chromatic scale remains in use. Figure 2.13 shows the result of the example in common

notation.

Figure 2.13 Symbolic Composer, Output in common notation

30

Stochastic and deterministic algoritims available within Symbolic Composer are

applied to musical parameters by inserting algorithms as alpha-numeric data into the chunks

that define individual parameters. Within the program:

music can be expressed as anything that can)e presented by data or algorithms; an atom, a
genetic code, the planetary system, temperature curves, stockmarket figures, program
structures, language constructs, mathematical functions, theories, brain waves, text or any
other information that can be interpreted as data or algorithms by a computer (Thomas &
Morgan 1990, pp.45-6).

`In short, this is a program for transforming any kind of data or algorithm into a musical

structure' (Sica 1994, p.108).

2.2.5. MAX

MAX was initially developed in 1986 by Miller Puckette at the Insitut de Recherche

et de Coordination Acoustique/Musique (IRCAM) in Paris. 'Originally developed as a non-

graphical language intended to control IRCAM's powerful 4X synthesiser, MAX was later

implemented as a graphical environment for MIDI on the Macintosh' (Dobrian 1990a, p.1).

The program was prepared for commercial release by David Zicarelli for Opcode Systems in

1990. MAX is based on object-oriented programming languages, 'in which programs are

realized by manipulating graphic objects cn a computer screen and making connections

between them' (Rowe 1993, p.25). Object-oriented programming languages (OOP)

originated with the programming language SIMULA in the 1960s and were subsequently

developed in the early 1980s with the programming language SMALLTALK (Blaschek

1994, p.11). Object orientation:

is a programming discipline that isolates computation in objects, self-contained processing
units that communicate through passing messages. Receiving a message will invoke some
method within an object. Methods are constituent processing elements, which are related to
each other, and isolated from other methods, by virtue of their encapsulation in a
surrounding object. Depending on the process executed by a method, a message to an object
may enclose additional arguments required by that process as well (Rowe 1993, p.26).

Whilst MAX has an object-oriented programming language basis, it does however

lack the object-oriented programming concept of inheritance, 'by which objects can be

defined as specializations of other objects' (Rowe 1993, p.26).

31

Unlike M, Jam Factory and Symbolic Composer, which are programs that offer the

composer numerous pre-defined algorithms, MAX is a development program that allows the

user to create his or her own algorithmic processes to manipulate numerical data. Within the

program:

a composer specifies a flow of MIDI or ether numerical data among various objects
representing such operations as addition, scaling, transposition, delay etc. A collection of
interconnected objects is called a patch (Row.: 1993, p.26).

As a development program, MAX represents a middle-ground between commercially

available composition software and the composer/programmer paradigm. With the relatively

clear programming language and the ease o r programming offered, composers using MAX

are able to design algorithms based on scientific and mathematical principles, and use the

output of such algorithms as MIDI data. The following MAX patches illustrate the

programming style used in MAX and show the manner in which a simple patch for pitch

transposition (Figure 2.14) can be expanded to incorporate delays and harmonisation (Figure

2.15).

Figure 2.14 shows a MAX patch that transposes music played on a synthesiser. The

notein object receives, via a Macintosh serial port from an external MIDI device, MIDI

note-on data (a pitch value and a velocity value). The notein object sends the pitch value out

an outlet which is represented by the black portion on the bottom left of the object, and sends

the velocity value out the middle outlet. If a middle C were played on the synthesiser at a

moderately loud dynamic level, the actual MIDI information received by the notein object

would be: 60 64 60 0, wherein the first two numbers represent the pitch value of middle C

(60) and the velocity of 64 in the MIDI scale of 0-127. The second two numbers indicate

MIDI note-off information, transmitted when the middle C pitch is released, wherein the

velocity value for middle C (60) is zero. The note-on data (60) is then received by the +

object which in this patch is set to add 7 to any incoming data, thus changing the 60 to 67. In

terms of pitch, the + object transposes the middle C note up seven semitones to the G above

middle C. This new pitch value is then sent out the + object outlet.

32

The noteout object works in the same way as the notein object but in reverse. It

transmits data it receives to a serial port of the Macintosh and then on to an external MIDI

device. The inputs to the object are like the outputs of the notein object, the left input

receives pitch data to transmit to the synthesiser, the middle input receives velocity data. In

Figure 2.14 the velocity values are transmitted directly from the notein object to the noteout

object without change.

Figure 2.14 MAX, Simple patch for note transposition

notein

noteout

Figure 2.15a shows a patch that functions in the same way as the Figure 2.14 patch

but is expanded with three sub-patches. Sub-patches in MAX are embedded in a main patch

and are defined by the user with the MAX patcher object. A sub-patch may contain any

number of objects. The content of the first two Figure 2.15a sub-patches is shown in Figures

2.15b and 2.15c. In Figure 2.15a, pitch data is passed simultaneously to the noteout object, as

shown by the direct lines (connections) from the notein objects pitch and velocity outlets to

the noteout objects pitch and velocity inlets, and also to the sub-patcher objects labelled

patcher 3rd, patcher 5th and patcher 8va. For clarity, the pitch data connection from the notein

object to the patcher 3rd object is shown in bold in Figure 2.15a. The; direct connections from

the notein to the noteout signify that pitch data sent from the synthesiser will be passed

through MAX via notein and noteout and returned to the synthesiser without change. This

same pitch data is also sent to inlets of the sub-patcher objects via branching connections

from the notein object, and is processed by further objects within the sub-patchers.

33

Figure 2.15a MAX, Patch with sub-patches

	 —4
01Velocity

patcher 8va

Note
	 Velocity

patcher 3rd 1 ipatcher 5th

At the top of Figure 2.15b there are two MAX inlet objects (with shaded downward

triangles) that correspond to the two inlets o r the top of the Figure 2.15a subpatcher object

labelled patcher 3rd. The left inlet object receives pitch data sent from notein while the right

receives velocity values. The +4 object in the patcher 3rd sub-patch functions in the same

way as the +7 object in Figure 2.14, except that pitch data is transposed up 4 semitones (a

major 3rd) instead of the 7 semitone transposition of the former patch. The direct connection

from the +4 object to the left-most outlet object (with a shaded upward triangle) signifies that

the transposed pitch will sound simultaneously with the original pitch passed from the notein

to the noteout in the main (Figure 2.15a) patch. This results in a harmonisation of the original

pitch played on the synthesiser (if C were phyed, an E above would be added). The Figure

2.15b sub-patch also serves a second purpose by sending the pitch data received by the sub-

patch to a MAX pipe object. The pipe object delays data it receives by a number of

milliseconds specified by the user. In Figure 2.15b this delay is of a 250 millisecond

duration. From the pipe object outlet, the delayed pitch data is sent to the sub-patcher's outlet

object and then, in the main patch, to the note)ut object. Velocity values that enter the patcher

3rd sub-patch take two paths. They are passed from the sub-patcher "s inlet object directly to

the outlet object to correspond to the non-delayed notes that pass through the sub-patch, and

are also sent to a pipe object, to correspond o delayed pitch data. The presence of the pipe

object in the velocity data path ensures that each pitch value entering the sub-patch retains a

positive velocity signifying a MIDI note-on message, and a zero velocity signifying a MIDI

note-off message.

34

pitches from patcher 8va

•

,fir.'
-

MMUINIMIr

original pitch pitches from patcher 3rd 	 pitches from patcher 5th

The Figure 2.15c sub-patch functions in the same way as the Figure 2.15b sub-patch

with the exception of the transposition value which transposes incoming pitch values up

seven semitones (perfect 5th), and the delay value which delays a pitch value by 500

milliseconds or a half second. The third sub-patch (patcher 8va) in Figure 2.15a again

provides the same function, but transposes pitch values up 12 semitones and delays pitch by

750 milliseconds. Figure 2.15d shows, in common notation, the result of playing a single

middle C on a synthesiser and routing the MIDI data through the Figure 2.15a patch.

Figure 2.15b MAX, Transposition patch (patcher 3rd)

Figure 2.15c MAX, Transposition patch (patcher 5th)

Figure 2.15d MAX, Patch result

35

The preceding patch examples illustrate a working methodology in MAX, the user

specifying where data arrives from in each pz tch with a MIDI object such as notein or, in the

case of sub-patches, from connections made to the sub-patch inlets, Combinations of MAX

objects within patches and sub-patches then allow the user to develop a wide variety of

stochastic and/or deterministic processes w [th which incoming data can be manipulated.

Within the MAX environment there are over 200 low-level objects (like the + and pipe objects

shown above) that the composer uses to extend the musical capabilities of the software 'to

higher levels of abstraction which permit larger scale musical concepts to be realised'

(Henderson-Sellers & White 1996a, p. 1). Use of further MIDI objects such as noteout allows

manipulated data to exit the program to a MIDI device. Developed patches can be saved

either as MAX documents or within a stand-alone application that combines a MAX reader

called MAXPLAY with user developed patches.

Unlike the small amount of literature concerning the software programs of M, Jam

Factory and Symbolic Composer, document.ition on MAX is extensive. Many users of the

program publish their work with the progrim in journals, for example Lindsay Vickery

(Vickery 1996, pp.9-10) and Stuart Favilla (Favilla 1996, pp.27-9) in a recent Sounds

Australian Journal, whilst the patches they develop are regularly made available for

downloading from the internet, for exam-)le Henderson-Sellers and White with their

LorenzSA MAX patch (Henderson-Sellers & White 1996b). For the purposes of this study,

the preceding discussion of MAX suffices to provide an overview of the program, whilst in

Chapter Eight, a more extensive discussion of MAX objects and functions is given in the

context of the Phrase Garden program that v∎ as developed with MAX.

2.3. Related Literature

Literature pertaining to historical and technical aspects of algorithms used in music is

broad, drawn from a diverse array of both primary and secondary sources. In the

examination of any one algorithm, various sources provide firstly, the historical background

of an algorithm, secondly, technical descriptions of an algorithm's application within

mathematical or scientific contexts, and thirdly, applications of an algorithm within musical

36

contexts. As an example, the historical background of Markov chains is documented in

numerous sources (Ames 1988; Borowski & Borwein 1989). Markov applications in

mathematical and scientific contexts are documented in a wide variety of fields, for example,

from geography (Collins 1975) through to computer sciences (Knuth 1973). Within the

composer/programmer paradigm, documentation of musical applications of Markov

processes are similarly varied (Ames 1988; Dodge & Jerse 1985; Hiller 1970; Jones 1981;

Olson & Belar 1961; Pinkerton 1956; Xenakis 1971). In the following chapters, numerous

citations of literature in this area provide relevant historical and technical backgrounds to

specific algorithms used within the example works provided in this study.

2.4. Summary

While many applications of algorithms have been documented from within the non-

commercial composer/programmer paradigm, literature pertaining to algorithms within

commercially available composition software is limited to documentation of software

specifications by software authors, and reviews such as those summarised in the previous

software overviews. Specific applications of algorithms are limited to didactic examples

provided within software programs. In the tutorials of both M and Jam Factory the

applications of inherent algorithms are limited to 'guided tours' of the software programs,

the results of which are ultimately defines by the user, while in Symbolic Composer's

tutorials the example works, though they resemble complete compositions, are essentially

didactic works that guide the user toward the skills necessary to operate the software.

Conversely, the documentation provided with MAX gives over 40 tutorials in which

many of the program's objects are discussed at length, while the reference manual for the

program provides examples for each MAX object. MAX is, however, a development program

and whilst MAX's low-level objects are ext3nsively detailed in the manuals, higher level

abstractions (i.e. algorithms built from these objects) fall more into the category of the non-

commercial composer/programmer paradigm, with composers detailing their individual

work with MAX in journals, monographs and via the Internet.

37

PART TWO

CHAPTER 3 — METHODOLOGY

3.1. General Methodology

In each of the example works cornpsed for the study, algorithms were selected

according to specific requirements of the individual compositions. In general, the algorithms

selected are in accord with pre-defined guidelines for musical parameters and/or

programmatic associations developed for each work.

The four example works are discussed individually in separate chapters, each chapter

providing a compositional overview that details pre-defined musical and programmatic

materials employed in each work. Following the compositional overviews in each chapter

are sections detailing compositional structures. These sections are comprised of sub-sections

detailing pitch and rhythmic structures used in each work, and a sub--section detailing timbre

when the example works are in an electronic or electro-acoustic format. Where applicable,

further sub-sections are given to cover details of compositional structures not provided in the

pitch, rhythm or timbre sub-sections.

Following the sections on compositional structures in each chapter are sections

detailing the applications of algorithms within the example works. In these sections are

examinations of the specific algorithms used in each work, incorporating historical and

technical aspects of algorithms, and the applications of algorithms in the contexts of the

example works. In Chapters Four and Five, interactive software programs are used in the

composition of the example works, sub-sections within these chapters detailing deterministic

algorithms, stochastic algorithms and 1 he applications of algorithms in real-time

respectively. In Chapter Six, algorithmic composition software is used in the composition of

the example work. In this chapter, the section detailing the applications of algorithms is

comprised of sub-sections detailing grammar-based algorithms and chaos-based algorithms

respectively.

Chapter Four of the study provides an examination of the work composed with M, an

electro-acoustic work entitled Study for Tri2ngles, Chapter Five provides an examination of

the work composed with Jam Factory, an electronic work entitled Ètude in Memoriam Allan

38

Dagg, and Chapter Six provides an examination of the work composed with Symbolic

Composer, an acoustic work entitled Descendant Lines.

In Chapter Seven the personal compositional style employed in the initial three

example works is discussed, and brief analyses of two instrumental works composed without

computer assistance are given. The analyses are used to demonstrate incompatibilities

between composition processes available in commercially available software and those used

in the compositional style. Chapter Eighi details the Phrase Garden program and

demonstrates the manner in which MAX is used to develop this program to be closely

aligned with the compositional style employed in the two instrumental works analysed in

Chapter Seven. Chapter Nine provides an ex tmination of a work composed with the Phrase

Garden program, an acoustic work entitled When Cinderella's Monkey Comes Here, I'll

Feed Him. Chapter Nine is structured in the same way as Chapters Four, Five and Six,

providing an overview of the example work, a section on composition structures and

sections detailing the application of algorithms in the composition of the work.

3.2. System Configuration

The system used for the development of the four example works is shown in Figure

3.1. This is a simple MIDI-based system centred on an Apple Macintosh computer, software

for the Macintosh platform, and various de‘ ices for sound output and printing. The software

component comprises the interactive composition programs M, Jam Factory and Phrase

Garden, the algorithmic composition program Symbolic Composer, the development

program MAX, Vision, a sequencer used for playback and editing of MIDI data, Finale, a

notation program used for printed output of acoustic instrument parts, and MIDIQuest, a

MIDI patch editor/librarian program used for the development and editing of MIDI

instrument patches. For sound output, two external hardware devices for the generation of

FM (Frequency Modulation) synthesised sound are employed (Chowning 1973), and

combined with a sampling module. Final sound output is controlled with a digital effects

unit, a mixing console, and amplification.

39

Amplifier

MAX

Phrase Garden

M

Jam Factory

Symbolic Coniposer

Vision

Finale

MIDIQuest

Sampler Sound Module

Interface

Synthesiser

LIAM

Mixer
Effects

MIDI
I	 I

Printer

This configuration forms a fundamental MIDI system, a minimum in regard to

developing works with automated composition systems, and is accessible on a relatively

small budget (Yavelow 1992, pp.241-4). Whilst it is a fundamental configuration, it

represents the core of more sophisticated and expensive systems, systems in which

interactive and algorithmic software are used to control composition processes, and systems

in which various types of sound synthesis and sampling modules are employed for sound

output. As such, this fundamental configuration is familiar to composers using automated

composition systems, from those with similar configurations in small-scale home studios to

those with access to more sophisticated systems.

Figure 3.1 System configuration

40

CHAPTER 4 — M -- Study for Triangles

4.1. Overview

The Study for Triangles (Track 1 on the accompanying audio CD) was initiated after

simple sound editing experiments were carried out on two triangle samples. The results of

the initial experiments yielded a variety of timbres that were conceived of as the basis for a

study featuring triangle samples in combinai ion with acoustic triangles, in which triangle

samples could be manipulated in real-time and used for live performance interactions with

quasi-improvised textures produced by a set of three acoustic triangles. Various timbral

possibilities arising from combinations of samples and acoustic triangles resulted in the

formation of a three part form (A B C) for the work, each section focusing on differing

timbral possibilities available within the ensemble.

Within the short gestation period of the work, various aspects of triangles in general

were considered, leading to an incorporation of simple triangle theorems into pitch and

rhythmic structures devised for the work. Based on the Pythagorean Holy Tetractys (shown

in Figure 4.1), pitch structures used for the edited triangle samples are visually

complemented in live performance by the equilateral shape of the acoustic triangles, while

the edited samples are complemented by rhythmic structures derived from Pythagoras'

theorem on the right-angle triangle.

The Study for Triangles in general represents a simple work. However, the realisation

of the work in live performance requires the implementation of numerous algorithms, both

deterministic and stochastic, that enable real-time processing and transformation of the pre-

defined musical materials. Using the interactive M software, pitch and rhythmic sequences

for the composition are stored in the program in a design stage, while in the operation stage,

algorithms are called upon for real-time transformation and processing of the pre-defined

sequences. The following sections describe the pre-defined materials used in the work, and

the manner in which the materials are define .I and stored in M.

41

•	 •	 •

4.2. Composition Structures

4.2.1. Pitch structures

Pitch structures within the Study for Triangles are initially derived from the

Pythagorean Holy Tetractys, a vertical arrangement of the numeric sequence 1 + 2 + 3 + 4,

as shown in Figure 4.1. This numeric sequence is taken as a basis for an interval sequence

using semitones, and results in a five note sequence of C C# D# F# A#, wherein C-C# is an

interval of one semitone, C#-D# is an interval of two semitones, D#-F# is an interval of three

semitones, and F#-A# is an interval of four semitones.

Figure 4.1 Pythagorean Holy Tetractys

Further pitch generation from the note series is derived from Pythagoras' equation

for the right-angle triangle: m 2 +14(m 2 -1)1' = {+(m2 + 1)} 2 , wherein in is any odd number

other than one. In keeping with the simplicity of the work, m was assigned the number 3, the

smallest odd number other than one, and results in the numerics 3, 4 and 5 as the square

roots of the numbers generated in the equation. With the five note series derived from the

Holy Tetractys, the number 5 is used as a basis for a note matrix containing 25 notes, as

shown in Figure 4.2. The penultimate four notes of this matrix are taken as the starting point

of a second matrix based on the number 4 and generating 16 notes. The penultimate three

notes in this second matrix form the start of a third matrix based on the number 3 and

generating nine notes. The three matrices provide all note material employed within the

42

work, the nine-note matrix used in the opening A section, the 16-note matrix used in the

central B section and the 25-note matrix used in the final C section.

Figure 4.2 Study for Triangles, Note matrices

A# B C# E

B CD F

C# D E G

E F G A#

E F G

F Gb Ab

G Ab Bb

C C# D# F# A#

C# D E G B

D# E F# A C#

F# G A C E

A# B C# E G#

Pitch materials used in the Study for Triangles are, in the design stage, stored in M as

three separate patterns, one pattern for each of the three main sections of the work. Notes

from each matrix are entered sequentially into a pattern and result in a cyclic iteration of

notes from the upper left to the lower right of each matrix. Within M, representation of

stored pitch is in the form of a piano scroll and grid. Figure 4.3 shows the M piano scroll

containing the nine notes from the A section matrix, each inverted (blacked out) square

indicating the tessitura placement and the sequence of individual pitches. The indication C3

denotes middle C.

Figure 4.3 Study for Triangles, Piano scroll, nine-pitch series

gra +
.._....

3	 V
-, ;	 i	 i.:,	 .:.	 „IMF

— •		 •	 :.	 ••	 f	 •A NIIII—
A
...	 ,;	 A

MIIIM---1 :.	 ;	 .:. ■.....
...3111111F-•N

111111- EN
NM- ow ;	 i•
MN—,

•:.
'''	;:-.1......i.--	

........

C3 1.1.—' ': a'i o:VIII—

ONO +AI
_

All

43

4.2.2. Rhythmic structures

Rhythmic structures within the electronic part of the Study for Triangles are, like the

note matrices, derived from the Pythagorean equation for the right-angle triangle, and based

on the numbers 3, 4 and 5. Within the work, these numbers are initially applied as

subdivisions of a 4/4 meter, as triplet, straight, or quintuplet rhythmic values. In the design

stage of the Study for Triangles, rhythmic values are assigned within M with a Time-base

algorithm which allows the setting of rhythmic values using numerator and denominator

values, as used in standard time signatures. Figure 4.4 shows the numerator/denominator

settings for M's four parts in the opening section of the work, and the resulting rhythmic

values in common notation. Part 1 contains 1/15th notes, in effect representing quintuplet

subdivisions of 1/2 note triplets, Part 2 con . ains straight 1/8ths, Parts 3 and 4 contain 1/2

note triplets.

Figure 4.4 Study for Triangles, Time-base algorithm and resulting music notation

15:16 	

lirrrrrLrrrrLzrrr
r	 r	 r 	 r
	 3 	

1 115

1 18

1 I 3

1 1 3

Further definitions and manipulatio is of rhythmic materials are carried out with M's

editor for Cyclic variables. Within the rhythmic editor of the Cyclic variables, the numerator

value set within the Time-base may be multiplied or divided by any of five separate values

using the editors multiplier vertical array. Figure 4.5 shows the Cyclic editor rhythm settings

for the opening section of the work with he multiplier vertical array settings in the upper

44

4

2 i
1

4 f:	 : : : : : : : : 4:	 :	 : 3	 :	 :	 :	 :	 :	 :	 :	 :	 : 3:	 .	 :	 :	 : 2	 :	 	 2
0	 :	 :	 :	 :	 :	 :	 :	 :	 : 0

1 2 3 4 5 6 1 El 910111213141516

4

	

3 2	 :

	

3	 :	 4 I: :	 :	 :	 :	 :	 :	 :	 :	 2
1
0	 :	 :	 :	 :	 :	 :	 :	 .	 . 0

1 2 3 4 5 b 1 B 910111213141516

:	 :	 :	 :;	 :
:	 :	 :	 :	 .	 :	 3
;	 :	 :	 :	 : 2.	 .	 . • 1

2 3	 5 b 1 B 910111213141515

: 4. 3
:
: 1. 0	 :	 0

1 2 3 Li 5 El 1 B 9 1011121314151E1

:	 : 	 :	 :	 :	 :	 :	 :	 :	 .	 :	 .
•	 •	 •	 •	 :	 •	 :

: 	 • 	 • 	
:	

:	 : 	 :	 :	 :	
::	 ;	 ;	 ;	 ;	 ;

:	 •	 •

43
2
1

5
4
3
1

0.5

15:16 	
Voice 1

Voice 2
	

77-77	 77-7-7

VV. 3/4	 r

right of the Figure. In Figure 4.5a the result] ng rhythmic durations are shown in common

notation: Part 1 is set to correspond to the Time-base, position 1 in the multiplier vertical

array corresponding to the Time-base numerator. Parts 3 and 4 have multiplications of the

Time-base numerator, the multiplier vertical array position 4 indicating the multiplication of

the numerator value by 5. As the Time-base denominator for Parts 3 and 4 is a triplet value,

the results of the Cyclic editor settings are durations of five 1/2 note triplets. Part 2 is

assigned three different settings of its Time-base 1/8th value. In the Cyclic editor matrix for

Part 2, the left to right order of the settings results in sequential durations equal in length to

four x 1/8th notes, five x 1/8th notes, three x l/8th notes and five x 1/8th notes.

Figure 4.5 Study for Triangles, Cyclic editor. Section A

Figure 4.5a Study for Triangles, Cyclic editor result in common notation

45

5
4
3
1

0.5

1 116

1 110

1 1 3

1 I 3

4: :	 :	 :	 : 	 :	 : 	 :	 :	 4:	 :	 :	 .	 .
3 	 :	 :	 :	 •	 •	 3

0	 •	 .	 . :	 :	 :	 :	 :	 :	 :	 •	 0
1 2345610910111213141516

:	 :	 :	 :	 :	 :	 :	 :	 :
.	 2:	 :	 :	 :	 :	 :	 :	 : 1:	 :	 :	 :	 :	 :	 :	 •

12345510910111213141516

43
2 21

%Mb
/111/MI
11111h1111

LI 	 :	 :	 :	 :	 :	 :	 :	 :	 :	 :

0	 : :	 :	 :	 :	 :	 :	 :	 :	 :
1 2 3 LI 5 6 1 B 910111213141516

.	 :	 :	 :	 :	 :	 :	 :	 :	 ::	 :	 :	 :	 :	 :	 .	 :	 .
4 5 6 1 B 9 10 1112 13 14 15 16

10

44

:	 :	 :	 :	 :	 : 4:	 :	 :	 :	 :	 : 	 343	 :	 :
1	 :	 :
a

1 2 3 4 5 6 1 B 9 10 1112 13 14 15 16

	

4 2	 • •
4

	

3	 :

	

1	 : a	 :	 :
1 2 3 4 5 6 1 0 9 10111213141516

:	 :	 :	 :	 :	 :	 :	 :	 4

4
1 2	 : :

	

o	 .:.::::::::a
6 1 8 9 10 1112 13 14 15 lb
:	 : 	:	 :	 :	 :	 :	 :	 : 3• 21	 . :	 :	 •	 •	 •	 •	 •	 -

a	 .:...::::::::::a
1 2 3 4 5 6 1 B 9 10 1112 13 14 15 16

1 2 3 4 5
4: :3 	 :

2, 2	 • •

1 120

2 I 3

111

1 1 4

5
4
3
1

0_5

 3

The Cyclic editor settings for the central section of the Study for Triangles are

identical to those in the opening section, however the Time-base settings in Parts 1 and 2 are

altered and result in an entirely different set of rhythmic values in i hose parts. In the final

section of the work, both the Time-base and Cyclic editor settings are altered. Figures 4.6

and 4.7 show the Time-base and Cyclic editor settings for the sections.

Figure 4.6 Study for Triangles, Time-base, Cyclic editor settings, Section B

Figure 4.7 Study for Triangles, Time-base, Cyclic editor settings, Section C

46

4.2.3. Timbre

The Study for Triangles is primarily a study based on timbre, the timbres available

from the three acoustic triangles complement ing timbres developed for the electronic part,

and the three sections of the work each exploring the various timbral possibilities available

with the combination of acoustic and sampled triangles. Timbres in the electronic part, as

previously mentioned, are derived from two triangle samples, edited to provide four distinct

timbres. Each timbre is complemented with a similar or contrasting timbre by the acoustic

triangles:

Timbre #1 — a sample of a normally played triangle transposed to a low

register to give gong-like timbres. This timbre is complemented in the

acoustic parts with the swinging of the triangles in full circles, resulting in a

doppler effect in which apparent changes of pitch are produced by the

triangles' rapid movements toward and away from a stationary audience.

Timbre #2 — the normally played triangle sample is reduced to the initial

attack portion of the waveform, resulting in a staccato attack with minimal

sustain and decay. This timbre is complemented with a similar staccato attack

in the acoustic parts, achieved by dampening the triangles with the hand.

Timbre #3 — The reverse of the above sample, contrasted with the normal

playing of the acoustic triangles.

Timbre #4 — A sample of the triangle when scraped with the beater,

complemented with the scraping of the acoustic triangles.

The various combinations of the acoustic and electronic timbres dictate the overall

form of the work. The opening A section focuses on Timbres #2 and #3, the central B

section focuses on Timbre #4 before combinations of Timbres #2, #3 and #4 are presented,

and the final C section focuses on Timbre #1 before combinations of all four timbres are

presented. The following table specifies tl-e allocation of the four parts within the three M

patterns for sections A and B (both use the same timbres), and section C of the work to the

above timbre numbers.

47

Table 4.1 Study for Triangles, Timbre to part allocation

Pattern Group a and b 	 (sections A and B)

Part 1 Timbre #2 (attack only portion of sample)

Timbre #2 (attack only portion of sample)

Timbre #3 (reverse sample)

Timbre #4 (scrapalsample)

(section C)

Part 2

Part 3

Part 4

Pattern Group c

Part 1 Timbre #2 (attack only portion of sample)

Part 2 Timbre #1 (normal triangle sample)

Part 3 Timbre #3 (reverse sample)

Part 4 Timbre #4 (scraped sample)

4.2.4. Acoustic triangle parts

Instrumental parts within the Study for Triangles were not composed with the aid of

composition software, but were notated using the software notation program Finale (refer to

Appendix 1 for the notation of the parts and performance notes). Quasi-improvised textures

within the acoustic parts are achieved with the freedom given to the performers in their

tempi (MM 1/4 = 76-96 is given as a guide only), the specification in the performance notes

that 'synchronisation of parts within the score is unnecessary throughout the piece' and the

indication to repeat any material within a system freely.

As in the rhythmic materials used the electronic part, the rhythmic materials in

the acoustic parts are based on the numbers 3, 4 and 5. In the opening section of the work,

the acoustic parts are numerically based on groups of rhythmic attacks. In each part, attack

groups based on one of the numerics 3, 4 or 5 are presented in each system, the three

numerics presented simultaneously by all ihree parts in each of the section's three systems.

In the opening system the six-inch triangle presents attack groups of 5, the eight-inch

triangle presents groups of 4 and the 10-inch triangle presents groups of 3. In the first system

of the central (B) section, the numerics are assigned as multiples of 1/4 note durations (1/4 =

48

1), the numeric 3 equalling a dotted 1/2 note, the numeric 4 equalling a whole note, the

numeric 5 equalling a whole note plus a 1/4 r ote. The remainder of the work simply applies

combinations of attack groups and multiples of 1/4 note durations.

4.3. The Application of Algorithms

4.3.1. Deterministic algorithms

With the exception of Note-order and Note-density algorithms, algorithms employed

within the Study for Triangles are deterministic, that is, where algorithms (for example the

Cyclic variables) can use either random or deterministic processes, purely deterministic

processes are employed. The primary algorithms in this deterministic category are the Time-

base/Cyclic variables rhythm editor as described above, the Transposition algorithm, the

Legato algorithm and the Accent algorithm. The purely musical nature of these algorithms

precludes an historical account. However, in the following discussion, technical aspects of

the three latter algorithms are covered, along with their applications in the context of the

work.

The Transposition algorithm sets the pitch of each part in a pattern. Within this

algorithm pitch is defined in relation to middle C. If a pitch pattern begins with an E, as in

the first note matrix in the work, setting the Transposition algorithm to C3 (middle C) will

result in the pattern beginning with E, (i.e without any transposition). Increments in the

algorithm are by semitone and octave (either down or up). Throughout the Study for

Triangles only octave increments are used so that the original pitch structures derived from

the Pythagorean theorems are retained. Figure 4.8 shows the Transposition algorithm

settings for the three sections of the work as they appear in miniature on the main screen,

and as they appear in the variable editors.

49

A B C
Trans-

position

/ Transposition /
Note Octave I'll'

1 C	 4 Pattern a (Section A)
C	 22 Middle C = C3

3 C	 1 (No Transposition)

4 C	 1

/ Transposition /
Note Octave II MEN

1 C	 3
2 C	 3 Middle C = C3 Pattern b (Section B)
3 C	 i (No Transposition)

4 C	 2

Pattern c (Section C)

/ Transposition /
Note Octave III MIN

1 C 3

2 C 3	 Middle C = C3
3 C 1 	 (No Transposition)

4 C

Figure 4.8 Study for Triangles, Transposition settings

The Legato algorithm implemented in M is similar to the Articulation-range

algorithm in Jam Factory (see section 2.2.3), wherein percentage values indicate note

lengths. Settings of 100% or more indicate that notes will be played for the full duration or

longer than indicated in the Time-base setting and in the Cyclic editor rhythmic settings.

Smaller percentages result in staccato articulations, larger percentages result in legato

articulations. Figure 4.9 shows the Legato algorithm settings in the opening section of the

Study for Triangles. Part 1, assigned the staccato attack portion of the normal triangle

sample, has a repeated or cyclic range of small percentage settings (0 = 13%, 1 = 18%, 2 =

33%) resulting in a more staccato effect than that given by the original sample. Conversely,

Part 2, which is assigned the same timbre. is set to 600%. While the original staccato effect

50

4
3

3 2
1

	: : 4
:	 : 3

•	 :	 :	 :	 : :	 .	 :

Section B

4
3

1	 21
••	 .	 0

2 3 4 5 b 1 B 910111213141516

;	 ;	 ;	 :	 ;	 ;	 ;	 :	 : 4 4
:	 :	 :	 : 	:	 .	 .	 .	 :	 .	 .	 .	 :	 : 3

2 2
:	 :	 :	 :	 :	 :	 :	 :	 :	 :	 :	 :	 • .:Q

1

:	 :	 •	 •	 : 4	 4
3

32
:::::::::Q	 Q

1 2 3 4 5 6 1 9 910111213141516

:	 : : :	 : :	 : :

:	 :	 : :	 • :	 : :	 : :2

1 2 3 4 5 b 1 B 9101112131415l6	 1 2 3 4. i b. 1 9 9101112131415l6

600
300
33
18
13

4
3

1 21

1

4
3

2 2
1

Section C

1 2 3 4 5i b 1 9 9 101112131415 lb

:	 :	 :•	 :	 •	 ;	 :	 •	 :	 4
:	 . :	 :	 :	 :	 :	 •	 :	 :	 3

• •	 •	 •	 :	 :	 : 2
: .	 :	 :	 :	 :	 :	 :	 :	 :	 :

:	 :	 :	 :	 :	 :	 :	 : 4
3

:	 :	 :	 :	 :	 :	 :	 : 2

1 2 3 4! 6 1 B 9 10111213141516

MUM
WWI/

1 2 3 'I 5 6 1 9 91011121314151b

	 3

 1

	 	 3
:	 .

2 3	 b 1 9 910111213141516

4
3

4 2
1

4
3

4 2
1

:	 :	 :	 :	 :	 a

:	 :	 :	 :	 :	 :	 :	 :	 :	 :	 :	 :0
1 2 3 4 5 b 1 11 910111213141516

section to very staccato in the middle section, and the return to a very legato setting in the

final section that coincides with a change of t: mbre in the part, from the attack portion of the

normal triangle sample, to the gong-like transposed triangle sample. The remaining parts are

all assigned the same setting (the M default setting), resulting in a mixture of legato and

staccato articulations.

Figure 4.10 Study for Triangles, Legato settings, Sections B and C

The Accent algorithm in M's Cyclic variables provides a means of accenting musical

events in a repeated cycle by increasing W IDI velocity values. Accent cycles may be of

various lengths with up to 16 events, and individual cycles are applicable to any M part.

Throughout the Study for Triangles the program's default setting (shown in Figure 4.11) is

used in all parts. This setting indicates a strong accent on the first of every four events and

weak accents on the following three.

Figure 4.11 Study for Triangles, Accent algorithm settings

52

4
3
2

• • •	 :	 :	 :	 :

	

1 2 3 4 5 1.3 1 B.	 Eu91011121314151

4	 : :	 •	 :	 •	 •	 •	 :
3	 :	2 2 .	 •:	 :•
1
0	 :	

1 2 3 4 5	 1	 9101112131415113

••.:: •• 33 2	 :	 : : : ; 1
0

1 2 3 4 5 6 1 B 910111213141516

4
3	 •	

:	 :	 :	 :	 :	 :	 :	 :	 :	 4
• •	 •	 :	 :	 : 3

2

• •	 •	 •	 •	 •	 •	 •	 u
1 2 3 4 5 Et 1 B 91011121314151b

	

4 2	 :

4
3

	

1	 :
o

600
300
33
18
13

of the sample remains unchanged with this set ting, the sample is played in full, resulting in a

contrast between the very staccato setting of Part 1 and the full legato sample in Part 2.

The setting of the Transposition variable has a further effect on the legato and

staccato nature of the Part 1 and 2 timbre. This timbre is from a single sample assigned to

middle C (i.e. when middle C is played the sample sounds as it was originally recorded). In a

performance of sampled sounds 'playing diffirent [keyboard] keys speeds up or slows down

the rate the sample is played back, changing its pitch and length' (De Furia & Scacciaferro

1987, p.16). The upward transposition used in Part 1 results in a shortening of the wave form

so that the sample is sped up and appeals to be more staccato, while the downward

transposition, as used in Part 2, results in a lengthening of the wave form so that the sample

is slowed down and appears to be more legwo. The setting of 600% in the Legato algorithm

for Part 2 thus maximises the effect of th,_.; lengthening of the waveform by downward

transposition, ensuring the full duration oft he transposed sample is played. Parts 3 and 4,

assigned the reverse and scraped samples ale, in the opening section, assigned large legato

settings (300% and 600%), similarly maximising the lengthening of waveforms on

downward transposition.

Figure 4.9 Study for Triangles, Legato settings, Section A

Figure 4.10 shows the legato settings for the middle and final sections of the work.

Notable changes in the Part 2 settings ale the change from very legato in the previous

51

1 2
2 30
3 68
4 30

/ Velocity Range /
1
2
3
4

126
49
2_

211

3
49
2

21
•1111•■■

Section B

/ Velocity Range / 	

Section C

103
30
68
30

The strength of accent is defined us Ong M's Velocity-range algorithm in which a

range of velocities (speeds with which, for example, a MIDI synthesiser key is struck) is set

according to MIDI values from 1-127. If the full range is selected, the first of the four events

in Figure 4.11 will receive the maximum velocity of 127, the remaining three events

receiving a value of 1, resulting in a maximally accented first event and minimally accented

following events. The Velocity-range algorithm may also be set as a single value, in which

case all events receive the same accent. In the Study for Triangles, Part 1 is the only part that

receives a range within the Velocity-range variable, set in sections B and C of the work. The

remaining parts all receive a single velocity level, resulting in the same accent level for

every event. Figure 4.12 shows the Velocity-range variable for the B and C sections, the Part

1 range in the B section indicating a velocity level of 103 on the first of every four events,

and a level of 2 on the remaining three events .

Figure 4.12 Study for Triangles, Velocity algorithm settings, Sections B and C

4.3.2. Stochastic algorithms

The Note-order and Note-density algorithms within M, while broadly classified as

stochastic, are primarily concerned with short term processes in which outcomes are

unpredictable and patternless to varying degrees. As such they represent algorithms based on

53

random processes, as opposed to stochastic processes, which are concerned with large scale

distributions of outcomes. The distinction between the two process types is further outlined

in the following examination of M's Note-ord er and Note-density algorithms.

In relation to computer science, random processes relate to random numbers. In order

for a computer to generate an apparently random number sequence an algorithm is used, the

algorithm itself however must be pre-determined and well-defined (Moore 1990, p.408). The

result of using such an algorithm is that the algorithm itself does not produce actual random

numbers, but sequences of apparently random numbers, known as pseudo-random numbers.

Numerous algorithms have been developed for the generation of pseudo-random number

sequences, the first by the Hungarian mathematician John von Neumann (Shiflet 1987,

p.176), and have been applied in a range of mathematical and scientific fields. 'One

significant application of random numbers is in the area of simulation where the computer is

used to imitate and study such occurrences as nuclear reactions or the workings of a large

corporation' (Shiflet 1987, p.176).

One of the most popular techniques for generating pseudo-random numbers is known

as the linear congruential method, introduced by D.H. Lehmer in 1948:

The basic idea of this method is to generate the next number in a pseudo-random sequence
from the last one according to a recurrence rc lation such as

= (aXn + c)modm n 0

where Xn 0 is the n th value in a sequence, a �0 is the multiplier, c	 is the increment,

and m	 X0 is the modulus (Moore 1990, r .409).

X0 , as an initial value (or seed number), can be derived by various methods. One

common method is to use the computer sysi em clock to return a seed number based on the

time of day. Figure 4.13 shows a simple application of the linear congruential method using

the time 8.00 as the seed, and the resulting, repetitive, four-number pseudo-random sequence

derived from simple numbers assigned to the remaining variables. 'While the resulting four-

number sequence in this example is limited and not particularly random, various values may

be assigned to X0 , a, c and m, all of which will result in sequences of varying lengths and

apparent randomness.

54

X0 = 8

a = 7

c = 6

m = 10

8 • 7= 56 + 6 = 62 " 2(mod10)

2 . 7= 14 + 6 = 20 " 0(moc110)

0 . 7 = 0 + 6 = 0.6 " 6(moc110)

6 . 7 = 42 + 6 = 48 " 8(mod10)

8,2,0,6,8

Figure 4.13 Linear Congruential Method

Once a process such as the above is defined for generating pseudo-random numbers,

further computer algorithms provide methods for truncating and mapping generated numbers

to achieve specific numeric results. As an ,..xample, for the musical parameter of pitch a

sequence of numbers can be truncated to a range of 0-11, each successive number then

mapped to form a melody using pitches of a chromatic scale. More sophisticated algorithms

may then be used as random sieves, in whic h numbers are accepted or discarded according

to predefined rules. To follow the previous pitch example, a rule x„ 2 may be invoked,

limiting the random melody to either semitone or whole tone steps. If the seed number is 5

for example, it is mapped to an F in the C chromatic scale. The following number (X0)

according to the rule must be either 6 or 7, mapped to either F# or G. Any number generated

other than 6 or 7 is discarded.

Within M's Note-order algorithm, such processes allow the mapping of pseudo-

random number sequences to pitches stored within M's pitch patterns. The three types of

ordering within the algorithm are 'original order', where no random processes or pitch re-

orderings occur, 'cyclic random', where there is a single random re-ordering of pitch

patterns before the new pattern is repeated, and 'utterly random', where the stored pitch

pattern is subject to continual random re-ordering. In the Study for Triangles random note

order settings are employed in Parts 1 and 2, while Parts 3 and 4 adhere to original ordering

55

EOM/ Note Order /

• ••e
11111P BIM AINIMMI

AIIM MI
1.01W11111111

INISSUIC :NNW

11010
2

3
4

0 50 50

100 0 0

100 0 0

Original
Order

Cyclic
Random

Utterly
Random

Original order

throughout. Part 1 in the opening section of the work employs the 'utterly random' setting.

Figure 4.14. shows the Note-density algorithm settings for the opening section, the output of

the pitch pattern in original order and a versio of re-ordering using random processes.

As shown in Figure 4.14, Part 2 in the opening section has a combination of 'cyclic

random' and 'utterly random' settings. In relation to the nine-note series used in the opening

section, the 'cyclic random' setting provides a single re-ordering of the nine notes, the re-

ordered set then repeated throughout the section in combination with 'utterly random' re-

orderings. The effect of the Part 1 and 2 Note-order algorithm settings within the opening

section is that three different melodic versions of the same note sequence are presented,

versions with varying degrees of stability, w lere stability is defined as note consistency by

continuous repetition of a note pattern. Parts 3 and 4, with their original order setting, are the

most stable, presenting the same nine-note sequence repeatedly. Part 2, with its combination

of cyclic and utterly random settings, presents a less stable version of the note set, the

repeated re-ordering of the set continually ins errupted by 'utterly random' re-orderings. Part

1, with its 'utterly random' setting, presents the least stable version of the note set with

continual re-orderings of the nine notes withi l the set.

Figure 4.14 Study for Triangles, Note-density settings, Section A, random output, Part 1

WA= 1M■ //.._/711rl
BMW: 1111111=11111r 1!:=104-ir

Utterly Random re-ordering

56

While the above processes for pitch variation are classified as random (i.e. short term

processes in which outcomes are unpredictable and patternless), the possibility of combining

settings within the Note-order algorithm repr.;sents a further process called a biased choice.

Biased choices lean closer to stochastic processes in that they are concerned with larger scale

distributions of outcomes, providing an ability 'to specify that some choices are more likely

than others within a range of possibilities' , Moore 1990, p.418). Biased choices 'are the

defining characteristic of so-called stochastic processes, especially when the biases are

chosen to model the statistical behaviour of some observable phenomenon' (Moore 1990,

p.4. 18). In a biased choice process, 'the likelihood that a particular event will occur can be

expressed as a probability — as the ratio of the number of occurrences of that event to the

total number of results of the random process' (Dodge & Jerse 1985, p.266). In the M Note-

order settings the range of possibilities is imited to the three types of note ordering as

indicated by the three different types of variable areas on each voice's bar graph. Solid

black, grey and dotted areas correspond to 'original order', 'cyclic random' and 'utterly

random' algorithms respectively, while the ratio of occurrences is represented with

percentages. The Part 2 settings in Figure 4.14 indicate a 50% probability that a note will be

taken from either the 'cyclic random' ordering or the 'utterly random' ordering. The only

other part in the Study for Triangles that receives combinations of note orderings is Part 1 in

the central section, which employs the 16-note matrix shown in Figure 4.2. In this section,

Part 1 receives settings of 50% original order and 50% 'utterly random'. Figure 4.15

illustrates a possible output, the 50% settings resulting in the replacement of alternate notes

from the original order with an 'utterly random' note choice.

57

1

2

3

4

/ Note Order /
501 0	 I

0
100 0 0

100 0 0
Original
Order

Cyclic
Random

Utterly
Random

EMERBEINEE1 100 0

U terly Random

Voice

Original Order

Figure 4.15 Study for Triangles, Part 1 example output, Section B

The Note-density algorithm in M, as previously described in Chapter Two, 'controls

the percentage of random skips that occur it playing a pattern' (Zicarelli 1987, p.20). Like

the Note-order algorithm, this algorithm is controlled with a biased choice process in which

the range of possibilities is the notes within a pattern, and silences. While there are

essentially no actual biased choices employ(xl in the Note-order algorithm in the Study for

Triangles (50/50 settings preclude any bias ti)ward one note ordering or another), settings in

the Note-density algorithm do illustrate clear biased choices. Figure 4.16 shows the Note-

density algorithm settings for the central anci final sections of the work, the opening section

is precluded due to settings of 100% throughout. Figure 4.17 illustrates the effect of the

Note-density algorithm setting on Part 3 in the central section of the work. With the setting

of 67%, the output, as shown in Figure 4.17. will include the original ordering of notes with

a bias toward the part playing two thirds of the time, and silences for the remaining third.

Over the 10 1/4 note period given in the example, this relates to seven 1/4 notes played, and

three 1/4 notes resting.

58

/Note Density/ ■ OM
1
2
3
4

93 0	 25	 50	 75	 100

100 •
•
••

0 •

69 ••
•
•67 •
•
••

100

Section C

/ Note Density/

1

2

3

4

9i5 0 25 50

0

75 100
O •

o•

o•

45 •
•
•
•

59

69 •
•
•

100

Section B

•• •

Figure 4.16 Study for Triangles, Note-densit3, settings, Sections B and C

Figure 4.17 Study for Triangles, Example off put, Part 3, Section B

4.3.3. The application of algorithms in real-time

While most of M's algorithms are controllable in real-time, only two algorithms, the

Velocity-range and the Note-density algorii hms, are manipulated in performances of the

Study for Triangles. Such manipulations are based entirely on textures and dynamic levels

presented by the acoustic triangles, and as these parameters are variable from one

performance to the next, differing degrees of algorithm manipulation similarly occur. The

freedom allotted to the acoustic performers in tempo, and the repetition of scored materials,

results at times in dense textures, in which case electronic parts with settings of less than

100% in the Note-density algorithm are adjusted upward to complement the acoustic texture.

At other times the same freedom in the acoustic parts can result in sparse textures, in which

59

IPatterns a/Ma 9 10
,--1--.

111 12 13 14 15 1 86

0	 /ioerSrc Use 4: Fr	 Select

All • 4: ♦ r	 4:4 1

_

9 1	 115 0

All • .(E r	 .04 i 9 1	 1 8 0

All i° '1(r te' 1 9 1	 I 3 0

All ■ 4; r el, , 9 1	 1 3 36

Voice 1

Voice 2

Voice 3

Voice 4

4 Play-Enable voice Mouse Ac vance voice

case the Note-density settings are decreased. Similarly, dynamic levels in the acoustic parts

vary, and degrees of dynamic variation a. •e complemented in the electronic parts by

increasing or decreasing settings in the Velocity-range algorithm.

Within M there are on/off switches called Play-enable and Mouse-advance, both of

which enable real-time control over when parts are playing. Both are represented by icons as

shown in Figure 4.18. The Play-enable switch allows a part to be heard when the icon

appears next to the part in the patterns window on the main screen. When the icon is absent

the part is silent. This switch allows control over texture through having one or more parts

playing at one time. The Mouse-advance function is activated when a. black diamond appears

next to the part in the patterns window of lhe main screen, directly below the computer

mouse icon. When this function is activated the user can control the playing of a part by

moving the mouse. If the mouse is kept still the part is silent. Throughout the Study for

Triangles, Part 1 is always operated in conjunction with the Mouse-advance function, this

function allowing a simple complement to varying densities of dampened triangle attacks

provided in the acoustic parts.

Figure 4.18 Study for Triangles, Patterns window, Part-enable icons

4.4. Summary

As shown in the above examinations, the majority of algorithms in the Study for

Triangles are deterministically employed, and relate to the implementation and manipulation

of rhythms, transpositions, articulations, arid velocity (dynamic) levels. The algorithms

60

relating to pitch control within the work ale based on random procedures, allowing re-

ordering of pitch either randomly, or with the more stochastic-based biased choice process.

In the interactive operation stage of the Study for Triangles, manipulations of the

Play-enable, Mouse-advance, Note-density and Velocity-range algorithms provide the

primary real-time method for interaction between the three acoustic performers and the

computer operator, interactions that occur within the musical parameters of texture and

dynamics. In the design stage, the remaining algorithms available in M provide a means of

establishing materials and processes for control over the remaining musical parameters of

pitch, rhythm and articulation. In this way, E 1g orithms available in M provide a medium in

which musical parameters may be controlled in real-time in the operation stage of the

program, or may be established in the design stage and left to work as part of the program

without real-time manipulation. Within the interactive environment of the Study for

Triangles, the possibility of limiting real-time control in M to the Play-enable, Mouse-

advance, Note-density and Velocity-rang.; algorithms allows the computer operator

sufficient space in which to concentrate on the parameter of timbre, the primary focus of the

work.

61

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61

