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SUMMARY

This thesis reports research on the crganization of the bilateral thalamo-Wulst
(thalamofugal pathway) and tecto-rotundal (tectofugal pathway) projections in the chick
using fluorescent retrograde tracers. It also examines asymmetry of these projections
and the differential contributions of the two visual pathways to functional lateralization.

The research began by examining the abilities of various fluorescent tracers to
label the bilateral projections of the two visual pathways. In the thalamofugal pathway,
rhodamine B isothiocyanate (RITC), Fluorogold (FG) and True blue (TB) were found to
label both the ipsilateral and contralateral projections. However, differential labelling
effects were found in the tecto-rotundal projections: RITC and red (rhodamine) beads
labelled both the ipsilateral and contralateral projections, but FG, TB and green
(fluorescein) beads labelled only the ipsilateral projections. It was found that FG and
TB (and maybe also green beads) were taken up by the nerve endings, were transported
possibly to the point where the axon collateral branches from the main axon, but failed
to be transported to the cell body.

After injecting RITC and FG or TB into the left or right visual Wulst, labelled
neurones in the nucleus geniculatus lateralis pars dorsalis (GLd) and the forebrain were
examined. The general pattern of labelling in GLd was found to be in agreement with
previous reports showing that the cell bodies labelled by tracers injected into the
contralateral Wulst are located in the dorsal-lateral parts of GLd and the ipsilateral
labelled neurones in the medial-ventral GLd. Although the distribution areas of
ipsilaterally and contralaterally labelled neurones overlap partly, very few double-
labelled neurones were found (only 0.01% double-labelled neurones). This suggests that
the ipsilateral and contralateral projections to the Wulst come from different neuronal
populations of the thalamus. In the forebrain, the labelled neurones were found in the
neostriatum frontale, pars lateralis (NFI), the neostriatum intermedium (NI), the dorso-
lateral neostriatum, and the archistriatum intermedium (Al). These intratelencephalic
connections may have significance for the functioning of the visual Wulst in higher
information processing.

Using RITC, it was possible to confirm previous findings of asymmetry in the
thalamofugal projections. In addition, the asymmetry was definitely located in the
contralateral GLd-visual projections because absolute counts of labelled neurones rather
than c/i ratio (the ratio of number of contralateral labelled neurones to number of
ipsilateral labelled neurones) could be used. The asymmetry is such that there are more
projections from the left side of the thalamus to the right visual Wulst of the forebrain
than from the right side of the thalamus to the left visual Wulst in the chick.

The organization of the neural pro ections from the optic tectum (TeO) and
pretectal nuclei complex, n. subpretectalis/n. interstitio-pretecto-subpretectalis (SP/IPS),
to the n. rotundus (Rt) in chicks was studicd using all five tracers. Both the ipsilateral
and contralateral tecto-rotundal projections were found to be organised topographically
in as much as different sublaminae of the stratum griseum centrale (SGC) project in an
orderly manner to Rt and the n. triangularis (T). The deepest stratum of SGC projects to
T. Deep SGC projects to the dorsal Rt and superficial SGC projects to the ventral Rt. A
band running through the centre of Rt receives input from the central sublamina of
SGC, and the caudal central Rt receives input from a deeper sublamina than does the
rostral central Rt. The SP/IPS projects to the ipsilateral Rt only and the projection order
is dorsal SP to dorsal Rt, ventral SP to ventral Rt and middle SP to the central band of



Rt. The neurones in IPS and the nucleus of the tractus tectothalamicus (nTT) project to
T. Thus, Rt and T receive topographically both tecto- (excitatory) and SP/IPS-
(inhibitory) projections. The possible functional implications for parallel information
processing in these projections are discussed.

FG and RITC were also injected into Rt on each side of the thalamus and the
labelled neurones in TeO were examined. In TeO, the distribution areas of the neurones
labelled ipsilaterally and contralaterally to Rt overlap completely and up to 45% of the
tectal cells were found to be double-labell2d by both FG and RITC. Therefore, many
tectal neurones have axon collaterals so that they project to the Rt on both sides of the
thalamus and must send information simultaneously to both sides of the brain. A two-
stage visual transmission model in the tectotugal pathway of the chick was proposed.

Using RITC, we found that the organization of the tectofugal visual projections
to Rt was largely symmetrical (males only examined). There are numerous projections
from each TeO to its contralateral Rt bui, in contrast to reports for the pigeon, no
asymmetry was present in these when considered across the entire TeO. However,
calculation of the ratio of contralateral to ipsilateral projections for the ventral TeO only
revealed significant asymmetry. Symmetry from the dorsal TeO was present in the c/i
ratio for projections. Despite this mild asymmetry in the ventral TeO projections, the
chick differs from the pigeon which has marked asymmetry in the contralateral TeO-Rt
projections.

The contribution of the two visual pathways to lateralization of visual behaviour
in chicks was assessed using unilateral injections of 0.5ul of 100 mM monosodium
glutamate into localised regions of the forebrain. Glutamate treatment of the left visual
Wulst impaired pebble-floor performance and elevated attack and copulation scores, but
this did not occur following injection of the right visual Wulst. Thus, the left visual
Wulst only is involved in the control of these three visually guided behaviours. By
contrast, glutamate injections of the left ectostriatum affected only the attack behaviour
and not performance in the pebble-floor task or copulation responses. The results
indicate that the tectofugal and thalamofugal pathways have different roles in the
lateralization of visual functions.

Functional lateralization of choice between a familiar and an unfamiliar chick was
examined using monocular testing. The left eye system (LES) is better able to recognize
conspecific individuals and then make a choice to approach one or the other than the
right eye system (RES). This lateralization is not dependent on light exposure during
the last stages of incubation. However, visual/social experience with broodmates
posthatching affects preference and choice: it elevates the ability of RES to recognize
conspecific individuals. It is proposed thal the tectofugal pathway is involved in this
performance, although higher centres must also have a role.

The final chapter discusses how the crganization of the two visual pathways may
be involved in the neural mechanisms underlying lateralized behaviours tested in this
thesis.
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