
PART FOUR

CHAPTER 8 — Phrase Garden

8.1. Introduction

The note and numeric matrices used in the compositional style detailed in the

previous chapter both contain a significani element of inherent growth that may be viewed as

having similarities to organic or biologic al growth. The note matrices, through the use of

transposition, present new notes in each series transposed from the original, much as genetic

variations in biological evolution present new biological forms whilst retaining a dominant

genetic blueprint. This genetic blueprint may be viewed as analogous to the retention of an

interval pattern within the different trmspositions of an original note series. As the

transpositions unfold, the initial five or six notes of the original note series 'mutate' to cover

the total chromatic. The numeric series matrices are developed with an additive process that

is similar to that of the Fibonacci series: consecutive numerics from the original numeric

series are added to one another to produce new numerics for a second series. These additions

in effect represent a growth process that, like the Fibonacci series, moves toward infinity.

Bearing in mind the inherent growth elements of the note and numeric matrices,

along with the techniques used in the compositional style, a science- or mathematics-based

model was sought for use in the development of a program suited to automation of

techniques used in the compositional style. This program would primarily provide a real-

time environment for the development of musical materials of the compositional style, a

real-time environment allowing the auditioning of generated musical materials, and a

monitoring of the growth of those materials. In the search for a model for the program,

numerous areas were explored, including developments in grammar with Chomsky's

Universal Grammars (Cook 1988); howeve the most viable model was found in the field of

Artificial Life. The first part of this chapter provides a brief overview of the field of

Artificial Life, focusing on a small portion of research undertaken in the field, and including

literature citations from varied references it the field. Following this, Artificial Life systems

described in the overview are shown to be ncompatible with the compositional style, and a

further Artificial Life system that is compatible with the compositional style is discussed.

154

The second part of the chapter details the Phrase Garden program, showing how an

Artificial Life model for the program is implemented and the manner in which the program

relates to the compositional style.

8.2. Artificial Life

8.2.1. Introduction

Artificial Life, or A-Life, is devoted to:

the creation and study of life-like organisms and systems built by humans. The stuff of this
life is non-organic matter, and its essence is information: computers are the kilns from which
these new organisms emerge. Just as medical scientists have managed to tinker with life's
organisms in vitro, the biologists and computer scientists of A-Life hope to create life in
silico (Levy 1992, p.5).

A leading figure in the field of A-Life is Christopher Langton who describes it as:

the study of man-made systems that exhibit behaviours characteristic of natural living
systems. It compliments the traditional biological sciences concerned with the analysis of
living organisms by attempting to synthesise life-like behaviours within computers and other
artificial media (Langton 1989, p.1).

Aside from pre-20th century mechanical automatons, the history of A-Life

essentially began in the early 20th century with the abstract formulation of procedure

through the formal application of logic to the mechanical processes of arithmetic, primarily

in the 'work of mathematicians such as Turing and GOdel. These mathematicians:

formalised the notion of a logical sequence of steps, leading to the realisation that the
essence of a mechanical process — the "thing" responsible for its dynamic behaviour — is
not a thing at all but an abstract control structure, or "program" — a sequence of simple
actions selected from a finite repertoire (Langton 1987, p.10).

This formalisation of logical sequences led to a shift from a focus on the mechanics

of life toward a focus on the logic of life. In the 1940s the Hungarian mathematician John

von Neumann, building on work carried out by Turing, developed through "thought

experiments" his automata theory in which he proved that machine self-replication could be

achieved. He determined that any such met hod of self-replication:

must make use of the information contained in the description of the machine in two
fundamentally different ways:

155

- INTERPRETED, as instructions to be executed in the construction of the offspring.
- UNINTERPRETED, as passive data to be duplicated to form the description given

to the offspring

Of course, when Watson and Crick unravelled the mystery of DNA, they discovered that
the information contained therein was used in precisely these two ways in the processes of
transcription/translation and replication (Langton 1987, p.15).

8.2.2. Cellular automata

The automaton von Neumann designed was 'a two-dimensional cellular automaton,

(CA) whose squares could assume some 29 different states, one of them being earmarked as

the "empty" state' (Sigmund 1993, p.22). The automaton environment was an horizonless

grid of square cells, each cell subject to a rule table according to which of the 29 states that

cell was in. The automaton itself, in a square shape with a tail, occupied some 200 000 of

these cells:

The configuration of the grid would chalge as discrete time steps ticked off. Every cell
would hold information that would be known as its state, and at each time step it would look
to the cells around it and consult the rule table to determine its state in the next tick (Levy
1992, p.43).

As time steps tick over, the automaton extends outward into empty cells of the

environment:, eventually forming a replica of itself.

Following von Neumann's death, work on CAs continued, notably in the work of

Cambridge University mathematician John Conway. In the late 1960s Conway developed his

game of "Life", in which the number of possible cell states in a CA was reduced to two,

either filled or empty, and a simple rule se:: if a cell is empty, it remains empty at the next

time step unless three neighbouring cells ar3 occupied in which case the cell will be filled at

the next time step. If a cell is filled it remz ins filled at the next time step whenever two or

three of its neighbours are filled. If only one neighbouring cell is filled the cell will become

empty at the next time step. Figure 8.1 shows the self-propagation of a pattern labelled by

Conway as a 'glider'. After four time steps the pattern is reproduced but occupies a space

one cell lower in the environment.

156

001.1.■1,

Time	 1
	

2
	

3
	

4
	

5

Figure 8.1 John Conway, "Life", glider self-propagation

The glider is one instance of the general class of propagating structures in CA. These
propagating information structures are el fectively simple machines -- virtual machines --
which crawl around the lattice like so many ants, interacting with other such machines and
with the more passive structures in the array. Their behaviour is reminiscent of the actions of
biomolecules — especially enzymes -- in their capacity for recognising and altering other
structures they encounter in their wanderings, including other propagating structures
(Langton 1987, p.20).

Further work has been undertaken with CAs, notably in the work of Langton who

implemented self-reproducing CAs based on von Neumann's theory on a computer, and also

Stephen Wolfram who pioneered 'four qualitative classes of CA behaviour (referred to as

Wolfram classes), with analogs in the fields of dynamical systems' (Sipper 1996a). Aside

from being used as a modelling framework for A-Life simulations (Gutowitz 1995), CAs

have had numerous real-life applications, for example in computer image processing and

pathology (Levy 1992, p.73), and 'have been applied to the study of general

phenomenological aspects of the world, including communication, computation,

construction, growth, reproduction, competition and evolution' (Sipper 1996a). CAs have

been implemented in a music program cal led Cellular Automata Music by Dale Millen. This

program uses various types of cellular automata including Conwa.y's 'Life' in which cells of

a lattice are mapped to MIDI note values (Millen 1994).

157

8.2.3. Evolutionary algorithms

An important area of A-Life research is concerned with evolutionary algorithms.

Evolutionary algorithms are iterative algorithms, each iteration being referred to as a

"generation":

The basic evolutionary algorithm begins with a population of randomly chosen individuals.
In each generation, the individuals "compete" among themselves to solve a posed problem.
Individuals which perform relatively well are likely to "survive" into the next generation.
Those surviving to the next generation may he subject to small, random modifications. If the
algorithm is correctly set up, and the problem is indeed one subject to solution in this
manner, then as the iteration proceeds the population will contain solutions of increasing
quality (Gutowitz 1995).

The most widely used evolutionary algorithm is the genetic algorithm (GA)

pioneered by John Holland in the mid-1970s. The GA:

hewed to one of John von Neumann's important lessons: in both biological and artificial
systems, the information central to the organism had to he regarded in two manners — both
as genetic information to he duplicated and as instructions to he executed. (Levy 1992,
p.161).

The information central to an organism s known as the genotype. The execution of this

genetic information results in the physical)rganism, known as the phenotype.

To apply the genetic algorithm:

one must define
1) a mapping of the set of parameter vat' tes into the set (0-1) bit strings, and
2) a mapping from bit strings into the reals, the so-called fitness function. A set of

randomly-chosen bit strings constitutes the initial population. In the genetic algorithm,
a cycle is repeated in which

1. The fitness of each individual in the population is evaluated.
2. Copies of individuals are made in pro)ortion to their fitness.
3. Individuals in the population of copies are altered by mutations and recombinations

between pairs of individuals (Gutowitz 1995).

The mutations in Step 3 of this cycle usually involve "bit-flipping" wherein a small

percentage of bits within bit strings are inverted from 1 to 0 or from 0 to 1. Recombinations

are a result of a "crossover" between two bit strings, for example the first half of a bit-string

x is replaced with the second half of bit string y and vice-versa.

An experiment using the genetic a lgorithm was carried out with artificial "ants",

constructed by University of California researcher David Jefferson. Jefferson's ants were

158

strings of 450 binary bits that, like a cell in a cellular automaton, were subject to rules

according to a current state within a sequence of 200 time-steps. The ants were to follow a

trail of 89 steps on a toroidal grid of 32 by 32 squares:

Inspired by actual pheromone trails used by ants to aid each other in foraging, the trail
twisted and turned, and became increasingly difficult to follow as it progressed. It suffered
gaps at several points, and, by the last se ,;ment of the trail, there were more missing squares
than actual "scented" ones (Levy 1992, p 165).

After determining whether the cell directly in front of the ant was belonging to the

trail or not (on or off) an ant would move forward a square, turn left or right without moving,

or do nothing.

An initial population of 65 536 ani s with randomly selected genotypes could manage

no more than four steps in the trail, however the most successful 10% of these were selected

for reproduction and copied to return the population to its former size. After 20 generations a

small percentage of ants could traverse more than 60 steps while the average ant could

traverse 30. At 70 generations the average ant had evolved to traverse the full 89 steps.

Aside from GAs, examples of further evolutionary algorithms include genetic

programming in which LISP expressions form the genotype, allowing evolution to occur

with computer programs as opposed to bit-strings, and Lindenmayer systems (L-systems).

The simplest L-systems use context-free rule sets such as those used in Symbolic

Composer's gen-rewrite algorithm. The rule sets form the genotype within an L-system,

the output is the phenotype. More complex L-systems incorporate left and right branching of

symbols and context-sensitive rule sets in which there may be more than one symbol on the

left side of the rule. Branching and context-sensitive rule sets allow extensive modelling of

the growth and development of biological organisms with L-systems. Evolutionary

algorithms have been:

successfully applied to numerous problems from different domains, including optimisation,
automatic programming, machine learning, economics, operations research, ecology,
population genetics, studies of evolution z-ind learning, and social systems (Sipper 1996b).

159

The genetic algorithm has been applied to music in various areas. John. Biles program

GenJam uses a genetic algorithm for generating four-measure jazz phrases (Biles 1994),

while Gary Lee Nelson has used genetic algorithms to produce rhythmic materials (Nelson

1993).

8.2.4. Tierra

Research in the field of A-Life has produced systems in which computer "organisms"

may either serve to model actual biological systems, or may be used to study broader facets

of biological life. In the former, 'populations of data structures in a computer program are

used to represent populations of biologic 11 entities (predators and prey, ants, cells, and the

like)' (Gutowitz 1995). An example is a system by Craig Reynolds in which autonomous but

interacting objects called "Boids" are used to model flocking behaviour in birds (Langton

1989, pp.30-1). In A-Life systems used to study broader facets of biological life, populations

of data structures do 'not explicitly represent any living organism or process, but rather obey

artificial laws abstractly related to the natural laws governing living processes' (Gutowitz

1995).

An example of the latter is Tom Ray's Tierra, an open-ended evolutionary system in

which organisms are machine language computer programs or instruction sets that are not

coded for any problem solving task, but simply evolve (with minor random mutations) in

their computer environment. An original organism or "ancestor" will usually contain 80

instructions, the number of instructions Ray used in his initial work with the program. As

Tierra runs, the machine language organisms reproduce and compete for computer

processing time. Instruction sets eventually evolve that contain fewer instructions and take

less and less processing time, making such organisms more fit for survival in the Tierra

environment. "Parasite" instruction sets also evolve that do not contain instructions for their

own self-replication and are, as such, considerably shorter. These parasite sets "borrow"

instructions for self-replication from longer instructions sets and, as they are short and take a

smaller amount of processing time, they are extremely fit for survival in the Tierra

environment. Systems such as Tierra, with their ability to produce multitudes of generations

of organisms in a short space of time, allow a study of broad facets of evolution such as

160

evolutionary 'arms races' between parasites and hosts, studies that are not possible in

biological life due to the slow rate of evolutionary change.

Research carried out in the field of A-Life is diverse and provides models for many

facets of biological life. Such modelling also provides non-biological fields with computer-

based systems and programming methodologies suited to development in those fields.

Examples include the use of the genetic algorithm in fields as diverse as economics and

ecology (Sipper 1996a), and in computer animation (Levy 1992, p.212), and the use of

cellular automata in the 'study of general phenomenological aspects of the world, including

communication, computation, construction, growth, reproduction, competition and

evolution' (Sipper 1996b).

8.2.5. A-Life systems as models for the Compositional style

Cellular automata, genetic algorithms and Tom Ray's Tierra were all examined as

possible models for a music program that automated techniques of the compositional style.

Each model, however, was discarded due to incompatibilities between the model and the

compositional style.

A simple example is in regard to pitch material produced by a cellular automata

model. As in the Cellular Automata Music program of Dale Millen, cells in a CA lattice may

be mapped to pitch. Using Conway's 'Life' as an example, the rules of the game require that

multiple cells are active at any given time-step for active cells to remain active in the next

time-step. If individual cells of the lattice are mapped to notes, at any given time-step

vertical note aggregates must occur. In the compositional style, the primary focus with pitch

is on the linear statement of notes from the note matrices. Vertical aggregates are intuitively

formed from components of linear pitch ir aterial, and are primarily used to punctuate linear

pitch material. The use of notes mapped t,) lattice cells in a CA model suggests a focus on

vertical aggregates of notes that is thus incompatible with the compositional style.

Another example is provided by Tom Ray's Tierra. Individual instructions within

Tierra instruction sets may be mapped to individual pitches, and the instruction sets may

then provide musical phrases. When Tier:a is run, long periods of stasis occur wherein a

161

single instruction set, or minor variants of an instruction set, dominate the environment. If an

instruction set represents a phrase of music, the same phrase would occur repeatedly. As

previously discussed, such repetition is not desired in the compositional style. If the rate of

evolution could be controlled or increased within the Tierra environment, the program could

become a viable model for automating the techniques of the compositional style. However, a

primary characteristic of Tierra is that it is an open-ended evolution system in which fitness

for survival is contained within the program itself, and not determined by outside criteria,

such as a problem to be solved by a genetic algorithm. This open-ended nature of Tierra

allows the study of different areas of evolution such as the emergence of parasites, and

evolutionary 'arms-races'. Alteration of the program to suit the compositional style would,

in effect, defeat a primary purpose of Tierra, this being the production of instruction sets that

provide an ability to study facets of open-ended evolution.

The non-open-ended nature of the genetic algorithm provides a more viable model

for the automation of techniques in the compositional style. This is primarily due to an

ability to control rates of evolution according to desired outcomes. As an example, an eight

note series is mapped to bit strings with three bits per note. The choice of eight notes is

convenient as, with three-bit strings, there are eight possible combinations of bits, 0 and 1

(i.e. 211 where n is the number of bits in a string). A possible mapping to notes is shown at

the top of Figure 8.2. Melodic phrases can be generated through the random generation of bit

strings containing multiples of three bits. As shown in the second part of Figure 8.2, a phrase

of four notes can be derived by combining bur three-bit strings into a bit string of 12 bits.

162

Bit string to note mapping:

000 001
CDEF

010 011 100
GABC

101 110 111

Four-note phrases:
001 011 000 010 110 100 101 010

E E

Breeding with crossover method

D F C E- Parent 1

B G A E- Parent 2

(Crossover point)

D F A E- Child 1 (Desired outcome)

B GCE- Child 2
=1=1111■

Figure 8.2 Genetic algorithm, note mapping, output and breeding

A primary use of the genetic algorithm lies in the ability it provides to search quickly

through large numbers of possible solutions to a problem. As an example, a small random

population consisting of two or more bit strings with 12 bits may be produced, these two

strings representing two of the 4096 possible combinations of 12-bit strings. In a musical

context, a phrase consisting of the notes D, F, A and E may be a desired outcome. If the two

phrases in Figure 8.2 are considered as an initial population and compared with the desired

outcome, then neither of the two matches the desired outcome. To match the desired

outcome, the two phrases must either be subject to mutation or combined, using a crossover

method, to produce new phrases.

As shown in the lower part of Figure 8.2, the use of a single crossover point will

result in two 'child' bit strings, one of which matches the desired outcome. The two phrases

in the random population of the example both have some resemblance to the desired

outcome, the first half of the Parent 1 phrase matches, as does the second half of the Parent 2

phrase. With two of the notes in each phrase matching two of the four notes in the desired

phrase, these two phrases can be classified as having a fitness value of 50%. If a phrase of C

D A B was produced in the random popul ation it would have a fitness value of 25%, with

only one of the four notes matching the desired outcome. Phrases within a random

163

population of two or more phrases may have fitness values of 0%, 25%, 50%, 75% or, as the

desired outcome is one of the numerous possibilities, 100%. Using a pattern matching

algorithm, phrases can be compared to the desired outcome, and those with fitness values

less than 50% deleted from the population. In the 'breeding' phase, phrases in the initial

random population that have high fitness values are selected to become parents.

If all phrases in an initial popula :ion present fitness values of 0% or 25% only, a

mutation function can be used to provide a second generation that might contain phrases

with higher fitness values. Mutation in genetic algorithms is generally achieved through

minor bit-flipping, from 0 to 1 or vice-versa. The phrase of C D A B, with its 25% fitness

value could be subject to mutation in which the first bit (1) of the bit string for a B note (1 1

0) is flipped to a 0, resulting in the bit string for an E note (0 1 0). The resulting phrase

would then be C D A E, the A and E providing a fitness value of 50%.

The genetic algorithm presents a powerful tool for searching the possibilities of

phrases available with notes from the compositional style note matrices. Possibilities with

interval weightings of the compositional style may also be searched using the genetic

algorithm. Interval weightings may be cle. • ved by assigning a fitness value to sequences of

notes. If a weighting of the interval class 3 is desired, sequences of notes that produce that

interval may be assigned a fitness value of 100%. In an initial random population there will

be no weighting on the desired interval, however, using mutation and crossover to produce

further generations, intervals with weightings other than interval class 3 gradually become

less common. Such a process could be applied not only to two-note sequences, but also to

longer note sequences and phrases. Similarly, rhythmic cells of the compositional style could

be mapped to bit strings, allowing a search through the possibilities of various rhythmic cell

combinations arising through crossover ani mutation.

The gradual process of evolving desired outcomes is the primary reason for the

dismissal of the genetic algorithm as a model for a real-time program in which techniques of

the compositional style are automated. An example of the number of generations required to

attain materials that closely represent desired outcomes is provided by John Biles in his

discussion of his GenJam program. In the initial GenJam generations of jazz style phrases

164

`fitnesses are almost negative... Typically, at around the tenth generation, a "golden"

generation occurs where almost all the new phrases sound reasonable' (Biles 1994). Whilst

the genetic algorithm provides a useful tool for searching the possibilities of phrases, interval

weightings and rhythmic combinations common in the compositional style, the number of

generations that must be produced before the algorithm provides relevant musical materials

similar to the compositional style are prohibitive in a real-time environment.

8.2.6. Blind Watchmaker

In 1987 Christopher Langton organised the first A-Life conference in Los Alamos,

the conference bringing together 'computer scientists, biologists, physicists, anthropologists

and other assorted "-ists", all of whom shared a common interest in the simulation and

synthesis of living systems' (Langton 1989, p.xv). At this conference Richard Dawkins, an

Oxford University zoologist, presented a paper on a computer program he had developed to

illustrate concepts in his book The Blird Watchmaker, the book itself explaining how

`evolution, proceeding by subtle gradations, could achieve the dazzling order and

complexity of contemporary life-forms' Levy 1992, p.172). The Dawkins program, also

called Blind Watchmaker, generates two -dimensional images on the computer screen, a

genotype specified by the user controlling the way lines are drawn to form images.

Dawkins' program is based on an artificial, archetypal, embryology in which

numerical values in the program (genes) influence the development of two-dimensional

drawings (phenotypes) (Dawkins 1989, p.202). Figure 8.3 shows the archetypal drawing or

phenotype produced by Dawkins' artificia, embryology. A recursive branching rule controls

the number of branches a phenotype will have. In Figure 8.3 the number of branches, or

depth of recursion, for the phenotype is four.

165

Figure 8.3 Blind Watchmaker, Archetypal phenotype

The depth of recursion of the branching rule, as a numerical value, is considered by

Dawkins to be a gene that influences the growth of the phenotype, one of nine genes in the

original Blind Watchmaker program. The remaining eight genes influence other parameters

of the phenotype such as the angle of branching and the length of a branch. Figure 8.4 shows

the influence of an alteration to 'gene 5' on the tree shown in Figure 8.3 (Dawkins 1986,

p.54). For each gene, there is also a plus (+) and a minus (—) value that controls the direction

of phenotype lines, either up or down. Such genetic alterations are considered by Dawkins to

be a result of mutations in the genotype.

Figure 8.4 Blind Watchmaker, Archetypal phenotype with genetic mutation (gene 5+)

In the Blind Watchmaker program, the archetypal phenotype is used as the parent for

a series of phenotypes (Dawkins calls the phenotypes biomorphs) that are drawn on the

computer screen with the parent biomorph in the centre. Each bi omorph drawn differs in

respect to the parent biomorph by a mutation in one of its genes, for example +7 or —9. All

`child' biomorphs, like that in Figure 8.4, aie a single mutational step away from the parent.

The user then selects one of the child biomorphs on the screen to use as the parent of the

next generation. Biomorphs in the ensuing generation are one step away from the parent and

166

two steps away from the initial biomorph. The selecting agent in the evolution of biomorphs

is the eye of the user of the program. Bio:norphs are chosen to be the parent of a generation

according to the requirements of the user for example an insect-like shape can be achieved

by consistently choosing biomorphs in each generation that have some resemblance to

insects. Evolutionary selection in the program is thus an artificial selection as opposed to the

natural selection of Darwinian evolution, and the selection process used by genetic

algorithms in which artificial organisms survive according to their fitness in solving a posed

problem. Figure 8.5, from Dawkins' book The Blind Watchmaker, shows the evolution of an

insect-like biomorph through 29 generat:ons, starting with a single pixel. The biomorphs

along the central line are those chosen as the parents of each generation, while the

biomorphs attached to the parent biomorphs are examples from each generation that were

not chosen as parents.

167

	 \t,

Figure 8.5 Blind Watchmaker, Insect-like biomorph evolution (Dawkins 1986, p.58)

vF

168

Genotype 1

Procedure
Reproduce

Copy parent's genes into
Child but with some
random chance of
mutation

Procedure
I)evelop

Develop the phenotype
specifiec by the genotype

Phenotype

	 [Phenotype 2
•

Genotype 2 Procedure
Develop

Develop he phenotype
specified by the genotype

Like genetic algorithms, Dawkins' program follows the model of John von Neumann

in which the genotype is both duplicated and used in the development of a phenotype. There

`must be replicators — entities capable, like DNA molecules, of self-replication' and 'genes

must influence the development of a phenotype' (Dawkins 1989, p.202). Figure 8.6 is based

on an example given by Dawkins (Dawkins 1989, p.202), and diagrammatically represents

both the von Neumann model and data modules used in the Dawkins program. Arrows in the

diagram represent the path of data within t 'le program.

Figure 8.6 Blind Watchmaker, Genoptype/phenotype modules (Dawkins 1989, p.202)

In the Blind Watchmaker program, with its nine genes, and the possibility of both

upward and downward mutation, there are 18 possible single-step mutations that can be

derived from a parent biomorph in any one generation. These mutations exist in what is

referred to as 'genetic space'. In a second generation this number expands to :324 possible

biomorphs in the genetic space. These are the 18 children of each of the 18 biomorphs in the

169

first generation (18 X 18). The Blind Watchmaker program allows the user to search through

the genetic space of biomorphs to find shapes the user desires. Dawkins has evolved

biomorphs resembling, for example, scorpions, bees, spiders, bats, frogs and birds. 'The

forms could also resemble artefacts: Spitfire airplanes, lunar landers, letters of the alphabet'

(Levy 1992, p.174.).

In making an analogy between numerical values of drawn lines and genotypes, along

with an analogy between biomorphs and phenotypes, Dawkins, in his Blind Watchmaker,

has provided a model which can be used for a music program in which similar analogies

may be made between musical intervals and genotypes, and sequences of notes, or phrases,

and phenotypes. In relation to the compositional style, the evolutionary capacity of the Blind

Watchmaker program, when transferred to a music program based on the same evolutionary

principles, can be viewed as a viable medium for expressing the inherent growth of the note

and numeric series matrices.

Unlike the genetic algorithm, in which a random population begins the evolutionary

process, Blind Watchmaker begins evolut. on with an archetypal embryology. In a real-time

music program based on Blind Watchmaker, a musical archetypal embryology may represent

a set of rules for generating notes of the compositional style note matrices, rules for

weightings on one or more intervals, or rules for generating rhythms based on the numeric

matrices. As the composer has the ability io define the rules for the development of musical

phenotypes, such an embryology, or rule set, will result in musical output that is

immediately representative of the composer's desires. The child phenotypes that evolve from

the parent phenotype will then present the composer with possibilities from the genetic space

of musical phenotypes related directly to the composer's input. As shown in the excerpt

analyses in Chapter Seven, notes within a phrase are chosen intuitively from the note

matrices. With an ability to search quickly through the genetic space of musical phenotypes

based on an embryology, the composer need not rely as heavily on intuition and may choose

from any number of phrases produced by the music program. This embryological approach

to the generation of musical materials is advantageous over an approach with genetic

algorithms in that desired musical results are immediate with an embryological approach,

170

and only gradual with a genetic algorit lm approach. In addition, the genetic algorithm

usually utilises a pre-defined analytical process or function for determining the fitness of a

phenotype for reproduction. In the Dawk ins model, fitnesses of individual phenotypes are

determined by the user, thus allowing selection based directly on human aesthetic criteria.

Dawkins' embryological approach in evolving two dimensional computer images has

been adopted by artists involved with computer graphics to generate three dimensional

images and animations, the Dawkins approach being advantageous over genetic algorithms

as 'it is difficult to automatically measure the aesthetic visual success of simulated objects or

images' (Sims 1991, p.320). Sims, an American artist, has based work on the Dawkins

model and shown how 'evolutionary techniques of variation and selection can be used to

create complex simulated structures, textures and motions for use in computer graphics and

animation' (Sims 1991, p.319). English artist William Latham has also based work on the

Dawkins model and developed from it his Form Synth, 'an interactive 3-D modelling system

for sculptors. The rule-based program is designed on the basis of the requirements of artists

and relates to the evolutionary development of art and the 3-D modelling process used by

sculptors' (Latham 1991, p.82).

8.3. Phrase Garden

8.3.1. Overview

Phrase Garden primarily uses Blind Watchmaker as a model for the generation of

pitch materials. Algorithms for rhythmic a aterials are based on those in Symbolic Composer

in which rhythmic cells are user defined, the statements of rhythmic cells in Phrase Garden

controlled by occurrences of intervals in the generated pitch material. The Phrase Garden

Velocity algorithm is based on the Velocity-range algorithms in M and Jam Factory,

providing both deterministic and stochastic settings for dynamic levels. An algorithm for

vertical aggregates supplies harmonisations of linear pitch material generated by the

program. In addition to these algorithms, there are algorithms for control over octave

placements of pitch, pitch range, and tempo. Output of the program is heard in real-time, and

in the tradition of interactive programs such as M and Jam Factory, settings in the program

171

Voce

true011 '

pitch' 'ange

p chords

capture

may be altered to affect, in real-time, generated materials. Phrase Garden output can also be

saved to MIDI files which may be played while the program is, generating new materials.

The program offers four voices, or players, that are independently configurable.

Figure 8.7 shows the main screen of the Phrase Garden program. The piano

keyboard at the top centre provides a met lod for pitch input to the program, and pitch input

may also be provided with an external NUDE device. Rectangles (objects) with a p prefix

represent MAX sub-patches in the prog:am. These objects are double-clicked with the

computer mouse to open a window, within which control is provided over parameters

associated with the object name. Objects without the p prefix are also double-clicked either

to show data collections (coil and capture) or to configure MIDI parameters (noteout and

pgmout). Objects with numbers and a right pointing triangle (number boxes) allow the setting

of numbers, and square objects with, of without, inner circles are switches that turn a

function on or off. Shaded rectangles are bar graphs in which the computer mouse can be

clicked and dragged to set numbers.

Figure 8.7 Phrase Garden, Main screen

172

8.3.2. Pitch generation algorithms

In the initial development of P irase Garden, a decision was made that pitch

generation would be controlled by the intervallic content of the note matrices used in the

compositional style, as opposed to the individual notes of the note matrices. In instrumental

works composed prior to 1994, note matt ices used within the compositional style included

notes of an original note series, along with notes from an inversion of the original series. The

use of both original and inverted note series resulted in differing pitches within a work,

although interval content in a work remained constant. This shift in focus, from notes to

intervals, allowed the development of Phrase Garden to be based on the Blind Watchmaker

model. In Phrase Garden, as in Blind Watchmaker, phenotypes are developed from a

genotype. Phrase Garden phenotypes are musical phrases, and its genotypes are intervals.

8.3.2.1. The Replication algorithm

At the heart of Phrase Garden's pitch generation is an algorithm for the self-

replication of a single pitch, referred to as the Replication algorithm. Like the Dawkins

example of Figure 8.5, which begins from a single pixel, Phrase Garden uses a single pitch

as a 'seed' for the evolution of phenotypes or phrases. This pitch is supplied by the user with

either the on-screen keyboard, or with an external MIDI device. 'The Replication algorithm

takes the seed pitch, for example a midd 'e C, and replicates the pitch a number of times

according to a desired phrase length setting which is set with the Phrase Length number box

on the main screen. Figure 8.8 shows the MAX patch used for pitch replication. With the

exception of the Phrase Length number box and the coil object, all objects in the patch are

hidden from view on the main screen of the program.

173

stripnote

Phrase Length
store $ $2

Pith C olleetion
(Phenotype)

if':it < i2 then
else out2 Sil

COil:	 	
0, 60;
1,60;
2, 60;
3, 60;
4, 60;

Figure 8.8 Phrase Garden, Replication algorithm and coil contents

The notein object shown in Figure 8.8 receives a MIDI note-on message when a

pitch is played by the user — in this example, a middle C (MIDI note number 60) — and a

MIDI note-off message when pitch is released. The stripnote object filters out MIDI note-off

messages, and passes on the MIDI value of the pitch received. The MIDI pitch value is

assigned an index number of 0 in a 'message box' immediately beneath the stripnote object,

and the pitch value itself is defined as $1 , , argument 1). In the next message box the index

number is defined as $1 (argument 1) and the pitch value is $2 (argument 2). The number

pair is sent to the 'store' message box which instructs the following coil object to store the

index and pitch numbers of 0 (the index) and 60 (the pitch). The number pair is also sent to

the unpack object which sends the index number out its left outlet and the pitch number out

its right outlet. The index number is incremented by one with the •+ object (from 0 to 1) and

174

combined again with the pitch value in the pack object. The new index number (1) and the

pitch value (60) are sent to the $1 $2 message box, stored in the coil object, and sent again to

the unpack object for another increment in the index number. This process is repeated in a

cycle or loop until an end condition, set with the if object, is met. The if object receives the

index number (labelled $11) in its left inlet, and a comparison is made with a number

received in its right inlet which is labelled $i2, and is specified by the user as the Phrase

Length number. When the index number is less than (<) the Phrase Length number, the index

number is passed onto the pack object and the cycle or loop continues. When the index

number is equal to the number specified in the right inlet (i.e. after five cycles), the index

number is sent out the right outlet of the if object, which is not connected to any further

objects and hence the loop or cycle is broken.

With a Phrase Length setting of 5 and a pitch input of middle C (60), five pitch values

are generated with the Replication algorithm and stored in the coil object with indices of 0

through to 4. The coil object appears on the Phrase Garden main screen, labelled Phrase 1,

and the contents of the coil object are viewed by double-clicking with the mouse on the

object. A window appears on-screen with the contents of the coil object, as shown in the

lower portion of Figure 8.8. Further MAX objects, not shown in Figure 8.8, are used to

trigger the pitch values stored in the coil object by stepping through the index numbers one

by one and sending the pitch value associal ed with each index number out a coil outlet. From

the coil outlet, pitch values are sent to MAX MIDI objects and then to external MIDI devices

for playback. The five pitch values in the coil object are sent out consecutively to form a

phrase, and in relation to the Dawkins model, this phrase is considered as a phenotype.

Whilst there is no genotype specified for the phenotype that is the pitch collection of

five middle C pitches, there is the existence of an underlying linear interval structure of 0 0 0

0 within the pitch collection (i.e. from one pitch to the next there is an interval of 0

semitones). En Phrase Garden, this underlying interval structure is viewed as the genotype of

phenotypes consisting of five repeated pitches. Considering the existence of such a

genotype, the Replication algorithm alone satisfies a significant portion of criteria of the von

Neumann model. Drawing on material in Figure 8.6, there is, as shown in Figure 8.9, a

175

genotype (0 0 0 0) which is passed through the Replication algorithm (Procedure Develop)

and a resulting phenotype of five repeated pitches.

Figure 8.9 Phrase Garden, Genotype to phenotype procedure

	

Genotype 1	 1Phenotype

	

[0 0 0 0]	

Procedure Develcp

[Replication
] [Pitch Collection]algorithm

8.3.2.2. The Interval weighting algorithm (p intervals)

In order to provide phenotypes with different genotypes from that shown above,

Phrase Garden incorporates a MAX sub-patch into the 'Procedure Develop' section of

Figure 8.9. In the Dawkins model, a recursive branching rule is incorporated in the

`Procedure Develop' section to develop an archetypal phenotype. In Phrase Garden, user

specified interval weightings are incorporated in the 'Procedure Develop' section to develop

a phrase.

The use of interval weightings in the development of Phrase Garden phrases

corresponds to the interval weightings used in the compositional style. As any interval, or

any number of different intervals, may be weighted more heavily in phrases intuitively

composed within the compositional style, the MAX sub-patch used for interval weighting in

Phrase Garden similarly allows a weighting on one or more intervals. The Interval

weighting algorithm, labelled p intervals, is a MAX sub-patch that is placed between the

unpack and pack objects shown in Figure 8.8. The note values sent: out of the right outlet of

the unpack object are passed to the inlet of p intervals. The p intervals object appears on the

Phrase Garden main screen, and is double-clicked to access settings for interval weightings.

Figure 8.10 shows the p intervals settings window in which interval weightings are

set within a percentage range. In Figure 3.10, semitones (interval 1) are weighted most

heavily (0-50%), whilst intervals of 2 semitones (interval 2) and 3 semitones (interval 3) are

176

Unison 1 (m.2nd)

50

2 (M.2nd)	 3 (m.3rd)	 4 (M.3rd)	 5 (P.4th)

Set % Intervals asending (+)

equally weighted with each having a 25M chance of occurrence within a phrase. Number

boxes below the percentage range number boxes indicate interval direction. The number 1

(the direction setting for interval 1 in the example) results in an ascending interval, the

number 2 (the direction setting for interval 2) results in a descending interval. The number 3

(the setting for interval 3) results in a probabilistic occurrence of either ascending or

descending intervals, a control placed at t le bottom of the window allowing the setting of a

percentage probability of ascending inter\ als. In Figure 8.10, this control is set to provide a

50% chance of occurrences of ascending intervals.

Figure 8.10 Phrase Garden, p intervals settings window

Figure 8.11a shows hidden MAX objects in the p intervals sub-patch, and is reduced

to show hidden objects from just two of the 12 interval settings controls within the sub-

patch. Pitch values from the pack object shown in Figure 8.8 enter the p intervals sub-patch

via the inlet object in the top left corner. From this inlet object, pitch values are sent

simultaneously to two different places: to another sub-patch labelled p choice, and to the

object immediately below the inlet object which is a MAX button object. Any data received

by the button object is converted to a positive action message (a bang in MAX terminology)

177

that is sent out the button outlet and recognised by other MAX objects. Pitch values received

by the button object are converted to bangs which are used to trigger pseudo-random numbers

in the succeeding random object. The random object outputs random numbers in a range

between zero and one less than a specified number. The specified number in this example is

100 and random will output numbers between 0 and 99. The following + object increments

each random number by one, so that the range is from 1 to 100, and corresponds to the

percentage range used in the interval settings controls.

The MAX split object receives numbers in its middle and right inlets and stores these

numbers respectively as the minimum and maximum in a range of numbers. Numbers

received in the left inlet are passed out the left outlet if they fall within the specified range,

otherwise they are passed out the right outlet. In Figure 8.11a a number produced by the

random object is sent to all split objects simultaneously, and the split object that has the

percentage range containing the random r umber sends the number out its left outlet. The

number from a split object left outlet triggers a message box containing another number that

represents the interval with which the split object range is associated. The message box

interval number is then sent to a MAX send object (send interval). The random number is also

sent, via a button object, to trigger a number box containing the interval direction number, 1,

2 or 3, this number then sent on to the sand dir object. MAX send objects correspond to

receive objects that have the same name as a suffix. The receive objects may be placed in the

same patch, or in sub-patches, and receive data from send objects.

178

Figure 8.11a Phrase Garden, p intervals settings controls and hidden objects

‘x,

1	 100

The receive interval and receive dir objects (abbreviated to r interval and r dir) are

placed in the sub-patch labelled p choice, the contents of which are shown in Figure 8.11b.

This sub-patch is another destination for pitch values received in the p intervals inlet, pitch

values initially sent from the Replication algorithm pack object shown in Figure 8.8. The p

choice sub-patch, then, receives a pitch value, a number representing an interval, and a

direction for the interval. The r interval object passes the interval number to both a + and a –

object. Both of these objects also receive a pitch value from the p choice inlet object, and add

or subtract the interval value to the pitch. As an example with the settings in Figure 8.10, a

middle C (60) may trigger a pseudo-randoni number of 99. This number falls into the range

of numbers associated with the interval value of 2. The + object will add the interval number

to the pitch value, resulting in 62, whilst the – object will subtract 2 to give 58 (i.e. a D

above middle C, and a Bb below middle C respectively). Once the additions and subtractions

have taken place, the results are passed to int (integer) objects which store the new pitch

179

values. The interval direction value associated with the interval value of 2 is 3 (either up or

down), which, in this example, corresponds to a probabilistic 50% chance of the interval

ascending, or a 50% chance of the interval descending. The gate object in the choice sub-

patch has three outlets that, from left to right, correspond to the interval direction numbers 1,

2 and 3. When the number 3 is received, as it is in this example, the right-most outlet is

opened. Pitch values from the inlet object are then passed through the right-most outlet to

trigger, with a button object, another pseudo-random number in a percentage range. This

number is passed to another split object that, if the number is in the range of 1 -50, sends it

out its left outlet. The number is then cDnverted to a bang which triggers the int object

(associated with the + object that has stored the number 62) to output its stored number. If

the pseudo-random number is out of the range of the split object (between 51 and 100), the

number is passed out the split object's right outlet and triggers the output of the – object

associated int storing the number 58. The adjusted pitch value is then sent out the outlet

object in the p choice sub-patch, then out al outlet object in the p intervals sub-patch. In the

Replication algorithm, the outlet of the p intervals sub-patch is connected to the pack object

where it is combined with an index number and stored in the coil as part of a pitch collection

or phrase.

Figure 8.11b Phrase Garden, p intervals, p choice sub-patch

180

Each new pitch value that is passed from the p intervals sub-patch back to the

Replication algorithm is, aside from being, stored in the coil object, returned to the p intervals

sub-patch, continuing the loop of the Replication algorithm until the index numbers assigned

to pitch values meet the end condition set with the if object. Referring to the interval

weightings shown in Figure 8.8, a possible . interval structure of a five-pitch phrase generated

with these settings is 1 1 2 3. Starting with a seed pitch of middle C, this interval structure,

as shown in Figure 8.12, can result in two different phrases due to the probabilistic direction

setting of 3 (either up or down) for the final interval of 3 semitones. The deterministic

settings for the upward direction of interval 1 and the downward direction of interval 2 result

in identical pitches in the initial four pitche s of the two phrases.

Figure 8.12 Phrase Garden, Phrases with interval structure 1 1 2 3

#♦- co E1-0- •

ii-41P-
AP-

St-O- a

Further possibilities for interval structures include all of the permutations of the

series 1 1 2 3, for example 1 2 3 1, 3 1 1 2 etc. Other possibilities are interval series such as 1

1 1 3 and 2 2 1 3, in both of which the original weightings differ from those set in the

intervals settings window. This is due to the variety of pseudo-random numbers supplied by

the random object in p intervals. With the use of the random object in Phrase Garden, there is

no specification that the intervals set in the interval settings must all appear in every phrase

produced by the program. Pseudo-random lumbers produced by the random object (between

1 and 100) may all fall into a single ran ;e of, for example, 50 and 75. With the interval

settings of Figure 8.10, this would result in an interval series of 2 2 2 2. However, such

occurrences are rare, the pseudo-random numbers provided by the random object generally

producing desired weightings of intervals.

181

In summary, the Replication algorithm provides a pitch collection of a length

specified by the user with the Phrase Length number box on the Phrase Garden main screen.

The p intervals sub-patch provides a means of specifying rules for the development of a

phrase, the rules entailing a user specified weighting of intervals. Probabilistic settings for

interval direction allow phrases with the lame interval structure to develop with differing

pitches.

The possibility of developing differing phrases with the use of the either up or down

(3) direction setting led to a provision in Phrase Garden of not just a single phrase being

developed by an interval series, but a series of four phrases. On the main screen, these

phrases are stored in the individual col! objects labelled Phrase 1 to Phrase 4. A main screen

function related to the generation of p -ifases is the Phrase Generate function, placed

immediately below the four coil objects. This function allows the user to specify the number

of phrases developed with a single interval aeries. The default setting of 1 to 4 allows all four

coil objects to store phrases developed on single interval series. For the development of a

single phrase, a setting of 1 to 1 is used.

In the development of a first phrase, pitch values from the pack object in the

Replication algorithm are sent to the p intervals sub-patch as previously explained. In the

development of succeeding phrases, the p intervals sub-patch is bypassed, the pitch values

going to another (hidden) sub-patch labelled p child in which the interval numbers from the

first phrase are stored, along with the direction of each interval. As pitch values in a

succeeding phrase enter the p child sub-patch, the interval and interval direction values of the

parent phrase are applied so that the succeeding phrase shares the same interval content as

the initial phrase.

Of the four different phrases stored in the four coil objects (with a 1 to 4 setting in the

Phrase Generate function), only the first phrase uses the seed pitch supplied by the user as the

initial pitch in a phrase. To provide the initial pitches of the remaining phrases, another

hidden sub-patch, labelled p trigger, is used. In this sub-patch is an algorithm that determines

the last pitch value, interval and interval direction of a preceding phrase, and provides a new

pitch based on those parameters. As an example, the last pitch in the first phrase of Figure

182

8.12 is an Eb, the last interval is 3 semitones, and the direction is a result of the either up or

down setting for the interval 3. Using these parameters to provide the initial pitch of a next

phrase, the interval of 3 semitones will provide, from the final Eb of the phrase, either a Gb

above the Eb, or a middle C. Which of the two pitches that appears depends on a

probabilistic decision made with a pseudo-random number supplied by a random object in the

p trigger sub-patch. The random object in this sub-patch is used to provide the interval

direction for the initial pitches of Phrase "c!, 3 and 4 when the interval direction supplied by

the p child sub-patch is either up or down.

The reason for supplying a new pitch as an initial pitch in each phrase is that Phrase

Garden primarily relates to the composiional style, and two consecutive phrases in the

compositional style rarely begin with the same starting pitch. Even rarer is any occurrence of

four consecutive phrases with the same starting pitch. The Cont. button (standing for

continuous playback) in the upper left corner of the main screen allows a real-time,

consecutive playback of phrases stored in the coil objects. Were phrases to begin on the same

starting pitch, phrases generated and played back in real-time would be always limited to a

narrow range of pitches, continually returning to the same pitch at the start of each phrase.

The algorithm that supplies a new pitch at the start of each phrase can result in pitch

movement through a wide pitch range.

Figure 8.13 shows a possible series of phrases beginning with the first phrase shown

in Figure 8.1.2. Each phrase shares the same interval content, 1 1 2 3, with which a limited

number of pitches are possible at the end o r each phrase when the interval directions are up

(interval 1), down (interval 2) and either up or down (interval 3) respectively. The final notes

of each phrase in this limited configuration are either Eb (D#) or A. Resulting pitches in the

phrases may, however, occur in various octave placements as shown with the first and third

phrases, and the second and fourth phrases, the differing octave placements being a direct

result of the supply by the p trigger sub-patch of different starting pitches for each phrase.

183

Phrase 1
	

Phrase 2	 Phrase 3
	

Phrase 4

Figure 8.13 Phrase Garden, Four consecutive phrases with interval structure 1 1 2 3

Phrase Garden provides controls for the playback of generated phrases in the upper

right corner of the main screen. As previously explained, the Cont. button, when checked,

allows continuous playback of consecutively numbered phrases. Playback in this mode is

initialised by clicking with the mouse on the Start button. When the Cont. button is

unchecked, as it is in Figure 8.7, the Start button is used to play a single phrase. After a

phrase is played, a second click on tide Start button initiates playback of the next

consecutively numbered phrase. As such, the continuous playback resulting from checking

the Cont. button results in a real-time generation and playback of phrases, and when the button

is unchecked, phrases can be listened to individually at the leisure of the user.

With the Phrase Generate function, a setting of 2 to 4 may be made, following the

generation of an initial phrase. With this setting, pitch values from the pack object in the

Replication algorithm are continually pz-Lssed to the p child sub-patch, and all phrases

generated have the same interval content as the parent (Phrase 1) but are subject to mutations

resulting from the use of the either up or down interval direction setting, and the change of

pitch at the start of each phrase. Phrases stored in the Phrase 2 3 or 4 coil objects are

overwritten with new phrases. Such a setting allows searches through the genetic space of

phrases developed with a single genotype. or, with the Cont. butt:on checked, the real-time

playback of phrases that each have the same interval content.

The provision of four consecutive phrases in Phrase Garden is analogous to the

Dawkins model in which a group of child biomorphs are drawn on-screen with the parent in

the centre. The initial Phrase Garden phrase phenotype (Phrase 1) is considered as the parent

of the ensuing phrases (Phrase 2, 3 and 4). In the Dawkins model, child biomorphs vary

from the parent as a result of a mutation in the genotype. In Phrase Garden, child phrases

vary from the parent phrase as a result of th,, algorithm that provides the child phrase with a

184

different starting pitch from that of the parent. As shown in Figure 8.13, the child phrases

(Phrase 2, 3 and 4) each have a differing set of pitches from those of the parent phrase.

Therefore, they may be considered as ;mutations of the parent phrase. This process of

mutation, however, is not analogous to mutation in the Dawkins model, as the algorithm for

providing a new starting pitch does not affect the interval series or genotype. The mutations

in the genotype that result from the use of the either up or down interval direction setting are

analogous to the Dawkins model. Use o f this setting results in child genotypes that are

identical to the parent genotype with the exception of an up (+) value, or a down (–) value in

one or more of the genes. In Figure 8.13, for example, the first phrase is considered as a

parent phrase with an interval genotype of 1+ 1+ 2— 3+, whilst the third phrase is considered

as a child phrase with an interval genotype of 1+ 1+ 2— 3—.

In reference to the genotype/phenotype modules of Figure 8.6, Phrase Garden child

phrases are considered to be formed as a result of algorithms that function within the

`Procedure Reproduce' module. The parent genotype is passed onto the child phrases within

the MAX sub-patch p child. As previously 3xplained, this sub-patch stores the intervals and

interval directions of the parent phrase and applies the intervals and directions to pitch

values entering the sub-patch from the Replication algorithm pack object. Figure 8.14 is

based on the genotype/phenotype procedure from Figure 8.6, and shows the corresponding

MAX sub-patches included in the modules to which the sub-patches are relevant.

185

Procedure
Reproduce

p child

Procedure
Develop

Replication algorithm
p intervals

Genotype 2 1—*

Genotype 3

	1■1 Genotype 4

Phenotype 2
Phrase 2

Phenotype 3
Phrase 3

Phenotype 4
Phrase 4

1—*

Genotype 1 Phenotype 1
Phrase 1

Procedure
Develop

Replication algorithm

Phrase 1
	

Phrase 2
	

Phrase 3
	

Phrase 4

Parent
	

Child 1
	

Clad 2
	

Child 3

Figure 8.14 Genotype/phenotype modules with corresponding M4X sub-patches

Settings of the Phrase Generate function that include Phrase 1 always result in pitch

values being passed through the p intervals sub-patch. If the Phrase Generate function has

settings of 1 to 4, a parent phrase, as previously explained, is formed as Phrase 1, and three

child phrases are generated, Phrase 2, 3 and 4. Further phrase generation initially uses the p

trigger sub-patch to provide a new starting pitch for Phrase 1 based on the final pitch,

interval and interval direction of Phrase 4. This pitch becomes a new seed pitch for a new

parent phrase developed in the p intervals sub-patch. Within the p intervals sub-patch, a new

genotype is produced; however, this genotype shares the same interval weightings of former

phrases. Where the formerly discussed interval series, or genotype, of 1 1 2 3 was one

possible example resulting from the settings in Figure 8.10, a new possible genotype of 1 2 3

1 may, for example, be generated with the same settings. Following on from the phrases

shown in Figure 8.13, a new set of parent and child phrases, based on the interval series 1 2

3 1 may be produced, as shown in Figure 8.15.

Figure 8.15 Phrase Garden, Four consecutive phrases with interval structure 1 2 3 1

186

The provision of a new genotype with each occurrence of Phrase 1 represents a

departure from the Dawkins model in that the first two generations, consisting of a parent

and child phrases, have a genotype which is not passed down to a third generation. Rather, a

new genotype is used in a third generation phrase, this genotype, as shown by the four

phrases in Figure 8.15, being passed down to a fourth generation of child phrases. In effect,

this process of providing a new genoty oe with each occurrence of Phrase 1, results in

variations to the intervallic content of phrases from one set of parent and child phrases to the

next. This process was implemented in Phi-ase Garden in accordance with the compositional

style, the phrases therein having a weighting on one or more intervals, yet from one phrase

to the next, interval content within the note matrices appears in various orders.

8.3.2.3. The Mutation Mode (p mutation)

The generation of a re-ordered interval series with each occurrence of Phrase 1 takes

place in a Phrase Garden mode of operation referred to as Variation Mode. A second

operating mode is also implemented in Phi-ase Garden, and is referred to as Mutation Mode.

On the Phrase Garden main screen, controls for switching from one mode to the other are

located beneath the p intervals object, the check mark against Variation in Figure 8.7

indicating that Phrase Garden is in Variation Mode. Where Variation Mode is implemented in

accordance with the compositional style and departs from the Dawkins model, Mutation Mode

is the opposite: this mode is implemented in accordance with the Dawkins model and departs

from the compositional style.

Mutations in Mutation Mode occw in the values of intervals. Referring to the

genotype/phenotype modules of Figure 8.6, alterations to intervals fall into the Dawkins

specification for Procedure Reproduce in which a parent genotype is passed onto the child,

but with some random chance of mutation. Unlike the minor mutations that result from the

applications of the either up or down interval direction setting in Variation Mode, mutation in

Mutation Mode is more comprehensive, with random changes in interval values occurring

between sets of parent/child phrases, along with the mutations that occur with the either up

or down interval direction setting between a single parent phrase and immediately

187

succeeding child phrases. In the Dawkins model, a child biomorph differs from the parent by

a value of +1 or –1 in one of its genes. In Mutation Mode, the same numerical values are

applied. Any gene or interval in an initial parent/child set may differ from genes or intervals

in the following parent/child set by a value of one semitone.

The overall phrase generation process in Mutation Mode is identical to that in Variation

Mode: parent/child phrase sets share the same interval genotype, minor mutations occurring

with the use of the either up or down interval direction setting. Child phrases that share the

same interval genotype as the parent are, in both modes, generated as many times as desired

though manipulation of the Phrase Generate function settings. However, where a new parent

phrase in Variation Mode contains a re-ordering of a previous interval genotype, a new parent

phrase in Mutation Mode contains the inter\ als of a previous genotype, but with an alteration

to a number of these intervals by a semitone step.

In Mutation Mode, a series of intervals and interval directions for a phrase is specified

with a coil object that is part of a sub-patch labelled p mutation. This sub-patch is located at

the top of the p intervals settings window, as shown in Figure 8.10. Default settings for

intervals and interval directions are stored within the p mutation coil object, these settings

automatically generated when a Phrase Length number is set on the main screen. The default

settings provide a quantity of index numbers, corresponding to the number of intervals

contained in a phrase of a length set with the Phrase Length number box. With each index

number, default settings are interval values of 0, and interval directions of 3, the either up or

down direction setting. Figure 8.16 shows the contents of the p mutation coil object, following

a Phrase Length setting of 5. The index number is first in each horizontal row, followed by

the interval value and the direction setting.

188

NE- co il:
1 , 0 3;
2, 0 3;
3, 0 3;
4, 0 3;

Figure 8.16 Phrase Garden, p mutation, coil defaults with Phrase Length 5

The default settings shown in Figure 8.16 may be altered to suit requirements of the

user, allowing the specification of particular phrases. As an example, the formerly discussed

phrase with the interval series 1 1 2 3 may be required as a starting point for phrase

generation. The default interval values (0 0 0 0) in the coil object may be replaced by typing

the required interval values, and the direction for each interval may be specified by replacing

(or leaving) the interval direction value of 3.

Further main screen settings for the generation of phrases in Mutation Mode are the

%Mutation number box and the Interval Range range bar. The %Mutation number box allows

control over the number of intervals in a phrase that will mutate from one parent/child phrase

set to the next. A setting of 0% (i.e. no mutation) will result in the continuous repetition of a

specified (or the default) interval series for an infinite number of phrases. At the other

extreme, a 100% setting will generally result in the mutation of all intervals from one

parent/child set to the next. The Interval Range control allows the specification of a range of

intervals that may be used in the mutation)rocess. The default setting is the full range of 0

to 1 1 semitones. Semitone mutations in Mutation Mode wrap around in the Interval Range, so

that, with the default, either up or down interval direction setting, a semitone step downward

from the interval 0 results in an interval of 11 semitones, and an interval step upwards from

11 results in a step of 0 semitones.

Once the intervallic content of a phrase has been specified, and the interval Range and

% Mutation controls set, a seed pitch is entered with the on-screen keyboard or an external

MIDI keyboard. Figure 8.17 shows interval series mutations over three consecutive

189

parent/child phrase sets generated in Mutation Mode. A Phrase Length setting of 5 is used, and

the example begins with the default interval series of 0 0 0 0. A Phrase Generate setting of 1

to 2 is used for the example, providing a parent phrase and a single child in each parent/child

set. A seed pitch of middle C is entered, with settings of 100% mutation and an interval

range of 0-11.

Figure 8.17 Phrase Garden, Example Mutation Mode output with default settings

Parent 1 (0 0 0 0)	 Child 1

.------	 ---...._ _.--
-CD-	 0	 -CO-	 0	 o

1	 Parent 2 (11 11 1 11)

e 	 itiv	 43-

Child 2
4*	 -CD-	 S -RD- -----------

7: i.
#	 Parent 3 (0 10 0 0)

1	 _

-CY

Child 3

.,

2

When the Mutation control on the main screen is checked, the p mutation sub-patch

receives pitch values from the Replication algorithm unpack object. These values are used to

trigger numerous objects within the p mutation sub-patch, and also objects in another sub-

patch within p mutation labelled p genmut. Both sub-patches are shown in Figure 8.18. The

sub-patches are complex: they receive ar, d implement values set with the %Mutation and

Interval Range controls on the main screen, they store intervals and interval directions, add to,

and subtract from, interval values, and send out new values. New values are sent to, and

stored in, the p child sub-patch, and are sent to the p choice sub-patch within p intervals. From

the p choice sub-patch the new values are sent, as they are in Variation Mode, on to the pack

and coil objects in the Replication algorithm. The preceding discussion of Mutation Mode

serves to detail the pitch generation processes carried out in the mode, making a detailed,

object by object, discussion of the complex p mutation and p genmut sub-patches unnecessary.

190

Figure 8.18a Phrase Garden, p mutation sub-patch

191

if $il > $12 then
$il else out2 $il

Figure 8.18b Phrase Garden, p genmut sub-patch

Figure 8.19 is a schematic diagram that shows the flow of data between the

Replication algorithm, the two modes of pitch generation and child phrases. Vertical arrows

in the Figure represent the flow of data when a parent phrase is generated. Horizontal and

angled arrows represent the flow of data when a child phrase is generated. The diagram

provides an overview of the manner in which Phrase Garden implements the algorithms

previously discussed in the generation of pii ch material.

192

child phrase(s)parent phrase

V

Replication
Algorithm

4 child intervals/directions
p child
p choice

Variation/Mutation
Mode algorithms

p intervals
p mutation
p choice

Figure 8.19 Phrase Garden, Data flow schematic diagram

Pitch values from the Replication algorithm module in Figure 8.19 are sent to the

module containing the algorithms used for pitch generation in either Variation Mode or

Mutation Mode. Within the latter module, a pitch value is incremented or decremented by an

amount specified by the user, either through interval weightings, in Variation Mode, or

through the specification of particular intervals, in Mutation Mode. The new pitch value is

passed back to the Replication algorithm, and is then stored in the parent phrase module. The

pitch is also returned to the Variation/Mutation Mode module and the process is repeated. The

cycle or loop in which pitches are passed from the Replication algorithm to the

Variation/Mutation Mode module continues until an end condition (i.e. the number of pitches

required in a phrase) is met.

Each interval value, and interval direction value, provided by the Variation/Mutation

Mode algorithms is sent to the child phrase module, in which the values are stored. After the

parent phrase is complete, a MAX gate object in the Replication algorithm module is used to

direct pitch values to the child module, as opposed to sending pitch values to the

193

Variation/Mutation module. Pitch values entering the child module are incremented or

decremented using the intervals formerly stored within the module. Pitch values are then

returned to the Replication algorithm module, and stored as child phrase(s).

Once a user-specified number of Alild phrases have been played, the gate object in

the Replication algorithm module re-directs pitch values back to the Variation/Mutation Mode

module. When Variation Mode is used, a I e-ordering occurs of intervals used in the former

parent/child phrase set, however, the re-ordered interval set uses the same interval

weightings of the former parent/child phrase set. When Mutation Mode is used, an alteration

occurs to intervals used in a former parent/child phrase set, the alterations in the form of

semitone steps.

Phrase Garden also provides a function for the auditioning of generated phrases, in

effect, by-passing the re-ordering of intervals in Variation Mode and the alterations to intervals

in Mutation Mode. The auditioning function is controlled with a button object and a number

box labelled Phrase Audition on the main screen. Once a set of parent/child phrases are

generated, the Phrase Audition button may be clicked, and a phrase number selected in the

number box. Clicking the main screen Sta -t button results in the output from a Phrase 1 to 4

colt object that corresponds to the number selected in the number box. This function is used

when a set of parent/child phrases contains possible solutions to a compositional problem,

and the user desires either a repeat listening to a phrase, or to compare one generated phrase

with one or more others.

Another Phrase Garden function related to pitch is the System Reset button in the top

left corner of the main screen. This buttor is clicked whenever the user desires to clear the

contents of the Phrase 1 to 4 coil objects, ani begin anew with a new seed pitch. The function

is also used when a change of starting pitch from one phrase to the next is not desired. As an

example, a phrase that begins with middle C may be desired, and a first phrase generated by

the program and stored in the Phrase 1 coil may be unsatisfactory. Clicking the System Reset

button clears the unsatisfactory phrase from the Phrase 1 coil, and the program is then ready

to receive another middle C seed pitch, and generate a new phrase starting with that pitch.

194

smil•MML

2 Octaves

No Octave
Transposition

1 Octave

3 Octaves

4 Octaves

8.3.2.4. The Octave algorithm (p 8ves)

Another sub-patch in Phrase Garden that affects pitch is the sub-patch labelled p

8ves. In reference to Figure 8.19, this sub-patch is placed in the path of the downward

pointing arrows that return pitch values t3 the Replication algorithm module. In the actual

program, the sub-patch is placed between the p intervals/p child sub-patches, and the

Replication algorithm pack object. The sub-patch is placed on the right-hand side of the main

screen, and is double-clicked with the mouse to access settings for the control of octave

leaps in generated pitch materials. Figure g .20 shows the settings window for the p 8ves sub-

patch.

Figure 8.20 Phrase Garden, p 8ves control settings window

The settings controls in the p 8ves sub-patch allow a percentage weighting of interval

leaps within a phrase, in the same way that the intervals of 0 to 11 semitones are weighted in

the p intervals sub-patch. The design of the sub-patch is, in fact, virtually identical to that of

the p intervals sub-patch. The direction settings of 1 (up), 2 (down) and 3 (either up or down)

195

are also applicable with octaves, however, the either up or down setting is limited to a 50%

chance of movement either way, and is not alterable.

The p 8ves sub-patch takes pitch values passed to it from either the p intervals or the

p child sub-patch and applies a transposition of up to four octaves to pitch values, depending

on the settings made in the sub-patch. As an example, the first five-pitch phrase of Figure

8.12 (interval series 1 1 2 3) may pass through the p 8ves sub-patch with the settings shown

in Figure 8.20. With the setting of 80% No Octave Transposition, most pitch values will pass

through the sub-patch without change. The 20% setting in the 1 Octave range bar will,

however, result in approximately one fiftl of all pitch values received being transposed by

an octave. Figure 8.21 shows a possible alteration to the Figure 8.12 phrase as a result of the

20% 1 Octave setting. The third pitch (I) above middle C), is transposed up an octave as a

result of the p 8ves sub-patch.

Figure 8.21 Phrase Garden, Figure 8.12 phrase with octave transposition

	d

The p 8ves sub-patch was implemented in Phrase Garden due to limitations imposed

by interval ranges of 0 to 11 semitones in phrases produced in both Variation Mode and

Mutation Mode. The sub-patch was also imp]emented in accord with the compositional style in

which interval leaps greater than an octave are commonplace. As an example, a similar

phrase to the opening phrase of Tears and Coloured Diamonds excerpt shown in Figure 7.2

could be generated in Phrase Garden. The Tears and Coloured Diamonds phrase contains

12 pitch events, the second and last of which are vertical aggregates. Taking into account the

intervals between single pitches, and between single pitches and pitches within the vertical

aggregates, there are four intervals greater than an octave, equating to one third of the overall

196

interval content. In Phrase Garden, a percentage setting of 67% in the No Octave

Transposition range bar, and a setting of 33% in the 1 Octave range bar, will produce a phrase

with similar leaps.

8.3.:2.5. The Pitch Range algorithm (p pitch range)

The final sub-patch implemented - n Phrase Garden for control of pitch material is

the p pitch range sub-patch. This sub-patch is placed immediately after the p 8ves sub-patch,

that is, between p 8ves and the Replication algorithm pack object. Appearing on the right-

hand side of the main screen, the sub-patch is double-clicked with the mouse to access

settings controls. As the label implies, this sub-patch provides control over the range of

pitches present in a phrase. Figure 8.22 shows the settings controls of the sub-patch. A pitch

range may be entered with either the number boxes below the range bar, or by clicking and

dragging with the mouse in the range bar. Number boxes with pitch names and octave

placements (C3 is middle C) are also available to set pitch range.

Figure 8.22 Phrase Garden, p pitch range control settings

12

Set * of pitches used
if less than an octave
range required

As this sub-patch is the last in the series of sub-patches that generate and provide

control over pitch, it is highly probable tha numerous pitches received by the sub-patch will

be out of the desired range. When a pitch is out of the desired range, it is sent to one of two

hidden MAX if objects in the p pitch range sub-patch, depending on whether the pitch is lower

or higher than the specified range. In Figure 8.23, a pitch value of 48 has been received by

the p pitch range algorithm. This pitch is lc wer than the lowest pitch specified in the p pitch

range settings of Figure 8.22 and is sent to the number box shown on the far left of Figure

197

Pitch Value Lower limit Pitch Value Upper limit

95

fi2
then Sil e1
out2 $11

8.23. The following if object compares thy: received pitch value to the lowest pitch value, 60

in the specified range, and when the value is lower, the if object sends the value out its left

outlet. The following + object adds a value of 12 to the number, resulting in a new value of

60. The addition of the value of 12 results in the retention of the same note, but with an

upward octave transposition. Following the addition, the number is returned in a loop to the

inlet of the if object. Another comparison is made, in this case resulting in the value being

equal to the lowest pitch permitted in the specified range. As the new pitch value is within

the specified range, it is sent out the right outlet of the if object and then sent out of the p

pitch range sub-patch and on to the Replication algorithm pack object.

The p pitch range loop is implemelted to provide a pitch within the specified range,

no matter how far a received pitch value is from the range limit. For example, if a pitch

value of 12 is received, the loop through 1 he + object would result in four increments to the

value of 12, through values of 24, 36, 48, and finally the value 60, which is within the

specified range. The if object on the right of Figure 8.23 functions in exactly the same way,

but subtracts values of 12 from a receiN ed pitch value when the received pitch value is

higher than the upper limit of the specifiec range.

Figure 8.23 Phrase Garden, p pitch range octave loop algorithm

In general, the p pitch range sub-patch is provided to limit pitch ranges to those

available on acoustic instruments when Phrase Garden is being used to generate phrases

specifically for performance with such in itruments. In Figure 8.22, for example, the range

198

corresponds to that of the flute. The number box on the right of the p pitch range settings

window, shown in Figure 8.22, is used to define a range of pitches that is less than one

octave. When a number is specified in th s number box, increments in pitch values in the +

and — objects in Figure 8.23 are limited to the number specified in the number box. This

function is used when, for example, there is a limited range of MIDI numbers assigned to

different timbres, such as in a set of 11 o_:• fewer samples in a MIDI sampling module, or a

set of 11 or fewer percussion sounds in a MIDI sound module.

8.3.2.6. Summary

During the development of Phras? Garden's pitch algorithms, the Dawkins model

proved to be highly valuable with regard to the initial development of phrase phenotypes

similar to those used in the compositional style. The interval weightings, in Variation Mode,

as genotypes, proved to be analogous to the rules Dawkins used to develop his archetypal

phenotype, and, through the use of the either up or down interval direction setting, were

successful in developing a range of child phenotypes within Phrase Garden. The phrases

that result from the weighting of a set of chosen intervals are deemed to be sufficiently close

in emulating phrases developed with the compositional style, and when pitches generated in

variation Mode are subject to octave transpositions, resulting phrases are very similar to those

developed with the compositional style.

Interval alterations in Mutation Mode, as previously stated, represent a departure from

the compositional style. This departure was deemed necessary in order to keep Phrase

Garden completely in accord with the Dawkins model. What this departure did present,

however, was a method of extending the existing compositional style. As opposed to the

previous use of a single set of intervals provided in the note matrices, the alterations of

intervals in Phrase Garden's Mutation Mode represent a method of further inherent growth of

pitch materials within a composition. Such growth was explored in the development of the

work entitled When Cinderella's Monkey Comes Here, I'll Feed Him, and is detailed in

Chapter Nine of the study.

199

Phrase Length

nex

to coil

8.3.3. Rhythm generation algorit

Figure 8.24 shows the main Phrase Garden Rhythm algorithm. On the main screen,

the Start button object, the sub-patch p rhythm, and the Phrase Length number box appear, the

remaining objects are hidden. When the Start button is clicked with the mouse, a bang (a

positive action message) is sent to the message box containing the number 0. The 0 is sent

on to the left inlet of the if object which has previously received, in its right inlet, a Phrase

Length setting. In the if object, the value C is compared to the Phrase Length number. The if

object determines that the number 0 is less than the Phrase Length number (the Phrase Length

number must, by default, be a value more than 2) and sends the 0 out its right outlet. The

number is sent to the message box containing the word next, this message recognised by a

coil object in the Replication algorithm containing a generated pitch collection. The word

next instructs the coil object to output the pitch value associated with the first index number,

and after output, a pointer within the coil object is moved to the second index number, so that

the pitch value attached to the second index number is ready to be sent out of the coil object.

Figure 8.24 Phrase Garden, Rhythm algoi ithm

In the Rhythm algorithm, the 0 value is also passed through the pipe object, after

which it is incremented in the succeeding + object by a value of 1. This new value is then

sent back to the if object, forming a loop, or cycle. This cycle is repeated, with increments of

1 occurring to each number passing throug h the cycle, and the cycle continues until the end

200

condition specified with the if object is met (i.e. when an incremented number is equal to the

Phrase Length number).

The initial 0 value, and subsequent incremented values, in the Rhythm algorithm are

also sent to the sub-patch labelled p rhythm. Within this sub-patch the values are converted to

bang messages which trigger user specified values corresponding to a number of

milliseconds. In the p rhythm sub-patch. a set of numeric values correspond to various

millisecond lengths, and are also represented in the sub-patch with common notation

symbols, the 1/4 note corresponding to 1 000 milliseconds. Within the p rhythm sub-patch,

the millisecond values are passed througt another sub-patch labelled p tempo, in which the

user specified millisecond values are converted to correspond to rhythmic values within a

user specified tempo. The 1/4 note representation of 1000 milliseconds, for example,

corresponds to one 1/4 note per second (MM 1/4 = 60), and a tempo of MM 1/4 = 120 would

result in a millisecond value of 500 milliseconds. The millisecond values are sent out of the

two sub-patches p tempo and p rhythm to the right inlet of the Rhythm algorithm pipe object

and any numbers received in the left inlet of the pipe object are delayed by the number of

milliseconds received in the right inlet. This delay in numbers provides rhythmic values for

pitch values sent out of the Replication algorithm coil object. As an example, if a tempo of

MM 1/4 = 60 is set, and a rhythmic value of 1/16th notes at that tempo are desired, the pitch

values sent out of the coil object will be sent out 250 milliseconds apart.

Rhythmic values in Phrase Garden are set within the p rhythm sub-patch located

beneath the playback controls on the rigs t-hand side of the main screen. The sub-patch is

double-clicked with the mouse to open the settings controls shown in Figure 8.25.

201

send value
normal value

tuplet

dotted value

Select Cell *

0 61 .1 : : 4P .P_

,_111. J.' 47 q .7

4000 2000 1000 500 250 125 62
Store Cell

View Cell Capture

View Stored Cells

capture

clear'

1111 Default Rhythms Rever

0,
1,
2,
3,
4,
5,
6,
7,
8,
9,

500;
1000;
500 500;
333 333
250 250
200 200
166 166
500 500
250 250
166 166

333;
250
2100
166
200
250
166

250;
200
166
200
250
166

200;
166
200
250
166

166;
200
250
166

200;
250
333

250;
333 333;

10, 200 200 200 200 200 200 200 200 200 ?.00;
11, 166 166 166 166 166 166 200 200 200 .?_00 200;

Figure 8.25 Phrase Garden, Rhythm control settings

Within Phrase Garden, rhythmic cells are mapped to interval values of 0 to 11, in a

similar manner to that in which rhythmic cells are mapped to user defined symbols or words

in Symbolic Composer. Each interval value is assigned one or more numeric values that

correspond to millisecond lengths. As shown in Figure 8.25, a 1/4 note value corresponds to

a numeric value of 1000, an 1/8th note value corresponds to a numeric value of 500, and so

forth. Rhythmic values are stored in the coil object shown in Figure 8.25, and this object is

double-clicked with the mouse to show stored values. Figure 8.26 shows the Phrase Garden

default set of interval to rhythm mappings. Interval values are the first number in each

horizontal row, and the one or more numbers that follow represent the rhythmic values (in

milliseconds) mapped to the interval value.

Figure 8.26 Phrase Garden, Default interval to rhythmic cell mappings

202

The rhythmic values shown in Figure 8.26 include values not shown in Figure 8.25.

These values, 166, 200, and 333 represent tuplet values. As a 1/4 note value is represented

by the value of 1000, a value of 333 will represent an eighth note triplet value (i.e., one-third

of a 1/4 note value). The value 200 represents a quintuplet value, and the value of 166

represents a 1/16th note triplet value.

Clicking the Default Rhythms buttor, the button at the bottom of Figure 8.25, clears the

default rhythms in the coil object, enabling the user to input desired rhythmic mappings. In

the following example, the interval weightings shown in Figure 8.8 are used, providing the

intervals of 1, 2 and 3 in a phrase. The interval 1 is mapped to a 1/4 note value, the interval

2, to two 1/8th note values, and the interval 3, to a 1/4 note triplet.

The first step in mapping rhythmic cells to intervals is to define, in the rhythm

control settings window, each interval used in the generation of pitch material. Each interval

is defined with the Select Cell # number box, and the defined intervals are stored temporarily

in the following capture object. Following the example, the interval 1 is defined first. The

next step is to select a rhythmic value to be mapped to the interval value. Rhythmic values

are selected by clicking with the mouse on the desired common notation representations in

the settings window. In the example, the desired value is a 1/4 note (1000). Once this value

is selected, the button (normal value) in the top left corner of the window is clicked to send the

rhythmic value to the capture object where the value is combined with the associated interval

value. The next step is to send the contents of the capture object to the coil object, by clicking

the dump message box. Once the contents of the capture object are sent to the coil object, the

capture object is automatically cleared, ready to receive the next interval value. In the

example, the next interval value is 2, define d with the Select Cell # number box. The required

rhythmic cell contains two 1/8th notes. The common notation 1/8th note representation is

clicked to select the 1/8th note value (500). The normal value button is then clicked twice,

once for each of the two required 1/8th note values in the rhythmic cell. The interval value

and two 1/81h note values are stored in the coil object by clicking the dump message box.

For the 1/4 note triplet values mapped to the interval 3, the common notation 1/4 note

representation is selected. The button and number boxes below the normal value button are

203

then used to define the triplet value. The left number box is used to define the number of

tuplet values the 1/4 note value is divided by, in this case the number is 3. When this number

is selected, the number box on the right displays the numerical value of 333, that is, one-

third of the 1/4 note value of 1000. The button object on the left is then clicked thrice, once

for each tuplet rhythmic value in the desired cell. Again, the dump message box is clicked to

send the associated interval value and the defined rhythmic cell to the coil object. Figure 8.27

shows the contents of the coil for the example.

Figure 8.27 Phrase Garden, Example interval to rhythmic cell mapping

1, 1000;
2, 500 500;
3, 333 333 :333;

Rest values are represented in Phrase Garden as negative numerical values. For

example, a 1/4 note rest is represented with the numeral –1000, an 1/8th note rest with the

value —500 etc. Rests are selected in the Rhythm algorithm settings window with the

common notation rest symbols, and stored in the coil object with the same procedure

followed for storing note values.

Once interval weightings in Variation Mode, or interval series in Mutation Mode, have

been defined, and rhythmic mappings from intervals to rhythmic cells have also been

defined, playback may be initiated with th,.; Start button on the Phrase Garden main screen.

Figure 8.28a uses the phrases shown in Figures 8.13 and 8.15 to illustrate the effects of the

rhythmic mapping detailed above. In the fist staff, the interval series of 1 1 2 3 is used. This

provides a rhythmic series (1/4, 1/4, 1/8, 1,'8, 1/8th note triplet) which is repeated to the end

of the staff. In the second staff, the interval series is 1 2 3 1, providing a rhythmic series (1/4,

1/8 1/8, 1/8th note triplet, 1/4) which is also repeated.

204

Nommomi
za.dior	 11111111111•■11IIIIIMIIIr AMP P"T•WIIIIIM■

I .6.,:& r

3 —1

Figure 8.28a Phrase Garden, Interval series 1 1 2 3 and 1 2 3 1 with rhythmic mapping

Notable in Figure 8.28a is the 1/4:cote value within the final triplet of the first staff,

This value is the result of an edit made with Finale notation software, the edit made to

provide a logical sequence of common notation rhythmic values that does not actually occur

in the Phrase Garden output. As shown in Figure 8.13, the four phrases generated with the

1 1 2 3 interval series each contain five pii ches, this number resulting from the Phrase Length

setting of 5. This number is not in accord with the seven rhythmic values contained in the

repeated rhythmic sequence. In Phrase Garden, the five-pitch phrases proceed using the

defined rhythmic values until all 20 pitc les (i.e. four sets of five pitches) are used. The

rhythmic sequences are repeated only until all 20 pitches have been stated, and then

immediately cease. This results in the possibility of rhythmic sequences ceasing before

completion. In Figure 8.28a, the rhythn- is sequence used on 1.he first staff is stated in

complete form twice, corresponding to 14 of the 20 pitches generated with the 1 1 2 3

interval series. The final six pitches correspond to the first six values of the rhythmic

sequence, after which the rhythmic and pitch materials generated by the 1 1 2 3 interval

series cease. Thus the seventh rhythmic value (a single triplet 1/8th note) is not used, and

results in an incomplete triplet.

In the actual Phrase Garden output, the final 1/8th note triplet value of the first staff

is replaced with the first rhythmic value generated in the next set of phrases. Figure 8.28b

shows the actual Phrase Garden output in the final measure of the first staff, and the first

measure of the second staff in common natation. The placement of the first rhythmic value

205

3	 r—	 3i	 3r-- 3 r— 3 -

(a 1/4 note value) within the final triplet of the first rhythmic sequence results in unusual,

and generally undesirable, common notation groupings.

Figure 8.28b Phrase Garden, Figure 8.28a (mm.3-4) actual output

The method of generating independent pitch and rhythmic materials in Phrase

Garden is analogous the 14th Century cc mposition formalism of isorhythm. Generally in

14th Century motets, the color (pitch patte -n) and talea (rhythmic pattern) are devised by the

composer to be of equal length, or else there is some subdivision that enables the length of

two or more talea to coincide with the length of a color. Such devising of rhythmic and pitch

patterns to coincide with one another is possible in Phrase Garden, representing one solution

to the problem of non-coinciding pitch and rhythmic patterns. Using the former interval

series of 1 1 2 3, for example, the Phrase Length setting may be adjusted to provide seven

pitches, to coincide with the seven rhythmic values provided by the rhythmic mappings.

Alternatively, the rhythmic mappings may be altered to provide five rhythmic values as

opposed to seven. A possible mapping is: interval 1 mapped to a 1/4 note value, interval 2

mapped to an 1/8th note value, and interval 3 mapped to two 1/16th note values. This

mapping provides a rhythmic series of 1/4 1/4 1/8 1/16 1/16 with the interval series 1 1 2 3,

the five rhythmic values coinciding with the five pitches generated by the interval series.

Some isorhythmic motets of the l z-th Century do present unequal lengths of color

and talea, for example the motet S' Amovrs tous amans joir, by Guillame de Machaut

(Schrade 1956, pp.127-9). In this motet, a talea of five measures is repeated thrice. At the

end of the third statement, the first measure of the pattern is repeated, extending the third

repetition to a six measure pattern. This extension of the talea is analogous to the editing of

Phrase Garden output within notation or MIDI sequencing software, as shown in Figure

206

8.28a, and represents a second solution to the problem of non-coinciding pitch and rhythmic

patterns.

The editing of the rhythmic output from Phrase Garden within notation or MIDI

sequencing software is a necessity when the output of the program is to be used by live

performers using common music notation. Pure MIDI performances of Phrase Garden

output do not, however, require any editing unless the MIDI output is used in a real-time

collaboration with a live performer. A real-time MIDI performance will proceed regardless

of whether or not the end of a rhythmic pattern coincides with the end of a pitch pattern.

Whilst the current version of Phrase Garden does not have any algorithm implemented for

solving the problem of rhythmic material coinciding with pitch material, such an algorithm

could be implemented. The difficulty with the design of such an algorithm lies in

determining a length for the final rhythmic value in a rhythmic pattern. One possibility that

could be implemented is with a process of tracking the number of rhythmic values within a

time signature. For this process, a measure of Common time would, for example, equate to a

value of 4000 milliseconds with a tempc , setting of MM 1/4 = 60. Where the number of

values in the final measure of a rhythmic sequence is not equal to the number of millisecond

values of a measure, the final rhythmic N alue could be extended to fill the measure. This

solution is problematic however, due to the possibility that rhythmic sequences may end

early in a measure, on the first beat for example. Filling the remainder of a 4/4 measure with

a rhythmic value of three beats' duration may result in an undesired suspension of rhythmic

movement. If the Phrase Garden output is to be edited in notation or MIDI sequencing

software, the presence of the undesired rhythmic values is not problematic in that they may

be altered to a desired length. In a real-ti me MIDI performance, the presence of the long

rhythmic values is problematic in that they may result in an unchangeable presence of

undesired suspensions of rhythmic movement. In both cases, the implementation of the

algorithm is not beneficial, and for this reason, no such algorithm was implemented in the

program.

The p rhythm sub-patch is sufficiently discussed in the preceding paragraphs as not to

warrant a detailed explanation of the numerous MAX objects used to implement the interval

207

thresh X50

ccli

counter 250

clear

0

pack 0'0'

I goto

store $1 $

r Rep

counter 1 25 'clear

to rhythmic cell mappings. The ordering and implementation of rhythmic cells within

phrases according to the interval series is discussed below. This ordering is carried out in p

rhythm, and also in another sub-patch within p rhythm labelled p cellorder, shown in Figure

8.29.

Figure 8.29 Phrase Garden, p cellorder sub-patch

In the p cellorder sub-patch are two inlet objects, shown at the top of Figure 8.29. The

left inlet object receives the 0 value, and subsequent incremented values, from the Rhythm

algorithm, following the clicking of the Start button on the main screen. The right inlet object

receives rhythmic values stored in the coil object in p rhythm. When an interval series is

generated with a seed pitch from the Phrase Garden keyboard, or a MIDI keyboard, the

intervals are received by the p rhythm coil object which immediately sends out the stored

rhythmic values corresponding to the interval values. As an example with the mappings

shown in Figure 8.27, when the interval 1 is received by the coil object, the corresponding

rhythmic cell containing a value of 1000 (a 1/4 note value) is sent out of the p rhythm coil

object outlet to the p cellorder right inlet. Similarly, when the interval 2 is received, the

208

corresponding rhythmic cell containing the two values of 500 (two 1/8th note values) are

sent from the p rhythm outlet to the p cellorder inlet. With each rhythmic cell received, an

index number is created in p cellorder for the purposes of storing the rhythmic values in a cola

object in the p cellorder sub-patch. The index numbers correspond to singular rhythmic

values received. For example, if the interval 2 is received, there will be two index numbers,

one for each of the two 1/8th note rhythmic values in the cell. Figure 8.30 shows the

contents of the p cellorder coil object after receiving the interval series 1 1 2 3 with the

rhythmic mappings detailed previously.

Figure 8.30 Phrase Garden, p cellorder sub-patch contents with 1 1 2 3 interval mappings

1, 1000;
2, 1000;
3, 500;
4, 500;
5, 333;
6, 333;
7, 333;

When the Start button is clicked on the main screen, the 0 value is received in the p

cellorder sub-patch left inlet, and triggers an output of the rhythmic value associated with the

first index number in the p cellorder sub -patch. The number sent out is then subject to

conversion in the p tempo sub-patch, to ec uate the number with a corresponding, common

notation-based, millisecond delay at a desired tempo. From the p tempo sub-patch, the

number is, as previously explained, used as a period of delay in the Rhythm algorithm pipe

object, before the next number in the p cellorder coil object is stored as a new delay value.

The successive incremented numbers from the Rhythm algorithm then trigger the output of

consecutive rhythmic values in the p cellorder coil object, and the process is repeated.

The manner in which intervals are mapped to rhythmic cells in Phrase Garden

corresponds to the initial manner in which intervals are mapped to rhythmic cells in the

compositional style, for example, the interval 1 may, in both cases, be mapped to a single 1/4

note value. As a broader example, the initial numeric series for the Tears and Coloured

209

Diamonds excerpt shown in Figure 7.5 (1 2 4 5 4) may be mapped to rhythmic cells in

Phrase Garden of 1 = 1/4, 2 = 1/8, 1/8, 4 1/16, 1/16, 1/16, 1/16, 5 = 1/16th note quintuplet.

In variation Mode, if interval weightings of 20% for intervals 1, 2 and 5 are defined, along

with a 40% weighting for interval 4, the rhythmic output of the program will be limited to

the defined cells, in the same manner as a pitch series from a note matrix in the

compositional style corresponds to rhythmic cells mapped to a numeric series from a

numeric series matrix.

Where Phrase Garden departs fromn the compositional style with regard to rhythm is

in the development of further numeric series following the initial numeric series in a matrix,

3 6 9 9 5 for example, from the Tears and Coloured Diamonds excerpt. Phrase Garden will,

at any one time, use only the rhythm mar pings stored in the p rhythm coil object. However,

the default rhythmic mappings may be altered to provide a second numeric series related to a

composition in progress. By switching from a user defined set of mappings to an altered set

of default rhythmic values with the Default: Rhythms button, two sets of rhythmic series may

be used consecutively in real-time. Generally however, Phrase Garden is designed to

present numerous possibilities for phrases based on a particular set of intervals, allowing the

composer to search the genetic space of pl- rases that are viable for a particular period within

a composition. In the compositional style, there is only ever one numeric series used in any

one phrase, and as this can be stored in the p rhythm coil object, further interval to rhythmic

mappings are unnecessary until a new phr ise is required. When a new phrase is required, a

new set of interval to rhythm mappings may be defined.

8.3.4. Vertical aggregate algorithm n

Vertical aggregates in Phrase Garden are controlled with the main screen sub-patch

labelled p chords. The sub-patch is double-clicked to show the vertical aggregates settings

window, shown in Figure 8.31.

210

X = Chords on
1	 2E

3
coil

Chord Density

Transposition

colt

4

Phrase 1 coil contents:

0, 60;
1, 61;
2, 62;
3, 60;
4, 63;

p chords coil 1 contents:

0,
1,
2,
3,
4,

60
61;
62
60
63;

62

60
63;

63;

61;

Figure 8.31 Phrase Garden, p chords settings window

The four coil objects in p chords receive and store identical data to the four coil

objects on the main screen labelled Phrase 1 to Phrase 4. Hidden within the p chords sub-

patch, however, are numerous MAX objects that determine the pitch data being received in

the coil objects, and add to this data further- pitch data based solely on the data received. The

amount of added pitch data is controlled with the Chord Density setting. If a setting of 5 is

used, five pitch values will be randomly added to the pitch collection in each coil object.

Clicking the box next to each coil object places a check mark in the box and indicates that

the coil object is enabled to output any da,a it contains. When there is no check mark, data

stored in the main screen Phrase 1 to Phrase 4 coil objects is used for output. Figure 8.32

shows the contents of the main screen Phrase 1 coil object, and the contents of the p chords

coil object labelled 1. The content is based on the former interval weightings and directions,

that provided the interval series 1 1 2 3.

Figure 8.32 Phrase Garden, Phrase 1 and p chords coil 1 contents

211

A further control in the p chords sei tings window is the Transposition control. With the

setting of --12 shown in Figure 8.31, each pitch value that is addled to the coil is transposed

down 12 semitones. A non-negative setting of 12 would transpose each added pitch value up

12 semitones. The Transposition setting may contain any number, for example a setting of –1,

or a setting of 19 are both possibilities. The added pitch values shown in Figure 8.32 are

shown in transposed form (-12) in Figure 8.33, along with the common notation of the

phrase with the added pitches.

Figure 8.33 Phrase Garden, p chords coil contents with transposed pitch values

p chords Boll 1 contents:

0, 60
1, 61;
2, 62
3, 60
4, 63;

50 51;

48 49;
51;

a
111111,
rw.
N (..
IMP

#	 I9
1:1

liffieril
MOLE/
WI

As previously described, vertical ;aggregates in the compositional style are formed

intuitively from notes in a matrix note sea that is currently in use. Considering the general

lack of emphasis placed on vertical aggregates in the compositional style, the algorithm for

vertical aggregates in Phrase Garden is deemed sufficient for the generation of vertical

aggregates, with pitch values from a current pitch collection added randomly to the

collection to form vertical aggregates. W1 ere the results of the random placement of added

pitches is unsatisfactory, these pitches may be edited in notation or MIDI sequencing

software, or further phrases may be generated using the same interval structures until desired

results are achieved.

212

set Velocity range (0-127) 	 set Velocity range (0-127)

4

8.3.5. The Velocity algorithm (p velocity)

The Velocity algorithm in Phrase Garden is similar to the Velocity-range algorithms

in M and Jam Factory. Both determinis is and stochastic settings are available, and the

algorithm may be controlled in real-time. The Velocity algorithm in Phrase Garden is

provided purely for the enhancement o:' the real-time performance and auditioning of

generated phrases. The Velocity algorithm is contained within the sub-patch p velocity,

located on the lower right of the main screen, and i s double clicked to access velocity

settings. Figure 8.34 shows two examples of settings in the Velocity algorithm settings

window. The left setting is deterministic, with the minimum and maximum in the velocity

range set to 64 in the MIDI scale of 0-127, this number representing a continual output of

Phrase Garden pitches at a dynamic level of mp. The right setting is stochastic, the dynamic

range of the output with this setting randomly varied in a dynamic range off to fff.

Figure 8.34 Phrase Garden, p velocity settings

8.3.6. Output

Data from the coil objects on the Phrase Garden main screen, and/or from the coil

objects in the sub-patch p chords, is sent to a sub-patch labelled p output shown on the left,

hand side of the main screen. This sub-patch contains a hidden MAX object labelled makenote

which supplies a MIDI note-off message for pitch values received from coil objects, and a

length of delay between the MIDI note-on message and the supplied MIDI note-off message

is received by makenote from the Rhythm algorithm pipe object. The makenote object also

receives velocity values from the p velocity sub-patch and combines the velocity values with

213

received pitch values. The combined data is sent from makenote to the noteout object shown

on the left of the main screen, the noteout object then sending the data through a Macintosh

serial port to an external MIDI device.

Within the p output object, controls for recording data from the makenote object are

accessed when the object is double-clicked. The controls, shown in Figure 8.35, consist of,

from left to right, a button that deletes any blank space that may be recorded before the start

of recorded MIDI data, the record button, 1 he stop button, the play button and a loop button.

Figure 8.35 Phrase Garden, p output controls window

A recording using the p output recording controls is initiated with the record button,

before the Start button on the main screen is clicked to provide MIDI data for a sequence,

MIDI data is supplied to the makenote object and is heard in real-time, and following the

clicking of the p output record button, MIDI data is also received by a hidden MAX seq object

that stores the real-time performance as a MIDI sequence. Recording may be stopped by

clicking the p output stop button. Stored sequences can be played back by pressing the play

button, and if the loop button is clicked, the stored sequence is played back repeatedly.

The Sync button allows the stop a nd play buttons in the p output sub-patch to be

synchronised with the Stop and Start buttor s on the main screen. Synchronisation is linked to

computer keyboard keys, the space bar initiating playback of a stored sequence in p output

along with further generated MIDI data, and the return key stopping playback of a stored

sequence and further generated MIDI data. The midiout object and the Channel number box

allow the selection of an external MIDI device and MIDI channel for playback of stored

sequences.]By changing the MIDI channel and/or MIDI device, a stored sequence may be

214

played in combination with newly generated MIDI data, with each using a different MIDI

timbre. Clicking the Save As... MIDI File box brings up a standard Macintosh Save As dialogue

box, enabling a stored MIDI sequence to be saved as a Standard (Type 0) MIDI File.

Phrase Garden has four independent voices that each has its own version of the main

screen, which includes all objects previously discussed. The windows for each voice are

shown by selection of a voice number from a 'Voices' menu on the Macintosh menu bar.

Each voice functions independently, and the output of each voice may be assigned to

different MIDI devices, instruments and channels. Each voice has a p output sub-patch, and

therefore, there may be four sequences recorded, one in each voice, and each voice may then

generate new MIDI data whilst the formerly recorded sequences are playing. In total then,

there is the possibility of having eight simultaneous performances of MIDI data in real-time.

8.4. Summary

The inherent growth noted in the compositional style note and numeric matrices led

to an examination of various computer-based systems that simulate biological growth, in

particular, systems from the field of A-L ife. Of the systems examined, Richard Dawkins'

program Blind Watchmaker proved viable as a model for the development of Phrase

Garden.

As a summary of the Phrase Garden algorithms detailed in this chapter, a further

example is presented in which the openhg phrase of Tears and Coloured Diamonds, as

shown in Figure 7.2, is used as a basis for a development of phrases in the Phrase Garden

environment. Certainly the phrase as it appears in the work could be closely duplicated in

Phrase Garden by using Mutation Mode and precisely defining, interval by interval, the

interval content of the original phrase, along with the direction each interval takes. Some

variation to the phrase could appear however, with the random-based, percentage weighting

of octave occurrences within the phrase. Whilst close approximations of pre-conceived

musical material are a possibility in Plzras.? Garden, to endeavour to duplicate phrases is not

a primary focus of the program. Rather, thy; program is designed to present musical materials

based on underlying interval content.

215

Unison	 (m.2nd) 2 (M.2nd)	 3 (m.3rd)	 4 01.3rd)	 5 (P.4th)

21	 40

6 (A.4th)	 7 (P.5th)

41	 63

Set % Intervals asending IC+)

More suited to the example is thi. use of variation Mode, with settings of interval

weightings identical to those in the original example. For the generation of a new phrase, the

initial grace note of the original is ignored, providing an uncomplicated ten interval series

that maps directly to percentages, and the two, two-pitch, vertical aggregates of the

original, the upper pitch is momentarily igriored. In the original, the intervals are, in order of

appearance, 0 (actually an octave), 8, 5, 5, 10, 8, 11, 6, 3. Intervals 0, 3, 10 and 1 1 all

occur once and have a percentage occurrence of 10%, the remaining three intervals all occur

twice and have a percentage occurrence of 20%. With a ten interval series, a Phrase Length

setting of 1 1 is set on the Phrase Garden main screen. The percentages are then used as the

weightings in the p intervals settings window, as shown in Figure 8.36. The directions of the

intervals that occur once are set to correspond to the directions those intervals take in the

original, and for the remaining intervals, the either up or down direction setting (3) is used.

Figure 8.36 Phrase Garden, Example interval weightings

In the original, there are three leaps of an octave or more (i.e. a 33% probability of

occurrence). To correspond to these leaps, a setting is made in the Phrase Garden p 8ves

sub-patch settings window of 67% No Octave Transposition, and 33% 1 Octave.

216

0, 1000 125 125 125 125 100 100 100 100 100 1000;
1, 1000 125 125 125 125 100 100 100 100 100 1000;
3, 1000 125 125 125 125 100 100 100 100 100 1000;
5, 1000 125 125 125 125 100 100 100 100 100 1000;
6, 1000 125 125 125 125 100 100 100 100 100 1000;
8, 1000 125 125 125 125 100 100 100 100 100 1000;
10, 1000 125 125 125 125 100 100 100 103 100 1000;
11, 1000 125 125 125 125 100 100 100 100 100 1000;

The rhythmic content for the example is a single cell that corresponds to the entire

rhythmic content of the original. This eel; is mapped to each interval that occurs so that no

matter which interval occurs first in the generated phrases, it will trigger a rhythmic cell that

will last for the duration of the phrase. Figure 8.37 shows the contents of the p rhythm coil

object.

Figure 8.37 Phrase Garden, p rhythm coil contents

In the p pitch range sub-patch, the l ange of pitch for the example is set to correspond

to the range of pitch in the original (i.e. from A2 up to E5), where middle C is C3. In the

original, there are the two occurrences of vertical aggregates, the upper pitches of which are

within an octave of the lower pitch. In the p chords settings, there is a Chord Density setting of

2, which provides pitch values for the vertical aggregates that were previously ignored in the

interval settings. The placement of the upper pitches within the octave, and also the fact that

both upper pitches occur elsewhere in t le original phrase, indicates that a Transposition

setting of 0 (no transposition) is required in the p chords settings.

Figure 8.38 shows two different phrases generated with the above settings. In the

first phrase an interval series of 6 5 8 3 11 8 10 10 11 is generated. A downward octave

leap with the second interval of 8 occurs, resulting in a leap of 20 semitones, and an upward

octave leap occurs with the first interval of 10. As the interval of 10 moves downward, the

resulting G pitch, with the upward octave transposition, is only two semitones higher than

the former F pitch. In both vertical aggreptes in the phrase, the added pitch appears below

the pitch generated in the single line material.

217

2

5

5	 ___

le • • •

In the second phrase, an interval series of 10 8 5 6 5 8 5 6 0 11 is generated. With

both intervals of 8, the interval is descending, and an upward octave transposition occurs.

The final interval of 5 is descending and also occurs with an upward octave transposition.

The position of the added pitch in the vertical aggregates is, in the first, the E above the

generated single line pitch of A, and in the second, is the B below the C#.

Figure 8.38 Phrase Garden, Phrases based on Tears and Coloured Diamonds opening

Whilst the actual pitches presentcd in the two phrases of Figure 8.38 differ from

those in the original Tears and Coloured Diamonds phrase, all three phrases share

similarities in their underlying interval cc ntent. Such similarities make phrases such as the

two in Figure 8.38 viable alternatives to phrases such as those presented in a composition

like Tears and Coloured Diamonds. Phrase Garden's strength lies in this presentation of

viable alternatives for phrases at any p ,)int in a composition, the program, in general,

allowing the composer to search the genetic space of phrases based on desired interval

content.

With regard to the compositional style, the numerous algorithms within the program

combine, as shown in the former example, to present phrases that closely resemble phrases

developed 'with the compositional style: the use of Variation Mode allows the specification of

a desired interval content that may be weighted to present phrases that are similar to phrases

presented with the compositional style; Pa rase Garden rhythmic cells are linked to interval

218

content in a similar manner to the linking of rhythmic cells and intervals in the

compositional style; disjunct interval movement in Phrase Garden is achieved with

weightings on octave transpositions of pitch which simulate the disjunct interval movement

of the compositional style; and vertical aggregates in Phrase Garden are derived from pitch

materials already existing in a phrase, in a similar way to the manner in which vertical

aggregates in the compositional style are derived from notes of a currently used note series.

219

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66

