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1. Introduction  

Computer security has become a major challenge for all industries. A large 

number of intrusion detection systems (IDS) have been built to deal with 

intruders’ techniques and attacks. Hackers, however, are always looking for new 

ways to infiltrate computer networks. In particular, web services outside 

demilitarized zones are easy targets. There are a large number of intrusion 

detection systems available and they are based on a range of software and 

hardware technologies. Hackers are usually very smart in infiltrating software and 

hardware infrastructures, and have developed many different programs and 

practices to break into Wintel and UNIX systems, network services, web 

applications, databases, and other applications. As a result, companies have to 

spend millions of dollars to protect themselves from attack and on repairing the 

damage caused by hackers [57]. The 2001Code Red worm cost US$2.6 billion. 

The Microsoft SQL Sapphire/Slammer worm was very expensive and companies 

spent US$950–US$1.2 billion in the first week of attack in January 2003 [18] [24]. 

In 2002, a Computer Security Institute/FBI survey [63] reported substantial 

damages that costed $455 million. Firewalls were once considered a reliable 

protection method but intruders have also penetrated through firewalls. Most of 

the time, intruders hide their identities by changing the system’s security 

parameters or by stealing important company data [46]. Under such 

circumstances, it is almost impossible to trace attacks using conventional 
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intrusion detection systems, monitoring systems or firewall information because 

all the application and systems processes look normal [7]. 

A large number of businesses use UNIX-based applications for their critical 

networks as UNIX is a very stable and reliable operating system. UNIX, a 

backbone of distributed systems nowadays, was once considered to be a secure 

system over the network. However, recently hackers have developed new ways 

to break into UNIX systems as well. As a result, the task of developing monitoring 

and security infrastructure for UNIX-based systems, applications and databases 

has become a more tedious task than ever. To determine the nature of the 

attacks they are subjected to, and the damage caused by intruders, companies 

need automated threat detection tools which are based on a multiple 

simultaneous threat detection model (MSTDM) [61] [7]. 

On the other hand, the distributed systems industry, particularly in relation to 

UNIX security, is facing severe problems because detection tools are yielding 

high volumes of false positives and false negatives. Existing monitoring and 

intrusion detection systems could only provide low-level alarm events generated 

from systems parameters and network traffic. Most of the intrusion detection 

system sensors are based on processes, memory, disk utilisation, unauthorised 

attempts to gain access and IP-header information. Events are checked and 

compared to a database of known attacks (signatures) or with a profile of normal 

traffic [22] [2]. 

Usually, Intrusion Detection Systems use single-threat detection models to 

identify and block hackers’ intrusions and false alarms. One can classify a false 
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alarm as being either misuse detection or an anomaly detection. Network 

packets and system activities involving known misuses are examined for misuse 

detection. A pattern matching algorithm is used to verify packets and system data 

in misuse detections. Parameters or events that do not match the existing known 

patterns in the databases are considered to be anomalous. Alternatively, 

mathematical, statistical or machine learning techniques can be used for 

anomaly detection [52] [59]. 

It is the aim of this thesis to model, evaluate and build a multiple simultaneous 

threat detection system (MSTDS) in a UNIX distributed system environment that 

works alongside advanced intrusion detection systems. This research builds on 

computer security research on distributed simultaneous multiple sensor data 

fusion.  The outcomes of this research are beneficial to cyberspace researchers 

as they add to the knowledge about which particular models and algorithms 

would be relevant for tests on multiple simultaneous threat detection in 

distributed systems, such as in a network of UNIX systems. Likewise, they will 

also shed light on which multi-sensor fusion models that will require further 

research.  

 

1.1 Research Problems 

The research problem that this thesis addresses is "multiple simultaneous threats 

detection" in distributed systems.  It will use the UNIX environment as the 

platform for experimental evaluation. However, the benefits of this research are 
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more general, and are equally applicable to a distributed network running UNIX, 

Windows and other networked operating systems. 

In the past decade, a lot of research on intrusion detection systems has been 

done to prevent intrusions, false alarms and financial loss to the computing 

industry [19] [51] [68]. Most of the intrusion detection systems are based on a 

multisensor fusion approach that detects one threat at a time, particularly in the 

UNIX environment. In addition, the mathematical/statistical models that underpin 

the multisensor fusion approach used so far provide sub-optimal precision in 

multiple threats detection, resulting in increasing false positives and false 

negatives. These models are often based on Bayesian Theory, Dempster-Shafer, 

Extended Dempster-Shafer Theory, and Markov chains, etc. However, none of 

the existing models has made use of a combination of data rule sets which are 

attained by applying the set cover theory, followed by applying a hybrid model of 

Bayesian and Dempster-Shafer Theorems for improved detection [3] [37]. The 

segregation of data into appropriate groupings adds another optimisation or 

permutation layer in data analysis that increases the precision of threat detection. 

Existing multisensor fusion models were proposed to detect single threats at one 

particular time, but hackers can attack multiple systems simultaneously in a 

distributed computer environment. Therefore, there is a critical need for novel 

research in multiple simultaneous threats detection which provides improved 

precision and minimises the number of false positives and false negatives in live 

distributed system environments [14] [55]. 
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1.2 Existing Solutions 

Intrusion detection and monitoring systems are the most common tools used by 

security professionals. Most distributed networks, like in the UNIX environment, 

have deployed these monitoring systems in addition to security provided by 

firewalls. Pattern matching, signature-based and single-threat detection intrusion 

detection systems could only help in identifying and preventing known attacks. 

They possess a number of limitations against novel techniques and threats 

posed by insightful intruders [40][70].  

As an example, the existing intrusion detection systems in UNIX were tested on 

low-speed networks of up to 100Mbps and are of limited use for high-volume 

network traffic as they do not support switched and encrypted networks. Due to 

recent advances in technologies, researchers can now have the opportunity to 

use Gigabit ISS/Networks in their experiments rather than the low-speed 

networks [7].  

The following types of intrusion detection systems were identified during literature 

review:  

(a) Host-based intrusion detection systems: These systems have 

many limitations as they rely only on a particular host and do not 

represent the entire environment. Furthermore, they are only used to 

detect and maintain the particular system on which the IDS resides. 
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(b) Hybrid intrusion detection systems: These systems are used to 

send alarm notifications to security professionals from both the network 

and the host during attacks.  

(c) Network node intrusion detection systems: These systems have 

almost the same function as host-based intrusion detection systems. 

Network node intrusion detection systems only detect threats if they 

pass through the particular node where the IDS is installed. 

The basic approaches used by the aforementioned intrusion detection systems in 

detecting security events include: pattern matching (anomaly detection), pattern 

templates, network data analysis, statistical inconsistency detection, state-based 

detection, covariance matrix-based detection (deviation from normality), and rule-

based expert systems [52] [43] [21]. 

Different researchers have used various mathematical/statistical techniques in 

data fusion such as the Kalman filter, operational research, signal processing, 

pattern recognition, Bayesian theorem, Dempster-Shafer Evidential Theory and 

its extension, etc.[6] [44] [45]. 

Intrusion detection systems deal with sensors and use TCP/IP and its related 

protocols to detect network and internet packets. Different researchers use 

different sensor fusion models and their own strategies to detect threats. The 

most common statistical and mathematical techniques are Bayesian, Dempster-

Shafer, and Markov chains. In most intrusion detection research, each 

investigation requires its own methods of data fusion, and they are targeted to 
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detect single attacks and threats while attempting to achieve better results by 

improving precision [20][71]. 

Each of the above techniques has its own limitations, which has been the subject 

of much research in the past decade. As a result, intrusion detection systems are 

now obtaining better results in monitoring, detecting and preventing attacks and 

reducing the number of false alarms. 

 

1.3 The Importance of Multiple Simultaneous Threats Detection  

Most commonly, systems are designed to detect threats in the computing 

industry and provide security in general, irrespective of whether they are UNIX 

systems, Wintel systems or any other environments. All intrusion detection 

systems fuse system, network and processor data obtained from their sensor 

models. These data are obtained from the Internet, hyper channels, farm, cyber 

or individual hosts. The sensor models may exist in a distributed or a client 

server environment [56] [61].    

In large and complex computing businesses, it is very difficult to identify and 

evaluate threats. Existing intrusion detection systems are not able to trace and 

block immediate attacks. For example, hackers may attack a system through the 

TCP or launch a related attack from a different location. Attacks could also 

originate from separate switches or subnets by keep changing the IP addresses. 

Monitoring, evaluation, identification and tracking of such attacks require multiple 

simultaneous threats detection data fusion models. In conducting this thesis, not 
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much research in this area was found in the open literature. The few exceptions 

involve primarily the military networks [23] [69].  

Theories of estimation can be considered the most powerful tool for fusing data 

and deducing cyber attack rates, targets, origins, and related information. Data 

fusion is done by using processor-intensive mathematical and statistical 

methods. Bayesian Theory, Dempster-Shafer Theory, Optimisation, Least square 

estimation and Sequential estimation are frequently used data fusion methods 

[27]. 

Threat identification and known pattern recognition has been a challenging task 

during the development of intrusion detection systems. It is quite often done at 

the time of raw data collection. Researchers have commonly used templates for 

pattern identification [66]. Intrusion detection systems largely use simple 

templates. Tracking and estimation of threats based on fusion models requires 

cluster analysis, adaptive neural networks, and rule based systems. However, in 

distributed systems like the UNIX environment, mathematical and statistical 

models have mainly been used [49].  

Mathematical and statistical methods like Bayesian Theory, Dempster-Shafer 

and Extended Dempster-Shafer Theory, Theory of inference, Heuristic methods, 

and Parametric and Non-parametric approaches are the most widely used 

methods in data fusion models. These methods are also applicable in the 

decision making step of the data fusion process in distributed systems in order to 

identify multiple simultaneous threats. However, in developing advanced 
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intrusion detection systems, domain understanding of network application layers 

of the Internet should be incorporated [10]. 

Intrusion detection systems make inferences based on knowledge of the 

processes of multisensor data fusion – one of the most complex and challenging 

areas in the field. Different researchers have used different methods in order to 

achieve precision and accuracy in their results. One particular challenge is the 

difficulty in tracing the origin of attacks, and to determine the expected data loss 

or theft of the business information [47]. The problem becomes more complex 

when dealing with multiple threats, particularly in distributed systems on the 

Internet. The emergence of simultaneous security threats has underpinned the 

computing industry’s continual research and development into cyberspace 

intrusion detection systems. It becomes an inevitable challenge for computer 

professionals to develop improved intrusion detection systems that can provide 

optimised security. Multiple simultaneous threats detection models, based on 

multisensor data fusion, are one of the key requirements in this development 

process [56] [5].  

1.4 Approach and Methodology  

Researchers have used both Bayesian and Dempster-Shafer theorems in 

multisensor data fusion research. The aim is to maximise the precision of 

inference. However, most research focuses only on single attack detection [61] 

[21], while no research has previously looked into the use of set cover theory to 

bring increased accuracy and reliability into their proposed models. Set cover 
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theory is not a separate fusion process or technique. It is studied and applied in 

this research to prioritise and schedule different rule sets based on certain 

signatures or criteria during the fusion process [17]. Therefore, the use of a 

hybrid model integrating set covering with data fusion will be an original 

contribution that has not been reported before. 

Due to a lack of relevant prior research and literature on multiple simultaneous 

threats detection, it is not easy to compare intrusion detection systems, models 

or algorithms, particularly for distributed systems like the UNIX environment. Only 

a small set of papers have reported theories or algorithms that are relevant to the 

research on multiple threats detection. Furthermore, at the time of this research, 

multiple simultaneous threats detection models do not exist for the UNIX 

environment, in particular.   

If one focuses on the UNIX environment, the existing multisensor data fusion 

models found in most intrusion detection systems use only three 

statistical/mathematical models including the parametric and non-parametric 

probability model, the Bayesian model, and the Dempster-Shafer and Extended 

Dempster-Shafer models. Almost all of these models have been used to detect 

single attacks such as denial of service, email bombs, or buffer overflow. These 

models have many limitations, as described in [59] [43] [9]. Among these models, 

those that address issues that are similar to this research include the Intrusion 

Detection System with SNORT, the Signal Detection System Based on 

Dempster-Shafer Theory, and the Comparison of Fuzzy Detection with 

Dempster-Shafer and Bayesian reasoning in multisensor data fusion. 
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In this thesis, a novel multiple simultaneous threats detection model based on a 

hybridization of Bayesian and Dempster-Shafer Theory of inferences, along with 

set cover theory, is proposed. This hybrid data fusion model provides significant 

increase in precision of detection. It also provides new knowledge into future 

research of multiple simultaneous threats detection in distributed systems, and in 

particular on the UNIX environment.   

This thesis has involved a review of the relevant theories and literature that have 

been studied and applied in multisensory data fusion. The findings will be 

presented and analysed in the subsequent chapters of this thesis.  

Furthermore, in this thesis software modules written in Perl and UNIX shell 

scripts are used to perform two main functions: 1) identifying the types of threats 

or attacks by capturing and analysing multisensor data collected from systems 

and network layers in a UNIX environment, and 2) monitoring and evaluating 

these results based on existing signatures and conveying them to system 

administrators or operators. In order to simulate these two functions, a private 

experimental network set up by using a combination of UNIX and Windows-

based web applications as well as an Oracle database running business portal 

applications is used. Simulated data are collected in a distributed network 

environment from hosts as well as from the network. They are then analysed by 

using the proposed hybrid Bayesian and Dempster-Shafer model developed in 

this thesis. Additionally, the set covering module is used to populate threats data 

to the proper rule subsets.  



  

 12

The proposed data fusion model is able to identify more than one threat at a 

time. In addition, during experimentation, the number of simultaneous threats that 

can be detected by either of Bayesian-based model, Dempster-Shafer based 

model or the hybrid model (i.e. incorporating both theories and set covering) is 

compared. The set of empirical experiments was conducted on high speed 

networks since Gigabit Ethernet switches and routers have fast becoming 

affordable and available for private experimental environments.  

Multisensor data originated from distributed network systems and their critical 

applications like Java, database and web services are collected and analysed 

using mathematical or statistical methods like Bayesian and Dempster-Shafer 

theories. These data constitute the knowledge base for analysing threats 

collected from the set of distributed detection sensors. The complete model, 

based on each individual system in the distributed environment, provides a 

precise and more reliable model to detect multiple simultaneous threats from 

diverse locations. 

The proposed model and its optimisation can only be achieved using a 

combination of mathematical and statistical techniques [27] [42], augmented by 

the set covering theory. Set covering rules are rules of combination and 

scheduling. The latest approaches to applying these models are referenced in 

this research [3] [4] [62]. 

This research attempts to first transform the intrusion detection problem into a set 

covering problem. However, optimisation is not guaranteed. Efforts have been 

made to centralise the data fusion process using machine learning methods [8]. 
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Finally, in order to ascertain which model achieves the highest precision in 

multiple simultaneous threats detection, Bayesian, Dempster-Shafer, Extended 

Dempster-Shafer, and Generalized Evidential Processing (GEP) are 

systematically compared in this thesis. 

1.5 Significance and Innovation 

The proposed multiple simultaneous threats detection model and associated 

setup are innovative yet different in ways from existing research. As the thesis 

presents, the focus is on multiple simultaneous threats instead of single threat 

detection in distributed systems like the UNIX environment. The underlying data 

fusion model makes use of a hybridization of Bayesian and Dempster-Shafer 

models, along with set cover based filtering for removing improbable threats prior 

to fusion. 

The mathematical and statistical tools (Bayesian theory, Dempster-Shafer 

Theory, Generalized Evidential Processing, and set covering) work together to 

minimise response times for threats detection. The outcomes, when applied to 

the UNIX environment where many critical and high priority applications and 

databases of the IT industry are built upon, significantly improve UNIX security 

measures in practice. This is manifested in the lowering of false alarms from 

systems files, applications and databases that can cost companies involved 

millions of dollars. For example, system administrators set up rules for man-in-

the-middle attacks on Oracle or Java in a UNIX environment. These rules could 

incur many false positives. However, if there is not an Oracle or Java application 

running in the actual environment, it could lead to excessive processing costs for 
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the business without deriving any benefit. Similarly, false negatives might 

confuse security professionals [12] [56].  

Security professionals are always interested in detecting any alerts that might 

happen. However, genuine alerts should have the highest priority. This problem 

has been addressed by using evaluation monitoring and intrusion detection in 

security management systems. These intrusion detection systems, if deployed, 

should be demonstrated with high precision before they are applied in real 

businesses. Multisensor data fusion for multiple simultaneous threats detection, 

is therefore critical when setting up alert priorities [35].  

In summary, security engineers in businesses are always looking out for extra 

security measures to protect their critical business data. Comprehensive security 

knowledge and good decision support strategies are required to develop security 

management systems for critical business environments. It is obvious that if 

proper security is not provided it is not possible for a business to keep their data 

secure for its clients and business partners. It is also impossible to maintain 

reliability, integrity and the trust of businesses in the industry. Advanced security 

methods, like the research behind this thesis, fill an important need in providing 

high security levels demanded in the computing industry [61]. In order to define 

usable standards for auditing the security of distributed systems like the UNIX 

environment, new theoretical results on multisensor data fusion modelling for 

multiple simultaneous threats detection are highly essential. 
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1.6  Contributions of this Thesis 

This thesis proposes a novel data fusion model that is different from those used 

in existing intrusion detection methods. This data fusion model combines multiple 

simultaneous threats detection with multisensor data fusion techniques. It makes 

use of a hybrid model of Bayesian and Dempster-Shafer theories, along with set 

cover theory for filtering potential false positive and negatives. At the time of 

writing, no previous research has proposed a hybrid model, augmented with set 

cover theory, in distributed systems like the UNIX environment. Therefore, this 

thesis research can be considered a first step in making use of a combination of 

rule sets obtained through multisensor data fusion in distributed systems 

environment. 

In addition, earlier works on threat detection mostly reported experiments 

conducted on 100Mbps networks. Therefore, these results are not very likely to 

be applicable in ultra high speed networks. Nowadays, it is affordable to deploy 

gigabit ethernet components in both private and public environments. In this 

research, the results are applicable to high speed networks. 

In this thesis, the data fusion model proposed is a multiple simultaneous threats 

detection model based on a hybridization of Bayesian and Dempster-Shafer 

theories of inference, along with the set cover theory. This hybrid data fusion 

model increases the precision of detection while providing new knowledge for 

further research in intrusion detection in distributed systems like the UNIX 

environment. Successful implementation of the hybrid model is expected to 

reduce both financial and physical losses to various industries that require the 
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deployment of multiple servers in a distributed systems setting. In particular, web-

based businesses and future IDS researchers can benefit from the research 

behind this model.  

The proposed data fusion model is able to identify more than one threat at a time. 

In the experiments, how effective simultaneous threats can be dealt with by using 

Bayesian theory, Dempster-Shafer theory, and the hybrid model in conjunction 

with filtering based on set cover theory will be assessed. Another contribution of 

this research is that the results are applicable to high speed networks including 

the Internet /Intranet as well as both private and hyper-channel networks. The 

maximum speed attained during experimentation was one Gigabit per second.  

  

1.7    Organisation of Remaining Chapters 

The rest of this thesis details the research and development of the proposed 

multiple simultaneous threats detection system. Chapter 2 reviews the relevant 

literature. Chapter 3 gives an overview of the multiple simultaneous threats 

detection system, along with its architectural diagrams. Chapter 4 provides 

details of the data fusion models that were developed and applied in the 

empirical experimentation. Chapter 5 discusses the experimental setup, results, 

evaluation and comparison with related works. Chapter 6 gives the conclusion as 

well as identifying areas for future research. 
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2.   Literature Review 

In this chapter, literature on general concepts, issues and problems of intrusion 

detection are reviewed. In particular, current reports, progress and status 

regarding multiple intrusion detection systems used by security professionals, 

with emphasis on the UNIX environment, are examined. In addition, previous 

methods and approaches to security threats detection, especially on multisensor 

data fusion models and mathematical/statistical inference techniques, will also be 

discussed.  

 

2.1 Problems in Intrusion Detection 

An intelligent decision model for threat detection in any IDS using a multisensor 

data fusion approach often performs monitoring, evaluation and analysis of real 

time data. The intelligent decision model can be seen as the signature 

knowledge base of an inference engine [28] [41]. As a result of inferences 

derived from the decision model, the intrusion detection system sends an alarm 

to security professionals, system administrators or system engineers, so they can 

respond immediately. 

Multisensor data fusion technology has been widely used in military surveillance, 

planning, commercial applications, robotics, sensing, and medical diagnosis [9]. 

A multisensor data fusion system is mainly a physical component of an intrusion 

detection system. It gathers data from distributed systems and process them 
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based on an intelligent rule set to deduce information about events such as type, 

intensity and location of compromised applications and hosts. Multisensor data 

fusion systems additionally analyse and track the characteristics of the attacks 

and their possible sources.  They are capable of providing a greater degree of 

reliability in detecting threats when they could use a more accurate decision or 

inference model.  

Multisensor data fusion is a relatively a new area in threat detection and many 

scientists are working on it in different fields to increase the precision of their data 

simulations. Multisensor data fusion techniques have been used very little in 

UNIX systems due to the complexity of these environments. In the near future it 

may not be easy to standardise multisensor data fusion in UNIX environments 

[10].  

Theoretical knowledge of multisensor data fusion is limited. The required 

knowledge is diverse because of the large number of different fields involved. The 

inference engines used to detect threats are also diverse. This area of knowledge 

is very dynamic and is always changing. Due to the complexity of cyberspace 

environments and their widespread accessibility, it has become more challenging 

than ever to determine the origins, rates and level of damage of multiple 

simultaneous attacks. Most critical databases and business applications run on 

UNIX networks, and so multiple simultaneous threat detection requires integration 

and development of areas like statistics, mathematics, artificial intelligence, 

pattern recognition, and cognitive  and decision theory [5] [27].  

There is a pressing need to apply multiple threats detection systems in 
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cyberspace. Data mining is one option which can assist in developing some 

useful signatures for intrusion detection systems. Data of legacy systems stored 

in data warehouses could also be analysed. Therefore, a lot of research works 

are expected to develop reliable intrusion detection systems using an efficient 

multisensor data fusion model. It is hoped that the review given in this section 

might encourage researchers and security professionals working in distributed 

systems like the UNIX environment to carry out research to increase their 

understanding of the current status and challenges of advanced multiple 

simultaneous threats detection in the cyberspace [49] [33]. 

 

2.2 Multisensor Data Fusion 

The most commonly used inference techniques are Bayesian inference, 

Dempster-Shafer theorem, fuzzy rules, parametric and non-parametric 

approaches, and the Kalman filter [21][9][4]. Some researchers have also used 

other approaches like the Chapman-Kalmogorov prediction integral along with 

Bayesian and Dempster-Shafer models [27] [1].  

Inferences are made about threats, groups and their locations using distributed 

sensing. Multisensor data fusion is used to combine data from multiple sensors 

on the same or separate networks. Cognitive rule sets are applied in these data 

fusion systems in exactly the same way as human brains process and respond to 

data from sensory organs [8]. 

Statistical parametric/non-parametric, mathematical and heuristic techniques 
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such as the basic theory of inference, Bayesian theory of inference, Dempster-

Shafer and Extended Dempster-Shafer theories, artificial intelligence and 

operation research, are the basic requirements for any data fusion model in 

technical systems [64].    

In the vast majority of cyberspace intrusion detection systems, data fusion 

models obtain their input from sensor data created by systems commands and 

priority data accumulated in already established databases. For example, system 

data may come from sniffer packets, system log files, SNMP traces, system 

messages and other related activities collected from various components of a 

complex distributed environment. It can be expected that after processing the 

inputs, any intrusion detection system will produce findings about the attacker’s 

identity, the type and rate of threats, the location of the attack, and an evaluation 

of the severity of the damage to the environment [59] [5]. 

It is well known that intrusion detection systems cannot detect all attacks 

launched by skilled hackers. The Langley Cyber Attack is one example. Security 

professionals were unable to detect this email bomb attack until critical servers 

crashed. It has also been discovered that hackers usually devote a significant 

amount of time to understanding the rule set of any intrusion detection system 

and to finding loopholes in the application or database environments before they 

design an attack to breach the computer security. In other words, hackers take 

advantage of loopholes in the rule set within the intrusion detection system. At 

the same time, false positive and false negative alarms are one of the biggest 

problems in distributed systems like the UNIX environment. Quite often, system 
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administrators and security professionals sound the alarm for a possible threat, 

and this usually requires a lot of investigation and analysis of the database, 

application and system data. This exhausts both time and significant financial 

resources. If such alarms are considered normal and are not given any attention, 

it becomes easy for hackers to filter their attacks through such weaknesses in the 

design [52] [57].  

Existing intrusion detection systems designed to combat advanced attacks and 

provide remedies are not adequate. The complexity of most UNIX based 

systems, for example, is very high and sequential monitoring and assessment of 

network traffic from all possible heterogeneous sources would be required to 

detect, verify, block and assess high-level cyber attacks. Internet protocols are 

evolving and could assist in detection in cyberspace environments, but TCP/IP 

security still remains a critical security issue for Information Technology groups 

[62]. 

Multiple intrusion detection models are also not yet capable of auto-tracking, 

identifying and remedying all suspected threats. For example, many of these 

models struggle to cope if hackers attack from various geographical locations or 

initiate attacks from one network and continue on another one, while 

continuously changing the IP addresses of attack packets. In order to develop 

intrusion detection systems which can cope with such situations, new technical 

solutions are needed. That is why there is currently a lot of research in the field 

of multiple intrusion detection systems, especially for the UNIX environments 

which execute critical business data for large companies. In summary, there is a 
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pressing need to develop multiple threat detection models in distribute systems, 

like UNIX [29].  

Hall [34] discusses the application of multisensor data fusion processes using 

mathematical techniques. The application of multisensor data fusion in intrusion 

detection systems is a complex endeavour at the lowest levels of data 

association.  Hall describes different approaches to data association in intrusion 

detection systems in his book.  

Hall used parametric data to detect threats related data from the network. He 

argues that mathematical and statistical theories of inference are required to spot 

possible attacks, rates of attack, targets and other related internet or network 

parameters. In order to achieve more precision and reduce false alarms, threat 

detection involves data association, optimisation and also least square or 

sequential calculation. It is therefore a very computationally intensive process 

and requires complex models and analysis [53]. 

Another researcher further emphasizes the complexity of the processes involved 

in identification and pattern recognition of the fusion model because of technical 

problems. Pattern recognition is derived from special characteristics of raw data. 

Different types of templates, comparisons and evaluations are used in such 

processes. Special rule set-based templates are used in currently deployed 

intrusion detection systems. Bayesian and Dempster-Shafer theories of inference 

have been used in multiple threats detection. Smith pointed out that rule-based 

knowledge can be refined using set covering along with Dempster-Shafer Theory 

[26] [60]. 
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Decision making in identifying threats using a fusion process requires very 

intensive analysis and inference. The most commonly used processes in 

intrusion detection systems are: heuristic and mathematical methods like 

classical inference, Bayesian theory of inference, Dempster-Shafer theory and its 

extension, and generalised evidence processing (GEP). As has been mentioned, 

the application of these data fusion processes within intrusion detection systems 

is a challenging task, requiring very good knowledge and skills of cyberspace 

trends and awareness of the cyberspace environment. 

It has always been an enormous task to design a reliable multisensor data fusion 

model for any intrusion detection system in cyberspace. Multisensor data fusion 

models require fusing of data from distributed sensors both from within and 

outside of its network environments. The distributed sensors must be located in 

all software and hardware infrastructure, including all services, processes and 

network events that are vulnerable to threat detection. 

One of the advanced steps in intrusion detection system development is the 

extension of the single threat detection models of Braun [9] and Dong and 

Deborah [28] into the Bayesian and Dempster-Shafer multiple threats detection 

models used by them in their multisensor data fusion model. To develop reliable 

threat detection models for generic intrusion detection in distributed systems 

environments, set covering is required for data refinement, data association rule 

set knowledge, data archiving, data cleansing, and data primary correlations and 

corrections. 
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2.3 The Importance of Simultaneous Threats Detection 

Researchers have used both the Bayesian and Dempster-Shafer models for 

intrusion detection. The Dempster-Shafer model is an advanced version of the 

Bayesian model. Benefits of applying these models include more precision 

inference, etc. However, they are used solely for single attack scenarios [50] [41], 

while there has not been reported work on their integration with set cover theory to 

derive more accuracy and reliability on their inferences. Set covering is not a 

separate fusion step. It is used in this research for prioritising and scheduling 

different rule sets based on certain signatures or criteria during the fusion process. 

As such, the use of a hybrid model along with set covering is a novel contribution 

of this research. 

In the review of literature mentioned earlier, different single threat detection 

models which use Bayesian and Dempster-Shafer theorems have been 

discussed. Extensions of these models to multiple threats detection are rare, but 

it is believed that their novel integration might bring about progress in research 

and analysis of multiple simultaneous threats detection.  

In this research, another novelty will be the verification of models or algorithms 

for intrusion detection that work for the network protocol layer as to their usability 

in other protocols such as the file transfer protocols and secure shells as in the 

UNIX environment. Experiments aiming to associate, validate, and categorise 

data in groups using both single threat models and the proposed hybrid data 

fusion model on multiple simultaneous threats will be carried out. To accomplish 

this, data related to different parameters of the experimental multiple 
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simultaneous threats detection system developed in this research will be 

systematically compared using the selected statistical and mathematical 

techniques. 

In the proposed multiple simultaneous threats detection system, there is a middle-

tier component that simulates the application layer and web servers. However, this 

middle-tier component could use different protocols and service hosts. The 

application layer is often a place where multiple simultaneous threats would occur 

because the network application layer below often poses security problems. The 

Secure Shell (SSH) protocol of the network application layer can be infiltrated from 

remote SSH and can also be exploited using root logins [13]. FTP daemon has 

many security problems, however, the remote root login is the most critical one 

[15] [16]. 

There are many arguments against the use of web servers’ cyberspace 

environments. Web servers are widely used as front-end applications, both for 

businesses and end users. Therefore, security of the web interface is more 

critical than the security of any other area of cyberspace, and threat detection in 

this area will have good returns in terms of threat detection and false positive rate 

problems. Web servers are the most commonly used cyber software and are 

more visible and less secure than other system components. They are mostly 

kept outside the demilitarized zone of private networks and therefore are good 

targets for hackers. Web-based infrastructure applications in distributed system 

environments are often being attacked. Microsoft’s Internet Information Server, 

being a leader in terms of its percentage share in the market, has been attacked 
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many times by hackers [54]. Web Sphere, Apache and Web Logic of BEA had a 

good record, but they have also been attacked by shrewd attackers [24]. Apache 

and PHP have had their own security issues at their code level [13]. Due to the 

above problems, a web application will be posed as the middle-tier component in 

the experimental setup. By this, the usefulness of the proposed multisensor data 

fusion model for effectively detecting multiple simultaneous threats can be 

demonstrated. 

Lastly, in the literature, single-threat detection models that have been applied to 

network application level existed [48] [11] [36]. However, the accuracy of their 

detection cannot be said to be sufficient. In addition, comparisons on multisensor 

and multiple threats detection in intrusion detection systems are few. Quality 

comparisons regarding multiple threats detection are even fewer, and there is 

none for simultaneous multiple threats detection in distributed system environment 

like UNIX. There is very few literature reported on the theory and the numerical 

results of multisensor data fusion techniques in intrusion detection systems, 

particular for the UNIX environment.  Therefore, the present research in multiple 

simultaneous threats detection will fill a gap in current research of computer 

security. The outcomes of this research, when applied to distributed system 

environment like UNIX, can be expected to help in minimizing critical data losses 

as it is the most commonly used operating systems for critical business 

applications nowadays.   

 

 



  

 27

2.4  Related Work 

There is no shortage of research work and literature on multisensor data fusion and 

intrusion detection in defence and other fields. However, if one investigates 

research about multiple simultaneous threats detection in distributed system 

environment, there is only a handful of research that has been done. Particularly, in 

the UNIX environment, multiple simultaneous threats detection research has been 

long overdue. This research will be of great benefit to UNIX computer security 

systems as hackers have become smart enough to break into mid-range operating 

systems like UNIX and its application security. Just a few years back, UNIX was 

considered a very secure operating system. All computing business based on credit 

cards, client profiles and other important financial transactions over the internet are 

now run on UNIX. Therefore, businesses need more security than ever before.  

Dong and Deborah’s [28] work on DARPA IDS evaluation data set proves that the 

combined fusion model of Dempster and the Extended Dempster-Shafer Theory in 

an intrusion detection system can improve its alert fusion algorithm. The use of this 

model has increased detection rates from 75% to 93.8% without getting many false 

positives. 

Siaterlis and Maglaris [61] concluded in their combined research that a multiple 

data fusion model of an intrusion detection system is a valid method to find out the 

accuracy of threat detection and false positive rates in any intrusion detection 

system. They used a detection engine based on Bayesian and Dempster-Shafer 

theories. The key achievement of their combined Bayesian and Dempster-Shafer 

model is in providing a method to combine probability masses via independent 
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evidence variables. Their DS model was: 

 

where M is probability mass function, T is the threat(s),  is the probability 

of an thi  threat of the thi  intrusion detection system for a particular type of the 

threat, and Mi is the membership function. However, the authors admitted that 

their model has been unable to detect multiple simultaneous attacks.  

Wu, Siegel and Rainer [33] discussed the relationship between Bayesian theory 

and Dempster-Shafer Theory in a data fusion model for an intrusion detection 

system as compared to a weighted probability method. They obtained promising 

results for research into using combined mathematical inference models.  

Habib and Hefeeda [2] and Siaterlis and Maglaris [61] used classical Bayesian 

methods for their data fusion of intrusion detection systems, and found a significant 

improvement as compared to early research work. The capability for early threats 

detection of multiple attacks in a distributed network environment and the chances 

of multiple threats detection of a distributed denial of service (DoS) threat 

increased. 

Diego Zamboni [26] used a signature-based detection model by looking for well 

defined patterns of attack that exploit weaknesses of the system. He used intrusion 

detection system infrastructure, implementation, testing and analysis of the 

multisensor data fusion to detect new attacks on the network. He also used 

anomalous behaviour patterns for anomaly detection. However, Diego does not 
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speak about any particular fusion model in his research. 

V.  Chatzigiannakis,   A.   Lenis ,   C.   Siaterlis,   M.   Grammatikou,   D. Kalogeras, 

S. Papavassiliou and V. Maglaris [67] proposed a data fusion algorithm for intrusion 

detection systems based on the application of principal component analysis of 

multisensor data for anomaly detection. They found that their fusion model is more 

effective than single metric analysis. 

Vladimir and Oleg [68] worked on an intrusion detection system fusion model in a 

distributed environment and suggest that a model which combines decisions is 

better than a meta model for intrusion detection. 

Kapil [48] researched a data fusion model for intrusion detection and analysis and 

argued that the development of novel solutions for intrusion detection architecture 

is required. He believed that the data fusion model should be based on rule set 

knowledge, expert systems, state models and string matches. 

Hervaldo, Carvalho, Heinzelman, Murphy, Claudionor and Coelho [35] concluded 

that threats detection fusion architecture can be used in other similar 

environments and circumstances.   

Hugh F and Durrant-Whyte [39] worked on decentralised sensing networks and 

described the mathematical methods underpinning a fusion model. They used the 

Kalman filter algorithm and other theoretical methods derived from the Bayesian 

theorem. 

Terry Brugger [60] discussed an offline data fusion model in threat detection by 

augmenting existing real time sensors. His research proposed a new area of fusion 
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using data mining techniques. However, he did not produce any particular model in 

his research.  

Although there is a large amount of work in data fusion for intrusion detection 

systems, there is very little work on multiple simultaneous threats detection in 

distributed systems like UNIX. 

This literature review will conclude by summarising some important points on 

multiple threats detection in different fields. Only a few are in distributed systems, 

and none involves multiple simultaneous threats detection in UNIX environment in 

particular.  

• Few papers were found on the comparison of intrusion detection systems 

models and algorithms, especially inference models based on Dempster-

Shafer and Bayesian models. Literature about intrusion detection systems 

based on set covers rule set is very limited and none exists for UNIX 

environment in particular.  

• Theoretical study of inference methods in data fusion models for multiple 

threats detection models is rare, and research in dealing with multiple 

simultaneous threats detection models incorporating set cover theory is 

not known. It seems that the theory of inference methods in data fusion 

models is still in its infancy. This is confirmed when multiple simultaneous 

threat detection models are reviewed. 

• From the literature reviewed, it is found that multisensor data fusion in 

intrusion detection systems for the UNIX environment have been done 
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using only three models to date. They were based on parametric and non-

parametric probability model, Bayesian theory of estimation, and 

Dempster-Shafer and Extended Dempster-Shafer theories. Almost all of 

the models are used to detect single IDS attacks like denial of service 

(DoS) and email bombs that have many limitations. 

• Anomaly-based intrusion detection systems do not use a network 

application layer in their data fusion models. 

• Development, testing and comparing data fusion models in multiple 

threats detection are rare, while research related to multisensor data 

fusion is even rarer. 

• Attacks from hackers have costed billions of dollars of damage [30] [65]. 

Currently available intrusion detection systems do not fully detect multiple 

simultaneous threats, and hence there is a pressing need for developing 

advanced-level intrusion detection systems. For this research, the 

following contributions are expected: 

o A multiple simultaneous threats detection model targeting future 

intrusion detection systems will be proposed     

o A high-level model/architecture that can address multiple 

simultaneous attacks in distributed systems like UNIX will be 

developed 

o An advanced multisensor data fusion model will be introduced 
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o An experimental environment for comparing data fusion algorithms 

in multiple simultaneous threats detection scenario will be 

constructed and used in empirical experimentation to demonstrate 

the usefulness of the approach 

o A comparison of data fusion models based on different 

mathematical inference techniques will be carried out        

Through verifying the model proposed in this research using both simulated and 

public domain datasets, an effective multiple simultaneous threats detection 

system will be produced. In addition to distributed system environment like UNIX, 

the outcomes of this research will be likewise applicable to the Windows 

environment on the condition that they operate on similar OSI layers and 

protocols.  

2.5 Results and Benefits 

The research of this thesis will facilitate the development of multiple 

simultaneous threats detection system to counter multiple intrusion attacks in 

distributed systems like the UNIX environments. It also provides an objective 

comparison on which inference models would perform the best. These models 

include Bayesian, Dempster-Shafer, and their hybridisation combined with set 

cover based filtering. Empirical experiments on both simulated and public 

datasets confirmed the benefits of applying the proposed multiple simultaneous 

threats detection model in a distributed systems environment like UNIX. 



  

 33

3. Multiple Simultaneous Threats Detection 
System 

 

The main aim of this research is to develop a hybrid data fusion model, 

comprised of set cover, Dempster-Shafer, Extended Dempster-Shafer and 

Generalised Evidential Processing (GEP), which can identify exact threat(s) with 

a high degree of precision. An analysis of the origins and directions of the threats 

themselves is beyond the scope of this research. 

In the simulation environment, which is conceptually the same as a client and 

server environment, a multiple simultaneous threats detection system is set up 

on different computer nodes across the distributed network. Computer nodes are 

comprised of multiple operating systems and are located on different networks, 

predominantly running the UNIX environment. Additionally, there are some that 

run the Windows environment. Each computer node has a different intrusion 

detection system that filters all the network data and collects threat-related 

information, which are then transferred to the computer node that hosts the 

multiple simultaneous threats detection system for further analysis.  

Under our assumption, computer nodes across different sub-networks receive 

different threats. In the experiments, four types of threats, including denial of 

service, man-in-the-middle, buffer overflow and Trojan, are initiated from the 

computer nodes (refer to Figure 3.1). 
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Threat nodes 

 

 

 

Fig 3.1:  Threat nodes used in experiments of the multiple simultaneous threats detection 
system 

 

The architecture of the multiple simultaneous threats detection system can be 

seen as a hybridization of the US Joint Directors of Laboratories (JDL) fusion 

architecture, the Waterfall fusion model, and the Omnibus model architecture [33] 

[43]. 

3.1 Types of Threats  

In order to generate four types of the following attacks, there are many software 

tools available in the market, however, I selected the following based of their 

efficiency and cost effectiveness.  

• DoS – Denial of Service 

IDS1 IDS2 IDS3 IDS4 
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• MITMA – man-in-the-middle attack or bucket-brigade attack or 

Janus attack  

• Buffer overflow or buffer overrun 

• Trojan Horses 

Each intrusion detection system collects network data, and filters them using an 

algorithm based on the cover set theory. The filtered data are then moved to the 

next level of data fusion within the multiple simultaneous threats detection 

system. Data might contain one, two, three, or four of the above threats, and their 

combination. There can also be false alarms in the data. The multiple 

simultaneous threats detection system processes the data through several 

statistical and mathematical techniques implemented, and makes decisions 

about the threats. 

Each of the client nodes of the multiple simultaneous threats detection system 

uses the set covering approach to filter the data into small subsets, followed by 

scheduling these subsets of data for onward statistical and mathematical data 

fusion. Another benefit of the middle-tier set covering layer is that the subsets 

combined will contain all the potential threats anticipated. 

 

3.2 Threats Generation Utilities 

The following set of utilities has been used to generate the threats data. 



  

 36

• ICMP and ping floods were used to generate “Denial-of-service 

attack” threats 

• Dsniff, Cain, wsniff, and airjack were used to generate “man-in-the-

middle attack” threats 

• elf-replication was used to generate “Trojan horse” threats 

• Morris and conflicker worms were used to generate “Buffer 

overflow” threats 

 

3.3 Why only Four Threats 

Naturally, there could be any number of threats happening simultaneously. 

However, in the experimentation, the number of simultaneous threats is limited to 

no more than four, in order to reduce the overhead in computing the threats’ 

probability masses and weights. As remarked in earlier sections, the processing 

cost for detecting more than four simultaneous threats will become too high for 

most practical purposes in small businesses. On the other hand, model based on 

the Generalised Evidential Processing (GEP) approach does not impose any 

restrictions on the number of simultaneous threats.  

 

3.4 Intrusions Detection Systems as Independent Observers 

In order to monitor all data packets that come through the testing environment, a 

switch on the network was installed to monitor and replicate all the packets. 
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Network data that pass through the OSI layer 2 (i.e. data link protocols, like 

Ethernet for local area network, ppp and others) and layer 3 (network layer, like 

source-to-destination packet delivery) are also gathered. The following software 

based on their market reputation and cost effectiveness are used for data 

collection: 

• MARS 

• Sniffers 

• Snoop 

• Wireshark 
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4. Data Fusion Process Models 
4.1 Architecture of the Multisensor Data Fusion Process Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1:  Architecture of the Multiple Simultaneous Threats Detection System 

  (The references and further details of these data fusion models are given in section 4.2 of this chapter) 
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4.2 Brief Description of the Multisensor Data Fusion Process Model 

The main components of the models are Set cover, Dempster-Shafer, Extended 

Dempster-Shafer and Generalised Evidential Processing theories underpin the 

multisensor data fusion model proposed in this thesis. Before presenting the 

proposed data fusion model, each of these four theories and their associated 

data fusion model will be described. 

 

4.3 Set Cover Theory 

Set covering helps the filtering of threats data into smaller subsets. At the same 

time, it assists in an optimal choice of computer nodes to process these data 

subsets. Details of the underlying process are discussed in the following sub-

sections. 

4.3.1 Overview of Set Cover 

 

Set covering is a branch of mathematics that deals with sets, subsets and their 

interaction sets. Simple facts regarding sets and their subsets are used in the 

cover sets of a multiple simultaneous threats detection system [37] [38]. In this 

thesis, the set union operation is applied in the generation of subsets. 

Importantly, set covering is used as the middle tier in the multiple simultaneous 

threats detection model to reduce the number of threats and schedule them for 

analysis in the next level of processing. For example, researchers at IBM found 

500 viruses/threats that had 9,000 data sub-strings of 20 bytes or longer. By 

using set covering, a set of 180 sub-strings that is sufficient to cover the 
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existence of 5,000 known viruses was obtained [38].  An additional benefit of set 

covering is its efficiency and short processing time. 

Data that contain threats like DoS, Buffer Overflow, Trojan horse, Man-in-the 

Middle, etc, constitute the universal set of the testing environment. Each data 

packet is assigned a number and placed in its relevant set based on the type of 

attacks it might belong to. Some of the data packets share a similar number, 

which are often neighbouring elements that are close to each other in their 

respective subsets. 

In the multiple simultaneous threats detection system of this study, the total 

number of elements is 2,274 (explained in sub-section 5.1.2) denoted by:        

                                    
1

n
ui

i
= �

=
�                            (1) 

Where �  denotes the universal set, and 
1

n
ui

i
�
=

is the sum of all the element 

(threats) in the universal set. 

In the experiment, the types of threats are represented by the corresponding 

subsets 

, , ,.....,1 2 3S S S S j ⊆  � while the cost of each set is , , , . . . . . ,1 2 3C C C C k  

In this thesis, threat(s) are present in different data sub-strings collected from any 

of the four different intrusion detection systems in the experimental setup. The 

objective is to find the group of subsets that together encompasses the minimum 

number of sub-strings representing threats, so that each set has all the relevant 
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sub-strings. A cover set obtained by using a greedy algorithm also provides the 

minimum cost represented by the quantity, Q, defined as follow: 

Q =  
1

i

m
C

i
�
=

                                                                   (2) 

where  
1

m
Ci

i
�
=

  is the combined cost of identifying the set of threats through set 

covering taken by the computers in the middle tier layer.  

4.3.2 Greedy Algorithm 

 

In this research, Greedy algorithm provides optimistic approach in finding the 

minimum cost of a node in its selection for the threat detection process. Greedy 

algorithm help to determine the most cost effective computer node, assign a 

value to all the nodes, decide if the node should be used or not in the experiment 

based on its cost value and assist in the progress of the threat detection for 

further data fusion using Dempster Shafer, Extended Dempster Shafer and 

Generalized Evidential Processing (GEP) [3][37].  

The cost effectiveness of selecting a computer node based on a greedy 

algorithm is denoted by  

 � =      
( )C Q

Q Z−
                                                                     (3) 

where   ( )C Q  is the initial cost for selecting the nodes by each intrusion 

detection system, and Z is the set with minimum elements and Q is the minimum 

cost of selecting the new node [36] [58].  



  

 42

4.3.3 The Generation of Threats for Set Cover 
 

In order to collect the four types of threats, four individual intrusion detection 

systems in the experimental environment were used to simulate the collection of 

2,274 malicious sub-strings of 15 bytes or longer. The threat data is a 

combination of all four types of generated threats. Set covering using the 

parameter K = 4 enables the creation of 4 pairwise disjoint subsets, which 

together results in a total of 295 threats. A Perl script was used to separate the 

set of pairwise disjoint strings into four subsets, that is a total 295 substrings after 

set covering was applied. In Table 4.2, one can observe that there is a 

considerable reduction in the number of threats in each of four original subset of 

threats collected by the four intrusion detection systems: 

Table 4.1: Set Cover reduces the sizes of the subsets of threat data 

The computer that runs the set covering algorithm then forwards the set of 

filtered data (i.e. the 295 sub-strings) on to the next level of the multiple 

simultaneous threats detection system, which executes the multisensor data 

Threats Data of Intrusion Detection Systems 

    IDS                   Before Set Cover                          After Set Cover 

Wireshark 128 122 

Sniffers 439 82 

Snoop 646 32 

MARS 1061 59 

Total Threats Alerts 2274 295 
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fusion algorithm. In this level of the architecture, the multiple simultaneous 

threats detection system analyses the filtered threat data by using a multisensor 

data fusion model that is a hybridization of Bayesian theory, Dempster-Shafer 

and Extended Dempster-Shafer theories, as well as Generalized Evidential 

Processing (GEP) theory. 

4.3.4 Empirical Tests  

 

The initial processing cost (in units of dollars) for selecting nodes by each 

intrusion detection system is: 

 ( )C A  = 8, cost of node selection by ID1                       (4) 

( )C B   = 5, cost of node selection by ID2                       (5) 

 ( )C C  =12, cost of node selection by ID3                      (6) 

 ( )C D  = 8, cost of node selection by ID4                       (7) 

The cost of node selection (excluding hardware cost) varies for different Intrusion 

Detection Systems depending on the estimated cost involved in the system 

percentage usage of the CPU, memory and storage required for the IDSs. In this 

experiment as the experimental environment was small, therefore, the estimated 

cost is very low as compared to the enterprise IDS set up for any enterprise level 

organization.  

These values are determined empirically, based on the computation required by 

each intrusion detection system involved in the experiment. The minimum 
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number of elements Z (sets of threats) and the minimum cost Q (in dollars) for 

each intrusion detection system were determined during the experiment, which 

are given as follow: 

 ( )AZ  = 0, ( )BZ  =3, ( )CZ  =3, ( )DZ =4    (8) 

 ( )A
Q = 8, ( )BQ  =4, ( )CQ  =7, ( )DQ =8    (9) 

Cost for each intrusion detection system (i.e. A, B, C and D): 

 

Minimum number of sets covered: 

 

 

Fig 4.2:  Z (Set Cover) and Q (sets with minimum cost) of the Universal Set 

A=0 B=3 C=3 D=4 

A=8 B=4 C=7 D=8 
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The optimal cost depending on the estimated cost involved in the system 

utilization i.e.  CPU, memory and storage required for the IDSs, calculated as per 

cost effectiveness � of each intrusion detection system, using equation (3) are: 

Selecting A: β A  =   
  C(A)  

Q - Z
 =  

0 - 8

  8  
 = 1   (10) 

Selecting B: β B  =   
  C(B)  

Q - Z
 =  

3 - 4

  5 
 = 5   (11) 

Selecting C: β C  =   
  C(C)  

Q - Z
 =  

3 - 7

  12 
 = 3   (12) 

Selecting D: β D  =   
  C(D)  

Q - Z
 =  

4 - 8

  8 
 = 2   (13) 

It is noteworthy that the Z values refer to the numbers of the sets, not elements of 

each set that will result in each of the intrusion detection systems (refer to Figure 

4.2). The optimal cost, as per cost effectiveness � of the nodes, calculated using 

equation (3) would be A+D+C=8+8+12=28. The cost effectiveness of the nodes 

are referred to by A, D, C and B respectively [3]. 

4.3.5 Benefits of Set Cover as a Middle-tier Data Fusion Tool 
 

1) Four types of threats were observed by the four intrusion detection 

systems, which generated 2,274 threat alerts. That meant there 

was an average of 569 overlapping and conflicting evidences for 

each threat detected by the four intrusion detection systems. The 

application of set cover theory reduced the number of alerts from 
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2,274 to 295. The application of set cover reduced the number of 

threats that the Multiple Simultaneous Threats Detection system 

had to deal with. In other words, the system had to deal with 

unambiguous types of evidence (less conflicting and less 

overlapping) instead of the significant amount of processing that 

would be needed in the absence of set cover processing.  

2) Cost Effectiveness 

As a result, only 4,425 (15 x 295) non-repetitive propositions had 

to be processed and tested by the Multiple Simultaneous Threats 

Detection system as compared to 773,160 (340 x 2,274) if 

repetitive propositions had been included. If one CPU can process 

50 requests/propositions per second, the total time for non-

repetitive propositions would therefore be 128.7 seconds = 2.15 

minutes. Repetitive propositions would take 15,463 seconds = 4.5 

hours. Moreover, repetitive propositions also require significantly 

more processing and memory resources, and therefore the 

Multiple Simultaneous Threats Detection system would require at 

least 16 CPU cores with 1.2 GHz under our assumptions. Due to 

the very high cost of IT resources, many businesses would be 

unable to afford such a high-cost on detecting intrusion attacks on 

their networks and systems. 

3) The benefits of applying set covering in determining the cost 

associated with the selection of compute nodes for the Multiple 
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Simultaneous Threats Detection system are demonstrated 

according to our experiments.  

 

4.4 The Dempster-Shafer Fusion Model 

4.4.1 Overview of the Dempster-Shafer Theory 
 

Dempster-Shafer theory of evidence helps to compute (quantify) a degree of 

belief (also called probability mass) by combining evidences from available 

resources. It is an extension of the Bayesian theory [9]. 

Since the introduction of this theory, researchers have been working on plausible 

rules for assigning and combining probability masses. In order to resolve 

conflicting evidences more effectively, different researchers have proposed 

different approaches to combine evidence from different sources. Overall, the 

Dempster-Shafer Theory is known for its ability to assign a probability to an event 

when it is difficult to calculate it accurately. The theory provides a higher degree 

of confidence to an event (also called probability mass) with the availability of 

increase evidences [1]. Unlike the Bayesian theory, the Dempster-Shafer theory 

is able to assign a value to quantify the uncertainty of an event. 

Contrary to classical theories of inference such as the Bayesian theory, the 

Dempster-Shafer theory can make a basic probability assignment (bpa) to 

multiple co-occurring events. It has three major functions that provide a higher 

level of confidence when determining the output of an event. These functions 

are: basic probability assignment, belief function (Bel) and plausibility function 
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(Pl). The bpa is the a-priori evidence represented by m. The belief of a set is 

defined as the sum of all the bpa’s of the subsets (B) of a set (A) (B A) �  [21]. 

4.4.2 Evidence to Proposition Assignments 
 

Using the terminologies of Dempster-Shafer theory in explaining the 

experiments, the frame of discernment � will be the set of elementary 

propositions or combinations of the hypotheses. Threats, denoted by T, can be 

overlapping or different to each other. In the set of n mutually exclusive and 

exhaustive set of hypotheses about the threat T 1 …..T n . 

� = {T 1 , T 2 …T n  }                                                        (14) 

If � contains n hypotheses, the Boolean combination for this set will contain n
θ  

hypotheses.  

Dempster-Shafer Theory is not used to calculate the probability of a hypothesis, 

but it is used in determining the probability of the degree of evidential support for 

a hypothesis. Unlike Bayesian theory and the classical theory of inference, the 

Dempster-Shafer Theory of inference determines the probability mass (m(�)) by 

assigning evidences to each proposition. Each intrusion detection system can 

assign evidences via probability masses to each of the four types of threats, for 

example, m1 will be the probability mass of threat1 (T1) and similarly, m2 will be 

the probability mass of threat2 (T2) , m3 will be the probability mass of threat3 

(T3) and m4 will be the probability mass of threat4 (T4). The sum of the 

probability masses of all the propositions, including general propositions, will be 
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equal to 1. The probability masses, covered by the frame of discernment �, 

satisfy the following conditions, � (theta) is an ancient Greek letter, can be used 

both in lower and upper case. Here in this formula, � represents total set of 

hypothesis.  

m(�) � 1        (15) 

�
=

n

i 1

m(�) = 1        (16) 

where m(�) is the probability mass of any possible hypothesis. In the empirical 

experiments, there could be either a single or a combination of the four threats. 

Proposition 1: T 1  , threat is a DoS 

Proposition 2: T 2  , threat is a MITMA 

Proposition 3: T 3  , threat is a Buffer Overflow 

Proposition 4; T 4  , threat is a Trojan horse 

The above four propositions are the elementary hypotheses. Using their Boolean 

combinations, the total number of propositions will be 24 = 16 

� = {T 1 , T 2 …T 16 }       (17) 

4.4.3 Threats as Propositions in Intrusion Detection   
 

A proposition can be a single hypothesis or a combination of hypotheses. In the 

empirical experiments, four sensors and four types of threats were being used. 

Sensors could receive a single threat or any possible combinations of the four 
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threats. The total possible base propositions, calculated using the mathematical 

theory of combinatorics with and without repetitions are 340 and 15, respectively. 

Repeated threats are of no significance during testing, and if tested for would 

also increase the processing cost and time unnecessarily. Therefore, in the 

experimentation, only the ‘without repetitions’ propositions are assumed. This 

reduced the total number of threats to 295. 

Only 4,425 (15 x 295) non-repetitive propositions will be processed and tested by 

the Multiple Simultaneous Threats Detection System as compared to 773,160 

(340 x 2,274) if repetitive propositions were included. If one proposition took 1 

nanosecond of operating time on a CPU core, one core can process 50 

requests/propositions per second. The total time for testing for non-repetitive 

propositions would be 128.7 seconds or 2.15 minutes. Testing for repetitive 

propositions would take 15,463 seconds or 4.5 hours. Moreover, repetitive 

propositions also require significantly more processing and therefore would 

require at least 16 cores CPU with 1.2 GHz. That would not be acceptable to any 

business.   

The general formula for selecting a permutation of the threats would be: 

!
( , )   

!( ) !

n
P n r

r n r
=

−                 (18) 

Where n is the number of sensors (in the intrusion detection system), r is the 

number of threats to be selected (0 � r � n), where n = 4 in the experiments.  
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Case 1: when a single threat is detected by each sensor, the total number of 

hypotheses/propositions with and without repetitions would both be 4. 

By putting values of n and r in the above formula without repetitions:- 

4 !( , )   4
1!(4 1)!

P n r = =
−   

 Hypotheses/propositions with repetitions:- 

14 4rn = =  

Case 2: when two threats are detected by each sensor, the total number of 

hypotheses/propositions with and without repetitions would be 6 and 16 

respectively. 

By putting values of n and r in the above formula without repetitions:- 

4 !( , )   6
2 !( 4 2 ) !

P n r = =
−

 

Hypotheses/propositions with repetitions:- 

24 1 6rn = =  

Case 3: when three threats are detected by each sensor, the total number of 

hypotheses/propositions with and without repetitions would be 64 and 4, 

respectively. 

By putting values of n and r in the above formula without repetitions:- 

4 !( , )   4
3 ! ( 4 3 ) !

P n r = =
−  
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Hypotheses/propositions with repetitions:- 

34 6 4rn = =  

Case 4: when four threats are detected by each sensor, the total number of 

hypotheses/propositions with and without repetitions would be 256 and 1, 

respectively.  

By putting values of n and r in the above formula without repetitions:- 

4 !( , )   1
4 ! ( 4 4 ) !

P n r = =
−  

Hypotheses/propositions with repetitions:- 

44 2 5 6rn = =
 

4.4.4 Limitations of the Dempster-Shafer Theory 

 

Due to the high complexity of the probability masses and weights calculations, it 

was not feasible to cover all the 15 non-repetitive hypotheses. For example in 

case of two threats, the number of hypothesis as per DS will be 

21 4 1 1 5nθ − = − = , where θ  is number of sensors and n is the number 

of threats. Therefore, only four elementary hypotheses as mentioned in Section 

4.1 were covered. This will facilitate an adequate evaluation of the multiple 

threats detection system which caters for four types of threats 



  

 53

To understand better the complexity of the hypothesis calculation using 

Dempster Shafer theory of inference, also read the description given in section 

5.2.3.  

4.4.5 Fusion Without Considering Weights of Each Sensor   
 

The multiple simultaneous threats detection system used in the empirical 

experiment comprises a combination of four intrusion detection systems, with 

each having its own means of threat detection. Each intrusion detection system 

has a different degree of reliability. To simulate that each intrusion detection 

system is equally likely to receive any of the four types of threats, their individual 

weights (W) are set to be equal, i.e. W1=W2=W3=W4. 

 

For example, intrusion detection system 1 believes that hypotheses T1 is true 

with a confidence represented by the mass probability M1 (T1). Similarly, the 2nd, 

3rd and 4th systems believe with confidences M2 (T2), M3 (T3) and M4 (T4), 

respectively. The Dempster-Shafer model combines beliefs and confidences 

from these independent intrusion detection systems using the Dempster-Shafer 

theory. 

Unlike the Bayesian theory, a-priori knowledge of the four intrusion detection 

systems is not required. The Dempster-Shafer model can combine the beliefs of 

these four intrusion detection systems to estimate a single result for each type of 

the threats. 
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The Dempster-Shafer model for combining the probability masses of the threats 

from more than two independent intrusion detection systems is computed as 

follow: 

 

,
,

, 0 , 0 , ,

({ })
( )

({ }) ({ })

n n
i j

i i j
i j i j i j i j

p T
M T

p T p T= =

=
+ ¬

� �                 (19) 

Where ( ),M Ti i j is the combined probability mass function of threats i and 

j, ,Ti j  is the thi  threat of the thj  intrusion detection system, and ({ ),P Ti j  is the 

probability of the thi  threat of the thj  intrusion detection system for a particular 

type of the threat. 

4.4.6 Dempster-Shafer Combined Probability Mass Functions 
 

The calculation of the combined probability mass function will be: 

          17({ }) 0.331,1 51

Detected Alerts
P T

Observed Alerts
= = =                        (20) 

 ({ })1,1P T  is the probability assigned to the 1st threat by the 1st intrusion detection 

system.  

      
9({ }) 0.272,2 33

Detected Alerts
P T

Observed Alerts
= = =                   (21) 
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 ({ })2,2P T  is the probability assigned to the 2nd threat by the 2nd intrusion 

detection system.  

      
5({ }) 0.383,3 13

Detected Alerts
P T

Observed Alerts
= = =                           (22) 

({ })
3,3

P T is the probability assigned to the 3rd threat by the 3rd Intrusion detection 

system.  

  
9({ }) 0.344,4 26

Detected Alerts
P T

Observed Alerts
= = =                     (23) 

({ })4,4P T is the probability assigned to the 4th threat by the 4th Intrusion detection 

system.  

4.4.6.1. An Example of Two Threats 

 

In the following example, equation (19) is applied to a situation in which there are 

two threats. 

({ }) ({ })1 2( )1,2 1,2 ({ }) ({ }) ({ }) ({ })1 2 1 2

P T P T
M T

P T P T P T P T
=

+ ¬ ¬
                                         (24) 

where ( )1,2 1,2M T  is the combined probability mass function of threats 
1

T  and 
2

T   

({ })1P T  is the probability mass of threat 
1

T  
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({ })2P T  is the probability mass of threat 
2

T  

({ }) 1 ({ })1 1P T P T¬ = −                                         (25) 

({ }) 1 ({ })2 2P T P T¬ = −                                         (26) 

Putting these values in the formulae: 

({ }) 0.33  1P T =                  (27) 

({ }) 0.27 2P T =                    (28)  

({ }) 1- ({ }) 0.661 1P T P T¬ = =                  (29)  

({ }) 1 - ({ }) 0.722 2P T P T¬ = =                  (30) 

       

     Putting values in the above equation  

0.33 * 0.27( )1,2 1,2 0.33 * 0.27  0.66 * 0.72
M T =

+
    

 

( )1,2 1,2M T  = 0.1578 is the weighted combined probability mass assigned to 

the 1st and 2nd threats by the 1st and 2nd intrusion detection systems using 

equation (24).      
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4.4.6.2. An Example of Three Threats 
 

In the following example, equation (19) is applied to a situation in which there are 
three threats. 

({ }) ({ }) ({ })1 2 3( )1,2,3 1,2,3 ({ }) ({ }) ({ }) ({ }) ({ }) ({ })1 2 3 1 2 3

P T P T P T
M T

P T P T P T P T P T P T
=

+ ¬ ¬ ¬
 (31) 

Where ( )
1,2,3 1,2,3

M T  is the combined probability mass function of threats 1T , 2T  

and 3T  

({ })
1

P T  is the probability mass of threat 
1

T  

({ })
2

P T  is the probability mass of threat 
2

T  

({ })
3

P T  is the probability mass of threat 
3

T  

({ }) 1 ({ })1 1P T P T¬ = −         (32) 

({ }) 1 ({ })2 2P T P T¬ = −         (33) 

({ }) 1 ({ })3 3P T P T¬ = −         (34) 

Putting values in the equations: 
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({ }) 0.33                                                                                                             (35)1

({ }) 0.272                                                              2

P T

P T

=

=                                             (36)

({ }) 0.38                                                                                                            (37)3

({ }) 1 ({ }) 0.66     1 1

P T

P T P T

=

¬ = − =                                                                                 (38)

({ }) 1 ({ }) 0.72                                                                                    (39)2 2

({

P T P T

P T

¬ = − =

¬ }) 1 ({ }) 0.61                                                                                     (40)3 3

0.33 * 0.27 * 0.38( )1,2,3 1,2,3 0.33 * 0.27 * 0.38 + 0.66 * 0.72 *

P T

Putting values in the  equation

M T

= − =

=
 0.61

 

( )
1,2,3 1,2,3

M T  = 0.104895105, is the weighted combined probability mass 

assigned to the 1st, 2nd and 3rd threats by the 1st, 2nd and  3rd intrusion detection 

systems using equation (31).                     

4.4.6.3. An Example of Four Threats 

 

In the following example, equation (19) is applied to a situation in which there are 
four threats. 

({ }) ({ }) ({ }) ({ })1 2 3 4( )1,2,3,4 1,2,3,4 ({ }) ({ }) ({ }) ({ }) ({ }) ({ }) ({ }) ({ })1 2 3 4 1 2 3 4

P T P T P T P T
M T

P T P T P T P T P T P T P T P T
=

+ ¬ ¬ ¬ ¬
 (41)             

Where ( )1,2,3 1,2,3M T  is the combined probability mass function of the threats 

1T , 2T  and 3T  
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({ })1P T  is the probability mass of threat 1T  

({ })2P T  is the probability mass of threat 2T  

({ })3P T  is the probability mass of threat 3T  

({ })4P T  is the probability mass of threat 4T  

({ })1P T¬ , ({ })2P T¬ and ({ })3P T¬  will have same formula as equations 32, 33 

and 34.   

({ }) 1 ({ })4 4P T P T¬ = −                (42) 

Putting values in the equations: 

({ }) 0.33                                                                                                                                            1

({ }) 0.27                               2

 (43)P T

P T

=

=                                                                                                              

({ }) 0.38                                                                          3

 (44)

P T =                                                                   

({ }) 0.34                                                                                                                     4

 (45)

P T =                         

({ }) 1 ({ }) 0.66                                                                                                                    1 1

({ }) 1 ({ }) 0.72    2 2

(46)

  (47)P T P T

P T P T

¬ = − =

¬ = − =                                                                                                                

({ }) 1 ({ }) 0.61                                                             3 3

 (48)

P T P T¬ = − =                                                         

({ }) 1 ({ }) 0.65                                                                                                                   4 4

(49)

 (P T P T¬ = − =

Putting values in the  equation

0.33 * 0.27 * 0.38 * 0.34( )1,2,3,4 1,2,3,4 0.33 * 0.27 * 0.38 * 0.34 + 0.66 * 0.72 * 0.61 * 0.65

50)

M T =
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Solving the above equation, the combined probability mass of the four intrusion 

detection systems is: 

( )1,2,3,4 1,2,3,4M T = 0.05 which is the weighted combined probability mass of the 

1st, 2nd, 3rd and 4th threats by the 1st, 2nd, 3rd and 4th intrusion detection systems 

using equation (41).                   

In this experiment, only four threats and four intrusion detection systems 

participated in gathering data. That is how the combined probability mass 

formulae for two, three and four threats were calculated. 

 

4.4.7 Limitation of Proposed Enhancements 

 

One of the formulae above for combining the probability masses of two threats 

based on the Dempster-Shafer theory is only valid when there are only two 

intrusion detection systems. As the experiment progressed, both the number of 

threats and the number of intrusion detection systems were gradually increased. 

In other words, two threats and two intrusion detection systems were used 

initially, then three threats and three intrusion detection systems, when eventually 

four threats and four intrusion detection systems were used.  

4.5 Extended Dempster-Shafer Theory to Fuse Data 

 

Extending the Dempster-Shafer theory, the Extended Dempster-Shafer theory 

postulates the weights of the sensors (i.e. the reliability of the sensors) while 

calculating the combined probability mass.  



  

 61

4.5.1 Overview of the Extended Dempster Shafer Theory 
 

Unlike conventional probability theories, the Extended Dempster-Shafer Theory 

assigns a mathematical value of uncertainty to an event by assigning probability 

masses to sets or intervals. Extended Dempster-Shafer Theory does not require 

any assumption for assigning probability masses to the sets or intervals. 

Therefore, this extension of the original theory is a reliable method for obtaining 

precise inferences from experiments when data are collected by expert systems 

like the intrusion detection systems. The main feature of the Extended Dempster-

Shafer theory is the assignment of weights to each expert system (i.e. intrusion 

detection system in this research) while implementing the combination rules.  

The main difference between the Dempster-Shafer and the Extended Dempster-

Shafer theories is that the original theory, without the extension, has the 

disadvantage that all of the observers or sensors might not detect threats with 

the same degree of accuracy. This is remedied in the Extended Dempster-Shafer 

theory as it provides more precision by giving weights of the evidences. Further 

details of the Extended Dempster-Shafer theory are given in the following 

section. 

4.5.2 Evidence to Proposition Assignments 

 

The Bayesian and Dempster-Shafer theories have certain shortcomings. 

Therefore, in order to obtain higher accuracy and precision in decision making 

about threats detection, advancement in data fusion techniques are required, as 

discussed below. 
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Unlike the Bayesian decision theory, the Dempster-Shafer model can assign 

evidence to a single proposition or group of propositions in an experiment, as 

well as combine the probability masses of the propositions emerging from more 

than two sources. However, the definition of evidence (probability mass) is not 

sufficiently accurate. The Dempster-Shafer Theory of inference also has some 

issues in the renormalisation of the probability mass during the combination step.  

In addition, the Bayesian decision theory has shortcomings due both to its 

inability to test proposition(s) and to its combination rules during the processing 

of multisensor data. The Bayesian decision theory cannot differentiate between 

uncertainty and ignorance. Moreover, it requires the assignment of evidence to a 

hypothesis. The Dempster-Shafer Theory of inference is an extension of the 

Bayesian decision theory which overcomes this issue. It can assign evidences to 

a single proposition or group of propositions in an experiment and can combine 

the probability masses of the propositions emerging from more than two sources. 

In this research, two different approaches of weighting the observations are used 

to improve decision making. 

4.5.3  Fusion With Considering Weight of Each Sensor 

 

The assumption made in the aforementioned data fusion model is that all 

intrusion detection systems have the same weights or degrees of accuracy in 

detecting a particular type of threat. This assumption is not valid in this research 

because the four intrusion detection systems are different and as such have 

different levels of accuracy. As a result, each of the four intrusion detection 
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systems, even when detecting the same type of threats, may provide different 

levels of precision. If one intrusion detection system is more accurate than the 

others in determining a particular type of threats, it would be misleading to assign 

the same weights to all of the intrusion detection systems.  

Therefore, one needs to measure the weight of each intrusion detection system 

that signifies its level of precision and reliability for the detection of a particular 

threat. There are many methods to perform such a measurement. The one that is 

used in this research is the Maximum Entropy method which calculates the 

weight of each intrusion detection system in threat detection. (Graham Wallies 

derivation) [72] 

As each of the four intrusion detection systems is running on a different 

computer, it is a reasonable to expect that the reliability of each would be 

different. The Dempster-Shafer Theory and the Extended Dempster-Shafer 

models provided the basis for numerical methods used in the detection of 

multiple threats in the data collected while varying reliabilities of the intrusion 

detection systems are assumed.  

The formula for calculating the probability masses and weights of an intrusion 

detection system for a particular threat is: 

       
,

,
, 0 , 0

, ,

({ } )
( )

({ } ) ({ } )

n n
i j

i i j
i j i j

i j i j

nWn iW P TiM T
n nW W

i iP T i P T
= =

=

+ ¬

� �   (51) 
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where T is the threat and W is the weight of the intrusion detection system, and P 

is the probability of the thi  threat of the thj  intrusion detection system. 

And          . .({ } ) { } )(1i j i jP T T

n nW W
i iP ¬= −                                      (52) 

,({ })i jP T

nW
i  is the probability assigned to the thi  threat by the thj   intrusion 

detection system with weight. 

The formula for calculating the weight of an intrusion detection system for a 

particular threat is:          
log

, 1

nnW P Pij i j
= − �

=                                      (53) 

where W is the combined weight of the intrusion detection systems (sensors) and 

P is the probability of an thi  threat of the thj  intrusion detection system [72]. 

 

4.5.3.1. Determining the Weights of Observations 
 

Proposition 1: T1 threat is DoS 

 (T1 will have four weights assigned by each of the four intrusion detection 

systems) 

Proposition 2: T2 threat is MITMA 

 (T2 will have four weights assigned by each of the four intrusion detection 

systems) 
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Proposition 3: T3 threat is Buffer Overflow 

 (T3 will have four weights assigned by each of the four intrusion detection 

systems) 

Proposition 4: T4 threat is Trojan 

 (T4 will have four weights assigned by each of the four intrusion detection 

systems) 

4.5.3.2. Limitations in Calculating Weights 

 

Weights calculated by using the Max Entropy (MaxEnt) method is verified using 

the Minimum Mean Square Error (MMSE) and the standard gradient descending 

algorithm. 

4.5.3.3.  Note on Generalized Evidential Processing 

  

Thomopoulos [25] made an extension to the Bayesian and Dempster-Shafer 

theories and proposed the Generalised Evidence Processing (GEP) method that 

presents separate propositions from decisions while calculating the combined 

probability masses. Therefore, it provides an improved method for calculating 

the combined probability masses of the evidences of an occurrence or an event. 

Each proposition or set of propositions can be tested and analysed separately at 

different levels of the data [21]. 

Through the process of renormalisation, GEP minimises the differences in 

evidences caused by Dempster-Shafer when it assigns evidences to different 
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propositions. This is done by minimising the gaps between sensors’ evidences. 

For further details on GEP, please refer to [21]. 

4.5.4 Extended Dempster-Shafer Enhanced With Weights 

 

Calculations of probability masses based on the Extended Dempster-Shafer 

model are as follows:  

    
181({ }) 0.541,1 33

Detected AlertsnW
P T

Observed Alerts
= = =

              (54) 

where 1({ })1,1

nW
P T   is the weighted probability assigned to the 1st threat by the 

1st  intrusion detection system. 

      
182({ }) 0 .642,2 28

D etected A lertsnW
P T

O bserved A lerts
= = =     (55) 

 where 2({ })2,2

nW
P T is the weighted probability assigned to the 2nd threat by the 

2nd  intrusion detection system. 

    
83({ }) 0.363,3 22

D etected AlertsnW
P T

O bserved Alerts
= = =     (56)                                         
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 where 3,3
3({ })
nW

P T  is the weighted probability assigned to the 3rd threat by the 

3rd  intrusion detection system. 

  
94({ }) 0.524,4 17

D etected AlertsnW
P T

O bserved Alerts
= = =                    (57) 

 where 4({ })4,4

nW
P T  is the weighted probability assigned to the 4th threat by the 

4th  intrusion detection system. 

The sum of weights of the intrusion detection systems: 

         1log 1 0.141 1

nnW P P
i

=− =�
=

                             (58) 

where   1
nW   is the weight of the 1st intrusion detection system  

                      2log 2 0.122 1

nnW P P
i

= − =�
=

      (59) 

where 2
nW  is the weight of the 2nd intrusion detection system  

                    3log 3 0.153 1

nnW P P
i

= − =�
=

                  (60) 

 where 3
nW  is the weight of the 3rd intrusion detection system 

                    4log 4 0.144 1

nnW P P
i

= − =�
=

                  (61) 
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 where 4
nW

 is the weight of the 4th intrusion detection system 

4.5.4.1. An Example of Two Threats 
 

In this example, equation (51) is applied to a situation in which there are two 
threats: 

1 2({ }) ({ })
1 2( )

1, 2 1, 2
1 2 1 2({ }) ({ }) ({ }) ({ })

1 2 1 2

n nW Wn P T P TW
iM T

n n n nW W W W
P T P T P T P T

=

+ ¬ ¬

 (62)  

where ( )1,2 1,2

nWiM T  is the weighted combined probability mass function of 

threats 1T  and 2T   

1({ })1

nW
P T is the weighted probability mass of threat 

1
T  

2({ })2

nW
P T is the weighted probability mass of threat 

2
T  

1 1( { } ) 1- ( { } )
1 1

n nW W
P T P T¬ =         (63) 

2 2({ } ) 1 ({ } )2 2

n nW W
P T P T¬ = −              (64)      

Referring to the above equations, we can calculate the followings: 
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1({ }) 0.14                                                                                  (65)1

2({ }) 0.12                                                                                 (662

nW
P T

nW
P T

=

= )

1 1({ }) 1 ({ }) 0.86                                                    (67)1 1

2 2({ }) 1 ({ }) 0.88                                                  (68)2 2

Putting values in the equations

n nW W
P T P T

n nW W
P T P T

¬ = − =

¬ = − =

:-

0.14 * 0.12( )                1, 2 1, 2 0.14* 0.12 0.88 * 0.86

nWiM T =
+

                         

 Therefore, ( )1,2 1,2

nWiM T =  0.52, is the weighted combined probability mass of 

the probabilities assigned to the 1st and 2nd threats by the 1st and 2nd intrusion 

detection systems using equation (62).                                      

4.5.4.2. An Example of Three Threats 

 

In this example, equation (51) is applied to a situation in which there are three 

threats: 

31 2({ }) ({ }) ({ })
1 2 3( )

1,2,3 1,2,3
3 31 2 1 2({ }) ({ }) ({ }) ({ }) ({ }) ({ })

1 2 3 1 2 3

nn n WW Wn P T P T P TW
iM T

n nn n n nW WW W W W
P T P T P T P T P T P T

=

+ ¬ ¬ ¬

   (69) 
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where ( )1,2,3 1,2,3

nWiM T  is the weighted combined probability mass function of 

threats 1T , 2T  and 3T  

1({ })1

nW
P T is the weighted probability mass of threat 

1
T  

2({ })2

nW
P T is the weighted probability mass of threat 

2
T  

3({ })3

nW
P T  is the weighted probability mass of threat 

3
T  

1 1({ }) 1 ({ })1 1

n nW W
P T P T¬ = −               (70) 

2 2({ }) 1 ({ })2 2

n nW W
P T P T¬ = −               (71) 

3 3({ }) 1 ({ })3 3

n nW W
P T P T¬ = −                (72)       

Referring to the above equations, we can calculate the followings: 
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1({ }) = 0.91                                                                                              (73)1

2({ }) = 0.94                                                                        2

nW
P T

nW
P T                      (74)

3({ }) = 0.85                                                                                             (75)3

1 1({ }) 1- ({ }) = 0.89                                  1 1

nW
P T

n nW W
P T P T¬ =                               (76)

2 2({ }) 1- ({ }) = 0.88                                                               (77)2 2

3 3({ }) 1- ({ }) = 0.93                                         3 3

n nW W
P T P T

n nW W
P T P T

¬ =

¬ =                        (78)

Putting values in the equations:-

0.91 * 0.94 * 0.85( ) =1,2,3 1,2,3 0.89 * 0.88 * 0.85+ 0.89 * 0.88 * 0.93

nWiM T

 

( )1,2,3 1,2,3

nWiM T  = 0.50                      (79) 

where ( )1,2,3 1,2,3

nWiM T  is the weighted combined probability mass assigned to 

the 1st, 2nd and 3rd threats by the 1st, 2nd and 3rd intrusion detection systems using 

equation (69). 
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4.5.4.3. An Example of Four Threats 
 

In this example, equation (51) is applied to a situation in which there are four 
threats: 

31 2 4({ }) ({ }) ({ }) ({ })
1 2 3 4( )

1,2,3,4 1,2,3,4
3 31 2 4 1 2 4({ }) ({ }) ({ }) ({ }) ({ }) ({ }) ({ }) ({ })

1 2 3 4 1 2 3 4

nn n nWW W Wn P T P T P T P TW
iM T

n nn n n n n nW WW W W W W W
P T P T P T P T P T P T P T P T

=

+ ¬ ¬ ¬ ¬

        (80)  

where ( )1,2,3,4 1,2,3,4

nWiM T is the weighted combined probability mass function 

of threats
1

T , 
2

T , 
3

T and 
4

T  

1({ })1

nW
P T is the weighted probability mass of threat 

1
T  

2({ })2

nW
P T is the weighted probability mass of threat 

2
T  

3({ })3

nW
P T  is the weighted probability mass of threat 

3
T  

4({ })4

nW
P T is the weighted probability mass of threat 

4
T  

1({ })1

nW
P T¬ , 2({ })2

nW
P T¬  and 

3({ })3

nW
P T¬

have the same formula as equation 

70, 71 and 72.  

4 4({ }) 1 ({ })4 4

n nW W
P T P T¬ = −                                                                                    (81) 
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Referring to the above equations, we can calculate the followings: 

1({ })1

nW
P T , 2({ })2

nW
P T and 3({ })3

nW
P T formula are the same as equations 73, 74 

and 75. 

4({ }) 0.57                                                                                           (82)4

1 1({ }) 1 ({ }) 0.89                                                             1 1

nW
P T

n nW W
P T P T

=

¬ = − =  (83)

2 2({ }) 1 ({ }) 0.88                                                            (84)2 2

3 3({ }) 1 ({ }) 0.93                                                            (85)3 3

({ })4

n nW W
P T P T

n nW W
P T P T

W
P T

¬ = − =

¬ = − =

¬ 4 41 ({ }) 0.89                                                            (86)4

n nW
P T= − =

 

Putting values in the equations:-

0.91 * 0.94 * 0.85 * 0.57 ( )1,2,3,4 1,2,3,4 0.89* 0.88 * 0.85 * 0.57 0.89 * 0.88 * 0.93 * 0.89

nWiM T =
+

   

Therefore ( )1,2,3,4 1,2,3,4

nWiM T  = 0.39, is the weighted combined probability 

assigned to the 1st, 2nd, 3rd and 4th threats by the 1st, 2nd, 3rd and 4th intrusion 

detection systems using equation (80). 
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4.6 Data Fusion using Generalized Evidential Processing Theory 

4.6.1 Overview of the Generalized Evidential Processing Theory 
 

Generalized Evidential Processing Theory (GEP) is a generalization of Bayesian 

theory. Similar to the Bayesian theory, GEP can assign evidence to a hypothesis 

only, while Dempster-Shafer has an additional advantage that it can assign 

evidence to both conflicting propositions and hypotheses. As this research deals 

only with testing hypotheses, GEP and Dempster-Shafer assume much the same 

role in assigning evidences to hypotheses. However, GEP assigns and combines 

probability masses based on a-priori conditional probability while Dempster-

Shafer updates a-priori probability of the hypothesis based on observational 

evidence. Therefore, in this research, a-priori probability of the hypotheses 

(threats) will be assigned by the evidence gathering approach (i.e. Dempster-

Shafer, Extended Dempster-Shafer, or GEP) that the underlying intrusion 

detection system has implemented.  

The main benefit of GEP is that it separates hypotheses from decisions. GEP 

also describes the relationship of evidential assignments with fusion decisions. 

This provides the ability to test hypotheses at different quantization of the data.   

The formula for combining the probability masses of the threats from more than 

two independent intrusion detection systems by GEP is:   

({ }) ({ / }), , ,
( ), ({ }) ({ / }) ({ }) ({ / }), 0 , 0 , , , , , ,

P T P T Sn n i j i j i j
M Ti i j P T P T S P T P T Si j i j i j i j i j i j i j i j

=� �
+ ¬ ¬= =

  (87)                       
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where ( ),, 0

n
M Ti i ji j

�
=

 is the combined probability mass of the independent 

intrusion detection systems. 

  ( { / } ), ,P T Si j i j  is the probability of assumed threats being tested positive 

given the thi  threat of the thj  intrusion detection system. That is, the detection 

accuracy of each intrusion detection system is expressed as a percentage. The 

detection accuracies of MARS, Sniffers, Snoop and Wireshark are 95%, 80%, 

75% and 80%, respectively. 

 ( ),P T i j  is the probability of the thi  threat observed by the thj  intrusion 

detection system. The numerical figures for the accuracy of the intrusion 

detection systems are not available in the literature. Therefore, these values are 

purely assumptions based on the detection accuracies obtained from 

experiments in this research. When more reliable numerical figures become 

available in the future, research can make use of these figures to obtain better 

detection accuracies under the GEP fusion model.  

4.6.2 Empirical Assessment 
 

In this example, equation (87) is applied to a situation in which there are two 
threats: 

 

({ }) ({ / })2 2 1,2 1,2 1,2( )1,2 1,2 ({ }) ({ / }) ({ }) ({ / }), 1 , 1 1,2 1,2 1,2 1,2 1,2 1,2

P T P T S
M T

P T P T S P T P T Si j i j
=� �

+ ¬ ¬= =
            (88) 
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where ( )1,2 1,2M T is the combined probability mass of the 1st and 2nd threats 

assigned by the 1st and 2nd intrusion detection systems.  

1,2 1,2({ / })P T S is the probability of a test returned positive given for the 1st and 2nd 

threats by the 1st and 2nd intrusion detection systems. 

({ })1,2P T is the probability of the 1st and 2nd threats observed by the 1st and 2nd 

intrusion detection systems.  

({ }) 1 ({ })1,2 1,2P T P T¬ = −                                                   (89) 

({ / }) 1 ({ / })1,2 1,2 1,2 1,2P T S P T S¬ = −           (90) 

4.4.6.1 An Example of Two Threats 
 

In the following example, the calculation for the probability of a test returned 

positive given two threats by intrusion detection systems using actual figures: 
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Detected Alerts=19                                                                                          (91)

Observerd Threats=31                                                          

1st Threat:-

                           (92)

Detection Accuracy by IDS 1=95%

Probability of a test positive given for the 1st threat by 1st intrusion detection system

Detected Alerts
( / )= *Detection1 1

Observerd Threats
P T S  Accuracy by IDS                            (93)

Putting values in the equations

19
( / )= *0.95 = 0.58                                                                                (94)1 1 31

P T S

 

Detected Alerts=19                                                                                          (95)

Observerd Threats=28                                                          

2nd Threat:-

                           (96)

Detection Accuracy by IDS 1=80%

Probability of a test positive given for the 2nd threat by 2nd intrusion detection system

Detected Alerts
( / )= *Detection2 2

Observerd Threats
P T S  Accuracy by IDS                          (97)

Putting values in the equations

19
( / )= *0.80 = 0.54                                                                              (98)2 2 28

P T S
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1,2 1,2 1 1 2 2({ / }) ( / )* ( / )                                                                   (99)

Probability of a test positive given for the 1st & 2nd threats 

by 1st & 2nd  intrusion detection 

P T S P T S P T S=

1,2 1,2

systems

({ / })=0.582258065*0.542857143 = 0.316082949                              (100)

Putting values in the equations

P T S

({ } ) 0 .5 8                                                            (1 0 1)1,2

({ / } ) 0 .5 4                                                   (1 0 2 )1,2 1,2

({ } ) 1 - ({ } ) 0 .4 1                     1,2 1,2

P T

P T S

P T P T

=

=

¬ = =              (1 0 3)

({ / } ) 1 - ({ / } ) 0 .4 5                 (1 0 4 )1,2 1,2 1,2 1,2

    : -

0 .5 8  *  0 .5 4( )1,2 1,2 0 .5 8  *  0 .5 4 0 .4 1 *  0 .4 5

P T S P T S

P u ttin g v a lu e s in th e e q u a tio n s

M T

¬ = =

=
+

 

 ( )1 , 2 1 , 2M T = 0.623375443                                                                       

4.6.2.1. An Example of Three Threats 
 

In this example, equation (87) is applied to a situation in which there are three 
threats: 

 

({ }) ({ / })3 3 1,2,3 1,2,3 1,2,3( )1,2,3 1,2,3 ({ }) ({ / }) ({ }) ({ / }), 1 , 1 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

P T P T S
M T

P T P T S P T P T Si j i j
=� �

+ ¬ ¬= =
(105) 
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where ( )
1,2,3 1,2,3

M T  is the combined probability mass of the 1st, 2nd and 3rd threats 

assigned by the 1st, 2nd and 3rd intrusion detection systems.  

({ / })1,2,3 1,2,3P T S  is the probability of a positive test result given for the 1st, 2nd and 3rd 

threats by the 1st, 2nd and 3rd intrusion detection systems. 

({ })1,2,3P T  is the probability of the 1st, 2nd and 3rd threats observed by the 1st, 2nd 

and 3rd intrusion detection systems.  

({ }) 1 ({ })1,2,3 1,2,3P T P T¬ = −                    (106) 

({ / }) 1 ({ / })1,2,3 1,2,3 1,2,3 1,2,3P T S P T S¬ = −                                                (107)          

1st and 2nd threat, ( / )1 1P T S  and 2( / )2P T S  formula and results will be the same 

as equations 93 and 97. 



  

 80

9                                                                                                     (108)

15                                               

3rd Threat:-

Detected Alerts

Observerd Threats

=

=

3 3

                                                (109)

Detection Accuracy by IDS 1=76%

( / ) *                                      (110)

Putting v

Detected Alerts
P T S Detection Accuracy by IDS

Observerd Threats
=

3 3

alues in the equations

9
( / ) *0.76 = 0.45                                                                                          (111)

15
Probability of a test positive given for the 1st, 2nd and 3

P T S =

1,2,3 1,2,3 1 1 2 2 3 3

1,2,3 1,2,3

rd threats 

by 1st, 2nd and 3rd intrusion detection systems

({ / }) ( / )* ( / * ( / )                                                         (112)

({ / }) 0.58*0.54 * 0.45 

P T S P T S P T S P T S

P T S

=

= = 0.14                                                                   (113)

 

1 , 2 , 3 1 , 2 , 3 1 , 2 , 3

1 , 2 , 3 1 , 2 , 3 1 , 2 , 3

( { } ) ({ / } ) 0 .1 4                                                  ( 1 1 4 )

({ } ) ( { / } ) 0 .1 0                                            ( 1 1 5 )

P u t t in g  v a lu e s  in  t h e  e q u a t i

P T P T S

P T P T S

=

¬ ¬ =

1 , 2 , 3 1 , 2 , 3

o n s :-

0 .1 4
( )                             

0 .1 4  0 .1 0
M T =

+
 

( )1,2,3 1,2,3M T = 0.58                                                                                        (116) 
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 ( )1,2,3 1,2,3M T  is the combined probability mass of the threats 1, 2 and 3 

assigned by  intrusion detection systems 1,  2 and 3. 

 

4.6.2.2.  An Example of Four Threats 
 

In this example, equation (87) is applied to a situation in which there are four 
threats: 

 

({ }) ({ / })4 4 1,2,3,4 1,2,3,4 1,2,3,4( )1,2,3,4 1,2,3,4 ({ }) ({ / }) ({ }) ({ / }), 1 , 1 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

P T P T S
M T

P T P T S P T P T Si j i j
=� �

+ ¬ ¬= =
 (117) 

where ( )1,2,3,4 1,2,3,4M T  is the combined probability mass of the 1st, 2nd, 3rd and 4th 

threats assigned by the 1st, 2nd, 3rd and 4th intrusion detection systems.  

({ / })1,2,3,4 1,2,3,4P T S  is the  probability of a positive test result being given for 

the 1st, 2nd and 3rd threats by the 1st, 2nd and 3rd intrusion detection systems. 

({ })
1,2,3,4

P T  is the probability of the 1st, 2nd, 3rd and 4th threat observed by the 1st, 

2nd, 3rd and 4th intrusion Detection systems.  

({ }) 1 ({ })1,2,3,4 1,2,3,4P T P T¬ = −                      (118) 

({ / }) 1 ({ / })1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4P T S P T S¬ = −                      (119) 

Putting the above values into the equations:- 

1st, 2nd and 3rd threat, ( / )1 1P T S , 2 2( / )P T S  and 3 3( / )P T S  formula and results will 

be the same as equations 93, 97 and 112. 
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Detected Alert 9                                                                                              (120)

Observerd Threats 18                                                      

4th Threat :-

s =

=

4 4

                                  (121)

Detection Accuracy by IDS 1=82%

( / ) *                               (122)

Putting values in the equation

Detected Alerts
P T S Detection Accuracy by IDS

Observerd Threats
=

4 4

1,2,3,4 1,2,3,4 1 1 2 2 3 3 4 4

s

9
( / ) *0.82 = 0.41                                                                                   (123)

18

({ / }) ( / )* ( / * ( / * ( / )                              (

P T S

P T S P T S P T S P T S P T S

=

=

1,2,3,4 1,2,3,4

124)

Probability of a test positive given for the 1st, 2nd, 3rd & 4th threats 

by 1st, 2nd, 3rd and 4th intrusion detection systems

({ / }) 0.58*0.54 * 0.45 * 0.41 = 0.05                  P T S =                            (125)  

Putting values into the equations:- 

1,2,3,4 1,2,3,4 1,2,3,4

1,2,3,4 1,2,3,4 1,2,3,4

({ }) ({ / })=0.05                                                          (126)

({ }) ({ / })=0.06                                                    (12

P T P T S

P T P T S¬ ¬

1,2,3,4 1,2,3,4

7)

Putting values in the equations:-

0.05
( )=                                       

0.05 +0.06
Combined Probability mass of four threats 

by four intrusion detection system

M T
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( )1, 2, 3, 4 1, 2, 3, 4M T =  0.49                                                        (128) 

( )1, 2, 3, 4 1, 2, 3, 4M T  is the combined probability mass of the 1st, 2nd, 3rd and 4th 

threat assigned by 1st, 2nd, 3rd and 4th intrusion detection system.                       

Table 4.2:  Summary of the probability mass calculation by MSTDS 

Dempster-Shafer  
Extended 

Dempster-Shafer 
Generalised Evidential 

Processing  
0.06 0.39 0.49 
0.11 0.5 0.58 
0.16 0.52 0.62 

 

The table 4.2 provides the comparison of the combined probability masses 

calculated by Dempster Shafer, Extended Dempster Shafer and Generalises 

Evidential Processing (GEP).  It is obvious from the results that Dempster Shafer 

detected probability mass is 0.16 for two threats detected by two intrusion 

detection systems, extended Dempster Shafer detected 0.52 and GEP calculated 

0.62. So an increase of 0.46 in probability mass has been achieved for two 

threats. Similarly increases of 0.47 and 0.43 during three and four threats have 

been achieved with Extended Dempster Shafer and GEP inferences. The 

increase in probability mass means increase in the precision of threat detection 

by the intrusion detection system. 
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5.  Experimental Evaluation  
 

In the experiments, threats affected the network nodes. All threats were 

generated on local private networks off the web and intrusion detection systems 

filtered the malicious network packets into four groups (each by one of the IDS). 

Altogether, there were 2,272 threats detected. Each group gathered data that 

could contain all four types of threats. The threat data contained a mixture of all 

four types of generated threats. Therefore, the first challenge was to reduce the 

size of the data by placing threats into different disjoint subsets. The next 

challenge was in calculating the cost of using each of the IDS.  

To resolve the above issues, the set covering approach was used. In this 

approach, a stage of set packing enabled the selection of the four subsets of the 

union set N of 2,274 threats such that each subset was pair-wise disjoint from 

other subsets.  Thus, each subset had similar or closely related strings 

representing threats whose union was N. 

In the next step, in order to reduce the size of the four pair-wise disjoint subsets, 

the set of N=2,274 threat data was processed using a Perl script. The script 

generated four subsets of a total of 429 threats that were similar or related to 

each other in one way or another. 

Then, the subsets were refined in terms of the types of threats before passing 

through a filtering process called “threat refinement and identity declaration” as 

shown in Figure 5.1 below. Bayesian and Dempster-Shafer models were used to 

measure the uncertainty of the evidences assigned by the intrusion detection 
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systems to each proposition or hypothesis. The details of the results are given 

below in Tables 5.2 and 6.1. The data flow process of the experiment was shown 

in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 86

5.1 Experimental Setup 

5.1.1 MSTDS Process Model of the Experiment  

W ireshark
128 Threats 

S niffers
439 Threats 

Snoop
646 Threats

M A R S
1061 Threats  

Threats R efinem ent In ferential and 
identity declaration process 

Statistica l / M athem atical A nalysis
B ayesian  / D em pster Shafer

B utton
Threats Prelim inary F iltration  and  

identification
C over S et / D ata R u le set Engine

M onitoring  and  
process R efinem ent

In trusion D etection System s

M ultisensor D ata Fusion P rocess M odel  o f the 
Experim ent

Support D atabase

122 Threats 82 Threats 32 Threats 59 Threats 

51 Threats 13 Threats 33 Threats 26 Threats

D em pster Shafer

Extended D em pster 
Shafer

G eneralised  Evidence 
P rocessing

31 Threats 15 Threats 28 Threats 18 Threats

33 Threats 22 Threats 28 Threats 17 Threats

 

Fig 5.1: Multisensor Data Fusion Process Model of the Experiment 

 

From this, the subsets were fused by using Bayesian, Dempster-Shafer, or 

 Extended Dempster-Shafer theory that runs on each of the IDS.  
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5.1.2 Context Diagram 

 

 

Fig 5.2:  Infrastructure of the MSTDS Environment 
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5.1.2.1. Description of the Context Diagram 

The MSTDS environment is shown in the infrastructure in Figure 5.2. Details of 

the infrastructure are as follows: 

• Hardware: six Intel servers (across two networks, that means each 

network had three servers) dual core CPUs, about 2.8GHz  or more 

speed, min 500MB or more RAM, single board and controller along 

with other accessories. Host names will be SSWEB1, SSDB1, and 

SSWMAIL1 in the first network and SSWEB2, SSDB2, SSWMAIL2 

in the second network.  

• Software: SSWEB and SSDB with the latest UNIX / Linux 

operating system, apache, webLogic, Oracle / SQL, one of the 

security servers, NSUs / IMAT, Cisco Mars and or Cisco Security 

Agent (CSA). SSWMAIL with a Window server and necessary 

operating softwares. MARS gathers inputs from all over the network 

(syslog, SNMP traps, email, log files, etc.) and tries to collate them 

to determine if there is a network attack going on.  It can also 

proactively enforce ACLs or QOS policy on network devices to 

mitigate the attack automatically. 

• Networks: Two private gigabit networks, one with a hyper channel, 

two four-port switches and two hubs, one internet connection 
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5.1.3 Multiple Simultaneous Threats Detection Process Model 

 

W ire s h a rk S n iffe rs S n o o p M A R S

T h re a ts  R e fin e m e n t In fe re n tia l a n d  
id e n tity  d e c la ra tio n  p ro c e s s  

S ta tis tic a l / M a th e m a tic a l A n a ly s is
B a y e s ia n  / D e m p s te r  S h a fe r

B u tto n
T h re a ts  P re lim in a ry  F iltra tio n  a n d  

id e n tific a tio n
C o v e r  S e t / D a ta  R u le  s e t E n g in e

M o n ito r in g  a n d  
p ro c e s s  R e fin e m e n t

In tru s io n  D e te c tio n  S y s te m s

E X P E R IM E N T A L  E N V IR O N M E N T  F O R  T H E  
M S T D S

S u p p o rt D a ta b a se

T h re a ts  

D e m p s te r  S h a fe r

E x te n d e d  D e m p s te r  

G e n e ra lise d  E v id e n ce  
P ro ce ss in g

T h re a ts  

T h re a ts  

T h re a ts  

N o te s :
1  –  ID S - W ire s h a rk , S n iffe rs , S n o o p  
a n d  M A R S
2  –  T h re a ts -D o S , B u ffe r O v e rflo w , 
M IT M A  a n d  T ro ja n  H o rs e

m s d fm -D e c 3 1 -2 0 0 9 .v s dF ile :
1  o f 1P a g e :

Z a fa r S u lta nA u th o r:
E X P E R IM E N T A L  E N V IR O N M E N T  F O R  T H E  M S T D S

 

 

 

Fig 5.3:  Experimental Environment for the MSTDS 
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In the infrastructure, four independent intrusion detection systems: MARS, 

Sniffers, Snoop and Wireshark were used. They worked as separate observers 

on different subnets. There were four types of threats: DoS, MITMA, Buffer 

Overflow and Trojan horse.  

The first level of data fusion was done by the middle-tier tool “set cover” that 

converts data into smaller subsets of non-disjoint subset of threats. Then, the 

threat data was passed to the next level that was the multisensor data fusion 

process. The threat data was analysed by a hybridization of three different 

mathematical and statistical tools: Dempster-Shafer, Extended Dempster-Shafer, 

and Generalized Evidential Processing. 

5.2 Experimental Results 

5.2.1 Based on Dempster-Shafer Fusion Model 

 

After the set covering stage, a total of 295 threats (Table 5.1) remained.  The 

threat data was further processed by the Dempster-Shafer based fusion model, 

which is the next level of the multiple simultaneous threats detection system as 

shown in Fig 5.1. In order to increase precision, each threat was passed through 

multiple hypotheses testing as proposed in Section 5.2.3. The intrusion detection 

system classified the Dempster-Shafer inferences into four types: observed 

threats, observed alerts, detected alerts and real alerts. This classification helped 

in determining the real threats and reduced false positive rates. The final results 

of this part of the fusion are given in Table 5.4. 
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False Positive rates are determined using the formula: 

False Positive Rates =        
R e a l A le r t s

1 - * 1 0 0
O b s e r v e r d A le r t s

                           (129) 

And threat detection rates are calculated using the equation: 

Threat Detection Rate =  
D e te c t e d A le r t s

* 1 0 0
O b s e r v e r d T h r e a t s

                                     (130) 

Table 5.1:  Threat Results based on Dempster-Shafer Theory of Inference 

IDS                      OT                  OA                  DA                  RA                  FPR     Detect Rate 

MARS 51 23 31 17 26 60.78 

Sniffers 33 19 21 9 53 63.63 

Snoop 13 7 7 5 29 53.84 

Wireshark 26 12 12 9 25 46.15 

Total 123 61 71 40     

 

where OT stands for Observed Threats, OA for observed Alerts, and DA for 

Detected Alerts, RA for Real Alerts and FPR for False Positive Rate   

 

5.2.2 Based on Extended Dempster-Shafer Fusion Model 
 

As was the case for the Dempster-Shafer inference, data for 295 threats were 

analysed using the Extended Dempster-Shafer inference and the intrusion 
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detection system then grouped the data as shown in Table 5.2. It is obvious that 

real alerts have gone up from 40 to 53. That is a clear indication that false 

positive rates have been reduced compared to the rates when using Dempster-

Shafer inference.  

Likewise, there is an obvious improvement in the threat detection rate as well. 

 

Table 5.2: Threat Results based on Extended Dempster Shafer Theory of 

Inference 

IDS                   OT                    OA                     DA                   RA                FPR          Detect Rate 

MARS 33 19 31 18 5.3 93.93 

Sniffers 28 21 26 18 14 92.85 

Snoop 22 9 14 8 11 63.63 

Wireshark 17 10 12 9 10 70.58 

Total 100 59 83 53     

 

where OT stands for Observed Threats, OA for observed Alerts, and DA for 

Detected Alerts, RA for Real Alerts and FPR for False Positive Rate 

5.2.3 Based on Generalised Evidential Processing Fusion Model 

 

Generalised Evidential Processing (GEP) improved the detection rates of almost 

all of the intrusion detection systems, according to our experiments. MARS 

detection and false positive rates indicated that the GEP model as a highly 
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reliable fusion model. The other three intrusion detection systems (Sniffers, 

Snoop and Wireshark) also showed significant improvements on threats 

detection, showing a considerable drop in false positive rates (Table 5.1). 

   Table 5.3: Threat Results based on Generalised Evidential Processing 

 

IDS OT OA DA RA FPR Detect Rate 

MARS 31 19 31 19 0 100 

Sniffers 28 20 26 19 5    92.85 

Snoop 15 10 14 9 10    93.33 

Wireshark 18 10 17 9 10        94.44 

Total 92 59 88 56     

 

where OT stands for Observed Threats, OA for Observed Alerts, and DA for 

Detected Alerts, RA for Real Alerts and FPR for False Positive Rate 

 

5.3 Verification of MSTDS  using Public Domain Data Sets  

 

In order to verify further the performance of the proposed Multiple Simultaneous 

Threats Detection System, it was tested on a public domain dataset, the DARPA 

Intrusion Detection Evaluation, made available by the Lincoln Laboratory of 

Massachusetts Institute of Technology. This dataset contains strings of TROJAN 

horse and DDoS attacks collected by using sniffers through TCPdumps. Although 
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the DARPA Intrusion Detection Evaluation Data Set contains data of only two 

threats as compared to four simultaneous threats, the MSTDS model was able to 

detect them accurately based on the experimental results, described below. 

5.3.1 Data Fusion Process  

 
As dataset contains two types of threats, DDoS and TROJAN horse, the set 

cover intermediate level filtered the threat data into two sets, as shown in the 

table below. 

Table 5.4:  Set Cover reduces the size of the data of Public Domain Data 

Sets 

   

IDS 
Before Set 
Cover 

After Set 
Cover 

Sniffers / 
MARS 11538 6171 
Snoop / 
Wireshark 5955 3185 
 
Total 17493 9356 
   

 

In order to analyse the data set, VMWARE server 2.0 with Virtual machine and 

Linux Ubuntu was used to run the Perl script which counted the number of threats 

and separated the threat data into two disjoint sets, as shown in the table above. 

As it was not clear from the DARPA dataset which types of Intrusion Detection 

Systems were used to collect these threats, an assumption was made which 

allocated sniffers / MARS to DDoS threats and Snoop / Wireshark to TROJAN 

horse, respectively. 
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The main function of set cover, as explained in early chapter, is to filter the threat 

data into small subsets and for selecting the IDS with the minimum cost.  In this 

dataset, 17493 malicious strings were identified from the file (LLS_DDoS). The 

set of threat data was then filtered into two disjoint groups containing these 

strings.  

Simultaneously, the set cover algorithm was able to determine the cost 

effectiveness of each IDS in the MSTDS since the number of IDS used in this 

experiment was the same as the experimental setup I used in earlier 

experiments. For details of the experimental setup, please refer to Chapter 4. 

By applying set cover, a preliminary understanding of the expected number and 

types of the attacks became possible. In realistic environments, the set cover 

analysis would be critical since an organization might not be aware of the number 

and types of the attacks involved.  Furthermore, another benefit of the set cover 

analysis is the cost and effectiveness in processing. In this experiment, only two 

non-repetitive types of propositions as compared to the initial group of 17,493 

propositions that each IDS would have to be processed. By the filtering achieved 

using set cover, the highly tedious task, both in terms of time and resources, for 

the subsequent multisensor data fusion process can be reduced. 

Based on set cover, there are only two types of propositions on all 4 nodes of the 

experimental setup, as follows: 

• Proposition 1: T 1  , threat is a DoS 

• Proposition 2: T 2  , threat is a Trojan 
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1) Fusion without weights of each sensor 

The calculation of the combined probability mass function will be: 

          
539({ }) 0.331,1 1617

Detected Alerts
P T

Observed Alerts
= = =                                (131) 

 ({ })
1,1

P T  is the probability assigned to the 1st threat by the 1st intrusion detection 

system.  

            
285({ }) 0.272,2 1047

Detected Alerts
P T

Observed Alerts
= = =                          (132) 

({ })
2,2

P T  is the probability assigned to the 2nd threat by the 2nd intrusion detection 

system.  

5.3.2 An Example of Threat detection with two Threats 
 

In the following equation, I apply equation (19) to a situation in which there are 
two sensors 

({ }) ({ })
1 2( )

1,2 1,2 ({ }) ({ }) ({ }) ({ })
1 2 1 2

P T P T
M T

P T P T P T P T
=

+ ¬ ¬
                          (133) 

where ( )
1, 2 1, 2

M T  is the combined probability mass function of threats 
1

T  and 
2

T   
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({ })1P T  is the probability mass of threat 
1

T  

({ })2P T  is the probability mass of threat 
2

T  

({ }) 1 ({ })1 1P T P T¬ = −                                         (134) 

({ }) 1 ({ })2 2P T P T¬ = −                 (135) 

Putting the above values in the formulae: 

({ }) 0.33
1

                                                                                                                       (136)   

({ }) 0.27                                                 
2

P T

P T

=

=                                               (137)

({ }) 1 ({ }) 0.67                                                                        (138)
1 1

({ }) 1 ({ }) 0.73                          
2 2

P T P T

P T P T

¬ = − =

¬ = − =                                             (139)

Putting values in the above equation

0.33 * 0.27
( )                    

1,2 1,2 0.33 * 0.27 + 0.67 * 0.73
M T =

 

( )1,2 1,2M T
 = 0.16 is the weighted combined probability mass assigned to the 1st 

and 2nd threats by the 1st and 2nd intrusion detection systems using equation 

(133).     
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2) Extended Dempster-Shafer Fusion With Weights 

Calculations using the Extended Dempster-Shafer fusion are as follows:  

    

6021({ }) 0.581,1 1041

Detected AlertsnW
P T

Observed Alerts
= = =

                  (140) 

where 1({ })1,1

nW
P T   is the weighted probability assigned to the 1st threat by the 

1st intrusion detection system.   

5402({ }) 0.612,2 888

Detected AlertsnW
P T

Observed Alerts
= = =

                                        (141) 

where 2({ })2,2

nW
P T is the weighted probability assigned to the 2nd threat by the 

2nd intrusion detection system. 

The weights of the intrusion detection systems are calculated as follows: 

         1log 1 0.141 1

nnW P P
i

= − =�
=

                                           (142) 

where 1
nW

 is the weight of the 1st intrusion detection system for 1st threat.  

              1log 1 0.132 1

nnW P P
i

= − =�
=

                       (143) 



  

 99

where  2
nW is the weight of the 1st intrusion detection system for 2nd threat.  

 

An Example of Threat detection with two Threats 

In the following example, equation (51) was applied to a situation in which there 
are two threats. 

1 2({ } ) ({ } )1 2( )1, 2 1, 2
1 2 1 2({ } ) ({ } ) ({ } ) ({ } )1 2 1 2

n nW Wn P T P TWiM T
n n n nW W W W

P T P T P T P T

=

+ ¬ ¬

(144)  

where ( )1,2 1,2

nWiM T  is the weighted combined probability mass function of 

threats 
1

T  and 
2

T   

1({ })1

nW
P T is the weighted probability mass of threat 

1
T  

2({ })2

nW
P T is the weighted probability mass of threat 

2
T  

1 1({ }) 1 ({ })1 1

n nW W
P T P T¬ = −                                      (145) 

2 2({ }) 1 ({ })2 2

n nW W
P T P T¬ = −                   (146)      

  Putting the above values in the formulae: 
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1({ }) 0.58                                                                                          (147)1

2({ }) 0.61                                                                           2

nW
P T

nW
P T

=

=                (148)

1 1({ }) 1- ({ }) 0.42                                                             (149)1 1
!( , )  

!( - )!
4! 4

1!(4-1)!

14 4
4

2 2({ }) 1- ({ }) 0.39                2 2

n nW W
P T P T

nP n r
r n r

rn

n nW W
P T P T

¬ = =

=

= =

= =

¬ = =                                             (150)

    :-

0.58 * 0.61( )                                                       (151)1,2 1,2 0.58 * 0.61 0.42 * 0.39

Putting values intheequations

nWiM T =
+

                         

Therefore, ( )1,2 1,2

nWiM T = 0.53, is the weighted combined probability mass 

assigned to the 1st and 2nd threats by the 1st and 2nd intrusion detection systems 

using equation (144).                                      

Comparisons of the combined probability masses of the proposed Multiple 

Simultaneous Threats Detection System (MSTDS) on both experimental data 

and public domain data sets are given below:- 
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Table 5.5:  Comparisons of the Combined Probability Masses of MSTDS 

Experimental Data and Public Domain Data sets 

 
Data Source  Combined Probability Mass 
 DS  Extended DS GEP 
MSTDS 0.16 0.52 0.62 
Public Domain Data set 0.16 0.53 0.63 
    

The results above clearly demonstrated the validity of the MSTDS, both on the 

simulated and public domain datasets. In addition, the following threat detection 

results derived from the public domain data set using the MSTDS are obtained. 

The DS, Extended DS and GEP methods were used to analyse the data. 

Table 5.6: Threat Detection Rate using Dempster Shafer on Public Domain 

Data Sets 

IDS OT OA DA RA FPR Detect Rate 
MARS 1617 729 983 539 26.08 60.78 
Sniffers 1047 603 666 285 52.63 63.63 
Snoop 412 222 222 159 28.57 53.84 
Wireshark 825 381 381 285 25 46.15 
Total 3901 1935 2252 1269     

 

 
Table 5.7: Threat Detection Rate using Extended Dempster Shafer on 
Public Domain Data Sets 

 
 

IDS OT OA DA RA FPR Detect Rate 

MARS 1047 603 983 602 0.11 93.93 

Sniffers 888 666 825 540 18.94 92.85 

Snoop 698 285 444 254 11.11 63.63 
Wireshark 539 317 381 285 10 70.58 

Total 3172 1871 2632 1681     
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Table 5.8: Threat Detection Rate using GEP on Public Domain Data Sets 

IDS OT OA DA RA FPR 
Detect 
Rate 

MARS 983 603 983 616 0 100 
Sniffers 888 634 825 590 7.04 92.85 
Snoop 476 299 444 302 0 93.33 
Wireshark 571 335 539 268 19.90 94.44 
Total 2918 1871 2791 1776     

 

5.4 Comparisons with Related Works 

5.4.1 Description of the Related Works 

 

Many researchers have worked on multisensor data fusion to detect threats 

ranging from single threats to multiple simultaneous threats. Most of the work has 

been done in the defence area. There is very little reported work in distributed 

systems like the UNIX environment. Multiple simultaneous threats detection is a 

new area of research, particularly for the UNIX environments. The main reason 

for this is that until recently, UNIX is considered a very safe and secured 

operating system. However, intruders developed new intrusion techniques, and 

the ability for intrusion detection systems running on distributed systems like 

UNIX has become questioned. By comparing the experimental results obtained in 

this research with those of other scientists, it provides a fair idea about the 

robustness, accuracy, efficiency and performance of the proposed multiple 

simultaneous threat detection system. 
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5.4.2 Results 

5.4.2.1. Data Fusion Model Approaches 

 

In this research, the data fusion model, called a “multiple simultaneous threats 

detection system”, is comprised of a hybrid model incorporating an intermediate 

level based on set cover, and a data fusion level using combination of IDS that 

use Dempster-Shafer, Extended Dempster-Shafer, and Generalised Evidential 

processing (GEP), respectively. 

Existing data fusion models related to this research mainly applied classical 

inference, Bayesian inference, Dempster-Shafer, Extended Dempster-Shafer, 

Kalman Filter or Generalised Evidential processing (GEP) in their fusion model 

separately. Therefore, the proposed hybrid data fusion model can be considered 

a novel approach as it uses a combination of individual fusion models in a 

concerted manner.  

 
The performances of inference theories such as Bayesian, Dempster-Shafer, 

Generalised Evidential Processing (GEP), Kalman Filter, and classical inferences 

have not been compared adequately in a systematic manner. However, different 

researchers have made efforts to compare their individual experiments or fusion 

technique models with others. For example, David L. Hall and Sonya [25] worked 

on exact inference and assigned belief versus time in their experiments for an 

object having four sensors to detect enemy aircraft or objects. They concluded 

that Bayesian inference had better results than Dempster-Shafer. David L. Hall 

and Sonya also concluded that Bayesian inference performed better in situations 
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involving a smaller number of floating points operations. In cases of more than 

four floating points operations, Dempster-Shafer would have performed better.  

They also reported that as the adversaries also had multiple ways to hide their 

identities, more research on the inference approach would be required for this 

field [21]. 

 

 

Fig 5.4:  Performance Comparisons between Bayesian and Dempster-Shafer 

   

5.4.2.2. Comparisons of the Performance of the Inference Theory 

 
Here, the results of different data fusion models including the proposed hybrid 

model that was used to increase precision in multiple threats detection are 

compared. In the DARPA IDS project, the Hidden Colored Petri-Net correlation-

based alert system was used. In order to increase the accuracy and threat 

detection precision, Dong and Deborah [28] used a hybrid model which 
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incorporated Dempster-Shafer and Extended Dempster-Shafer to combine 

beliefs in threat detection results. They found that their hybrid model resulted in a 

19% improvement in precision of threat results compared to the performance of a 

system which used only the Dempster-Shafer model. They also discovered that a 

simultaneous threats detection system (using a hybrid of Bayesian and 

Dempster-Shafer showed a 12% (Ref; Fig 5.4) improvement in precision of threat 

detection compared to a hybrid of Dempster-Shafer and Extended Dempster-

Shafer. 

Christos and Basil [61] worked on DoS detection using Dempster-Shafer Theory, 

but no quantitative comparisons in their research reports were found, although 

they concluded that the model used in their research produced detection results 

with improved quantitative measurements of beliefs and plausibility. 

 

Huadong Wu, Mel Siegel and Rainer [33] experimented on context sensing. They 

compared audio and video sensors based on the Dempster-Shafer and Extended 

Dempster-Shafer theory of inferences, and found that there was significant 

improvement in estimation. However, the results for Dempster-Shafer and 

Extended Dempster-Shafer alone were almost similar. They suggested that 

further research in this area would be necessary. 

5.4.2.3. Decision Level Techniques 

 
The multiple simultaneous threats detection system uses three different decision 

level techniques: 

1) Dempster Unweighted 
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2) Dempster Weighted  

3) Generalised Evidential Processing 

4) In the experiments, each observer (intrusion detection system) assigned 

evidence (probability mass). The probability masses were combined using the 

above three mathematical inference approaches. Their results were 

compared, and it was discovered that the integration of the observers 

improved the precision of the threats detection significantly. Of the three 

techniques, GEP showed better precision in threat detection than either 

Dempster-Shafer or Extended Dempster-Shafer theories. The comparisons 

are presented in the following charts: 
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Fig 5.5:  Comparison of MSTDS Decision Level Techniques 

 
The average combined probability mass for threats detection by the three 

decision levels techniques, Dempster-Shafer, Extended Dempster-Shafer and 

GEP were 6%, 41% and 53%, respectively.  This supported the conclusion 

that GEP was the most effective technique in threats detection by an average 

increase of 47 % in the combined probability mass. 

5) Comparison of results between Dempster-Shafer (unweighted) and Extended 

Dempster-Shafer (weighted) revealed that Extended Dempster-Shafer 

provided better combined probability masses by an average of 35% compared 

to Dempster-Shafer. The following chart shows a comparison of the above 

two techniques. 
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Fig 5.6:  Results based on Dempster Shafer (unweighted) and Extended 
Dempster Shafer (weighted) 

 

 

5.5 Discussion 

Both Bayesian and Dempster-Shafer theories provide effective processing 

models in multisensor data fusion. However, their implementations involve overly 

complex iteration of the data fusion process in terms of the calculation of 

probability masses and weights. Therefore, for all practical purposes, it would be 

difficult to use them in combining probability masses efficiently when overlapping 
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and conflicting propositions occur, in the cases where there are more than four 

sensors. The greater the number of sensors, the greater the precision in threats 

detection is expected to be achieved.  

In this thesis, experiments were conducted in three steps using evidences from 

two, three and then four sensors (intrusion detection systems) to detect the four 

types of threats. The sensors were the four intrusion detection systems. The 

experimental results confirmed that the combined results of the four sensors 

improved simultaneous threats detection significantly. Bayesian, Dempster-

Shafer and GEP theories of inference, taken together, provided an effective tool 

to combine evidences of these sensors and measured the uncertainty of a 

hypothesis (i.e. potential threat). 

The next set of graphs compare the efficiency of the Dempster-Shafer, Extended 

Dempster-Shafer and Generalised Evidential Processing data fusion techniques, 

Figures 5.5 to 5.7 show a significant increase in the combined probability masses 

for Extended Dempster-Shafer Theory and Generalised Evidential Processing. 

That is a good indication of enhanced precision, accuracy and better 

performance of GEP data fusion in threat detection over the Dempster-Shafer 

and Extended Dempster-Shafer data fusion techniques. 
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Effectiveness of Multiple Simultaneous Threats Detection System

Dempster un-
weighted

6%

Dempster weighted
41%

Generalized 
Evidential 

Processing
53%

 

Fig 5.7: Effectiveness of the Multiple Simultaneous Threats Detection 
System 

 

The average combined probability masses for threat detection by the three 

methods, Dempster-Shafer, Extended Dempster-Shafer and GEP were 6%, 41% 

and 53% respectively.  This clearly demonstrates that GEP is the most effective 

method and it increased the combined probability mass by 47%. The general 

principle is that the higher the degree of confidence in measuring the probability 

mass, the greater the precision in threat detection. 
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Performance of Mutiple Simultaneous Threats Detection System
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Fig 5.8:  Performance of the Multiple Simultaneous Threats Detection 
Systems 

 

Figure 5.8 shows another view of the relative performances of three intrusion 

detection systems. GEP, once again, is shown to be an efficient data fusion tool 

in threats detection. 
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Performance of Mutiple Simultaneous Threats Detection System
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Fig 5.9:  Performance Trend of the Multiple Simultaneous Threats Detection 
System 

 

Figure 5.9 shows the trend line of the performance in threats detection that could 

involve more than four intrusion detection systems. The higher the number of 

participating sensors in threat detection, the greater will be the precision in the 

results. However, the calculations and flow of data become very complicated 

when dealing with more than four sensors and with multiple hypotheses. 

 

Finally, Figure 5.10 shows the overall performance comparison of intrusion 

detection systems.  
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Overall Performance Comparison of Intrusion Detection Systems
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Fig 5.10:  Overall Performance comparisons of the IDS methods 
 

Figure 5.10 shows the average combined probability mass of the three intrusion 

detection systems of the proposed multiple simultaneous threats detection 

system used in this research. GEP demonstrates a clear superiority in threats 

detection over the Dempster-Shafer and Extended Dempster-Shafer Data fusion 

techniques. 

5.5.1 Limitations of the Proposed MSTD Model 

 

1. As the experiment was conducted in a controlled environment, there was no 

discussion of consonant, consistent and disjoint evidence assignments in the 
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threat results. In fact, this was one of the major advantages of applying the 

set cover theory.  

2. The proposed MSTDS was developed using a combination of Dempster-

Shafer, Extended-Dempster Shafer, and GEP inference approaches. 

Because the focus was on the mathematical components of these 

technologies, details on the following methods applied in this research might 

not be adequately described. These include:  

a. Set cover theory could be implemented in a number of different 

ways. Discussion on the implementation aspects was beyond the 

scope of this thesis. 

b. The Dempster-Shafer theory has been modified by various 

researchers who have developed the following probability 

combining rules and evidential processing methods: [73] 

• The Discount and Combine method 

• Yager’s modified Dempster’s rule 

• Inagaki’s unified combination rule 

• Zhang’s centre combination rule 

• Dubois and Prade’s disjunctive consensus rule 

• Mixing or averaging 

• Convolutive X-averaging 

• Smets’ rule 
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• The qualitative combination rule 

• DST 

• Yen’s rule 

• Envelope  imposition, and horizontal x-averaging 

c. Similarly, Generalised Evidential Processing (GEP) has different 

rules for combining probability masses.   

d. The calculations of probability mass and weights for more than four 

simultaneous threats using the Dempster Shafer theory become a 

highly complex process. Fortunately, GEP does not impose such 

restrictions, although GEP is an extension of the Dempster Shafer 

and Bayesian inference approaches. As a result, there is a need in 

future to conduct research to test the detection of more than 4 

simultaneous threats using GEP and other inference techniques 

that do not exhibit the above limitations. 
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6.  Conclusions  

In this thesis, a novel multiple simultaneous threats detection system (MSTDS) is 

proposed. It is based on a hybrid multisensor data fusion model that involves a 

set cover based intermediate filtering layer, followed by a data fusion layer 

comprising four independent intrusion detection systems (IDS). Each of these 

IDS runs an intrusion detection engine based on one of the component data 

fusion models. The component data fusion models include Bayesian, Dempster-

Shafer, Extended Dempster-Shafer, and Generalised Evidential Processing 

(GEP). Through empirical experimentation, it was confirmed that the MSTDS 

significantly increased the precision of threats detection. In particularly, 

Dempster-Shafer inference produced a 56% detection rate while Extended 

Dempster-Shafer and GEP had 80% and 95% detection rates, respectively. On 

average, the proposed MSTDS increased the detection rate by 39%, which was 

an increase from 56% to 95% accuracy. The false positive rate also went down 

from 33% to 6%. Here, the detection rate was calculated by dividing the number 

of detected alerts by the number of observed alerts, while the false positive rate 

was obtained by dividing the number of real alerts by the number observed 

alerts, respectively. In summary, there was a net improvement of 27% in 

decreasing the number of false positive alarms, which is significant for practical 

instrusion detection in real time and distributed systems environment like UNIX 

(cf. Tables 5.5 and 5.8). 
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Through experimentation, it was also discovered that GEP achieved better 

performance than both Dempster-Shafer and Extended Dempster-Shafer based 

on the values of combined evidential/probability masses returned by each of the 

four intrusion detection systems in the data fusion layer. The combined 

probability mass of the GEP was 0.56, while for Dempster-Shafer and Extended 

Dempster-Shafer it was 0.11 and 0.47, respectively. GEP increased the 

combined probability mass by 45%, which in turn increased the overall efficiency 

of the proposed MSTDS (cf. Tables 5.5 and 5.8).  

Set cover used as the middle-tier layer for filtering threats data reduces the 

amount of redundancy while providing better groupings of types of threats for 

subsequent processing. By obtaining pair-disjoint subsets of threats in this layer, 

excessive computation both in terms of time and CPU cycles downstream could 

be avoided. Particularly, set cover reduced the threats data (from 2,274 to 295 

substrings) to a level where it became possible to detect more than two 

simultaneous threats with less computational effort, a performance that would be 

almost impossible with existing threat detection approaches that are based on 

simply using Bayesian and Dempster-Shafer approaches. Set cover was also 

capable of determining the cost effectiveness when selecting a computer node 

among the set of individual IDS for processing the subsets. Thus, it played a 

critical role in improving the precision of detection while simultaneously 

minimising the amount of numerical calculations for the overall MSTDS. 

 

 



  

 118 

6.1 Future Work 

1) In this thesis, data fusion approaches that are based on Dempster-Shafer, 

Extended Dempster-Shafer and Generalized Evidential Processing (GEP) 

have been studied and applied. However, other data fusion techniques 

including heuristic-based methods, kinematic and attributive techniques, 

knowledge-based approaches might further improve the precision and 

efficiency of detection using multiple simultaneous threats detection system. 

Understanding the relative merits of these less explored methods in 

multisensor data fusion will be one direction of future work [25]. 

2) Related to data fusion is the essential task of calculating the combined 

probability mass based on inputs coming from the component IDS involved in 

the MSTDS. There are varied ways of combining these individual 

probabilities, many of which have not been used and compared before in 

multiple simultaneous threats detection research. These methods include: 

[73] 

• The discount and combine method 

• Yager’s modified Dempster’s rule 

• Inagaki’s unified combination rule 

• Zhang’s centre combination rule 

• Dubois and Prade’s disjunctive consensus rule 

• mixing or averaging 

• convolutive x-averaging 



  

 119 

• Smets’ rule 

• the qualitative combination rule 

• DST 

• Yen’s rule 

• Envelope  imposition, and horizontal x-averaging 

3) While an empirical experimental setup was used in this research, large scale 

evaluation of the proposed multiple simultaneous threat detection system in 

operational scenario will be a major focus of future research. 

4) In this thesis, up to four intrusion detection systems – MARS, Sniffers, Snoop 

and Wireshark, were used as collectors of threat data. Overcoming this 

restriction by considering beyond four intrusion detection systems and 

researching advanced techniques for controlling the increase in computation 

will be another focus of future work. To achieve this, future results will be 

compared with the performance trend line illustrated in Figure 5.9 of Section 

5.4 on Discussions. 

5) While set cover theory was applied for filtering threats data in the middle tier 

prior to multisensor data fusion, other techniques like the Kalman Filter could 

also be applicable. Studying and comparing the pros and cons of other 

filtering approaches for the middle tier constitutes another area of future 

research. 

6) The calculation of more than four simultaneous threats’ probability masses 

and weights by using the Dempster Shafer theory could become highly 
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complex. Generalised Evidential Processing (GEP) did not have to impose 

such restrictions. In future work, research will be carried out to study the 

detection of more than 4 simultaneous threats using GEP and other inference 

engines that do not have the above restriction. Appropriate modification of the 

MSTDS architecture might be necessary in solutions to this restriction. 

7) In order to further improve the precision of simultaneous threats detection, a 

weighted version of the Generalised Evidential Processing (GEP) model will 

be studied. 
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