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Abstract

The lattice Boltzmann model is used to observe changes in the
velocity flow and shear stress in a carotid artery model during a simu-
lated stenosis growth. Near wall shear stress in the unstenosed artery
is found to agree with literature values.

The model also shows regions of low velocity, rotational flow and
low near wall shear stress along parts of the walls of the carotid artery
that have been identified as being prone to atherosclerosis. These
regions persist during the simulated stenosis growth, suggesting that
atherosclerotic plaque build up creates regions of flow with properties
that favour atherosclerotic progression.

1 Introduction

There is a body of evidence that suggests a correlation between atherosclero-
sis, regions of low blood flow velocity, rotational flow and low shear stress near
the walls of arteries (Malek et al. 1999, Asakure and Karino 1990, Gnasso
et al. 1997). Therefore the study of the haemodynamic properties of the
blood flow in these regions of the artery can lead to a greater understanding
of atherosclerosis and its dependence on flow parameters. However, accu-
rate measurements of quantities of interest, such as shear stress, are difficult
to make in vivo, thus numerical simulation becomes a valuable investigative
tool.

The lattice Boltzmann model (LBM) uses a simplified kinetic equation to
simulate fluid flow and has been applied to many general problems including
turbulence (Cosgrove et al. 2003), magnetohydrodynamics (Chen et al. 1991)
and multiphase flows (Shan and Chen 1993), as well as in areas relevant to
blood flow simulation such as in flows with elastic and moving boundaries
(Fang et al. 1998), steady and pulsating flow (Fang et al. 2002), particle
suspensions (Ladd and Verberg 2001), and flows with complex boundaries
(Manwart et al. 2002, Guo et al. 2002). Migliorini et al. (2002) consider
the forces acting on leukocytes due to red blood cells in a two dimensional
simulation of a blood vessel. This work was continued by Sun et al. (2003).
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It has been applied to a limited number of blood flow simulations. Krafczyk
et al. (1998, 2001) consider blood flow through an artificial aortic valve. They
present details of transient flows at selected fixed openings and also consider
a two-dimensional model with moving leaflets. Bellerman and Sloot (2001)
propose using the LBM in an ambitious project to build a ’virtual laboratory’
in which LBM simulations will be combined with visualisation techniques.
Tamagawa and Matsuo (2004) simulate blood flow in a simple model of a
blood pump or a medical fluid machine. They further estimate thrombus
formation from the shear rate and the effective distance of the wall. Artoli et
al. (2004) consider a two dimensional model of a symmetric bifurcation and
compare the LBM results to a Navier-Stokes solver. The implementation of
compliant walls in a two dimensional tube representing a blood vessel was
considered by Fang et al. (2002) and Hoekstra et al. (2004). Li et al. (2004,
2005) consider the transport of red blood cells through a two dimensional
symmetric model of an artery containing a semi-circular stenosis. Measure-
ment of force on moving boundaries and suspended particles has also been
investigated (Li et al. 2004).

The developments outlined above show that the LBM is suited to simu-
lating a number of features which are important in arterial haemodynamics.
For a given simulation, the features that are deemed to be important can
be integrated in a realistic model. In some areas, such as the simulation of
transport of red blood cells, the LBM offers advantages over alternative nu-
merical approaches. In other areas, such as simulating compliant walls, the
LBM approach provides an efficient, validated approach to implementing a
feature which can be found in many alternative CFD codes. In the study of
haemodynamics the LBM can play an important contribution, as it is doing
in other fields of fluid mechanics. The technique can be applied in the same
continuum limit as the more traditional Navier-Stokes solvers. Further it can
also potentially be applied at the smaller length scales of capillaries (Agarwal
et al. (2001), Spaid et al. (1997), Lim et al. (2002), Nie et al. (2002)) once
its application to larger scales has been fully implemented.

In this paper a two dimensional model of the human carotid artery with a
simulated stenosis growth is presented. The simulations are performed using
rigid walls. This is a good approximation in the region of the stenosis which is
the area of interest here in terms of measuring the wall shear stress. Healthy
regions of the artery will exhibit a level of compliance which is not consid-
ered here. This will influence the calculated velocity and shear stress field;
however, given the two dimensional nature of the simulation and the fact the
stenosis shape, size and position varies considerable between patients, the
aim of this paper is to investigate how the wall shear varies in the presence
of stenosis growth, rather than determining detailed flow fields. The blood
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is modelled as a Newtonian fluid. This is generally assumed to be an accept-
able approximation for larger vessels, such as the carotid (Quarteroni et al.
2000). The stenosis growth is implemented in a region of the internal carotid
artery which exhibits low velocity flow and a low near wall shear stress. This
region is also one which is commonly prone to atherosclerotic progression.
Maximum near wall shear stresses at points in the artery are compared with
literature results and changes in the velocity and shear fields due to stenosis
growth within the artery are examined. It is found that for the simulated
stenosis growth, persistent regions of low velocity and low near wall shear
are observed, particularly near the wall upstream from the stenosis growth.
This suggests that the plaque build up maintains flow conditions favourable
to its progression.

2 Theoretical Background

2.1 The Lattice Boltzmann Method

The lattice Boltzmann method (Chen and Doolen 1998) has recently been
developed as an alternative method for simulating a range of fluid flows.
In the LBM particle distribution functions, f;(x,?) at point x at time ¢,
are confined to move synchronously on a regular lattice. The distribution
functions interact on the lattice in a way that conserves mass, momentum,
isotropy and Galilean invariance. Here ¢ labels the lattice link the distribution
function is on. The lattice used in this paper is the D2Q9, shown in figure 1.

The evolution of the distribution functions on the lattice is governed by
the discrete Boltzmann equation (Chen and Doolen 1998)

filx + e;Az,t + At) = fi(x,t) + Q(x,1), (t=0,1---,M), (1)

where for the D2Q9 lattice, see figure 1,

€ = (0, 0), ’ (7’ = 0)1
e = (cos(g(i—l)),sin(g(i——l))) (1=1,2,3,4), (2)
e = v2(cos(5(i—1)+17),sin(E6G—-1)+13)) ,(=5678),

and €); is the collision operator. The fluid density p and velocity u can be
calculated directly from the distribution functions at each node by

p= Zfi and pu = Zfiei, (3)



The collision operator §; is given by the Bhatnagar-Gross-Krook approx-
imation as (Bhatnagar et al. 1954, Chen and Doolen 1998)
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Figure 1: The D2Q9 lattice. The black circle is the node, and the lines are
the link directions, numbered from 1-8.

where 7 is the relaxation time and f{9(x,t) is the equilibrium value of the
distribution function.

The equilibrium form of the distribution function in two dimensions for
the D2Q9 lattice is given by (Quian et al. 1992)

9
fif(x,t) = wip(l + 3e; - u + i(ei ‘u)’ - guz) (5)

where wo = 4/9, w; = 1/9 for i = 1,2,3,4 and w; = 1/36 for ¢ = 5,6,7,8. The
relaxation time 7 is related to the kinematic viscosity v by

27 —1
6 (6)

The LBM reproduces the Navier stokes equation in the nearly incom-
pressible limit and is second order accurate in the body of the fluid (Chen
and Doolen 1998).

A sub-grid accurate extrapolation boundary scheme (Guo et al. 2002) is
used to implement the artery geometry in the model. This boundary scheme
retains the second order nature of the LBM and is well suited to modelling
stenosis growth since it enables the shape of the artery wall and the stenosis
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to be modelled at a resolution greater than that provided by the underlying
lattice (Boyd et al. 2004).

At the entry of the artery a predetermined profile was implemented, this
will be described in the following section. This boundary condition was
implemented by setting the distribution functions at the entry equal to their
equilibrium values, calculated from equation (5, for the desired velocity and
density. The profile was applied uniformly across the width of the entry
except for a boundary layer region of with approximately 1mm over which
the velocity reduced to zero (Boyd et al. 2004). It can be seen from figures 2
which shows the geometry of the carotid artery and figure 3 which shows the
region of the artery where used to present the results, that the entry position
of the computational artery is a significantly distance from the region from
which the results were obtained. Small variations in the entry parameters,
such as the width of the boundary layer, were not found to make a significant
difference to the presented results.

The unknown distribution functions at an exit site x were found from a
linear extrapolation, based on (Neal 2002):

fi(x,t—i—l):2fi(x+e,-,t+1)—fi(x+2ei,t+ 1) (7)

Note that the additional constraint of Neal (2002) which should be expressed
as:
if [e; - u(x,t+1)]je;-u(x+e;,t+1)] <0

then fi(x,t+1) = f (8)

was not implemented here since there was no change in the sign of the velocity
at the exit.

’p=p(X+ee ;t+1),u=0

3 Methods and results

Figure 2 shows the carotid artery geometry that was used for the simulation.
Thirty incrementally larger stenosis growths were implemented in a region
of the artery that exhibited low velocity and low near wall shears and is
known to be susceptible to atherosclerosis (Gnasso et al. 1997), figure 3.
The stenosis geometries were chosen to vary smoothly between increments. A
pulsatile waveform, shown in figure 4 adapted from Holdsworth et al. (1999),
was implemented at the base of the artery. It was found that two pulse
periods were sufficient for any transients in the flow to reduce to acceptable
levels.

Blood was assumed to be Newtonian, this is generally held to be a good
first approximation (McDonald 1960, Quarteroni et al. 2000). The kinematic



viscosity of blood was taken to be v =4 x 107® m? s~!. The artery walls were
assumed to be rigid, which is accurate near the vicinity of the stenosis itself
(Steinke et al. 1994) and a good approximation in a large artery such as the
carotid. A grid resolution of 12.5 grid points per mm was implemented and
each pulse period corresponded to around 4 million simulation time-steps.
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Figure 2: Carotid artery geome- Figure 3: Stenosis implementa-
try used. tion, every fifth increment shown.

The intersections of lines A-D
show the locations of near wall
shear measurements taken for
comparison with literature values

Figures 5 and 6 show the absolute velocity flow fields (VFF) and shear
stress during the simulated stenosis growth in the carotid artery. The un-
stenosed artery and stenosis increments 10, 15, 20, 25 and 30 are shown. The
images were all taken at the time of peak velocity in the unstenosed artery
which corresponded to a time of ¢ = 0.066 s into the pulse period, figure 4.

Figures 7 and ?? show the changing VFF and shear stress in the maxi-
mally stenosed artery at times of £ = 0.05 s, 0.12 s, 0.17 s, 0.22 s, 0.28 s and
0.50 s. These times were chosen to emphasise changes that occur in the flow
characteristics during a pulse cycle.

The primary region of interest is along the lower outer wall of the in-
ternal carotid artery (ICA). It can be seen that there is a large region of
low velocity flow and corresponding low near wall shear indicating an area
prone to atherosclerosis. It was in this region that the simulated stenosis was
implemented. A similar region is also observed along the outer wall of the



common carotid artery (CCA).

The shear values at the inner and outer wall indicated by the lines A-
D in figure 3 were compared to literature values for maximum wall shear
obtained from Ku et al. (1985) and Perktold et al. (1991), shown in table 1.
The distribution of the shears and the numerical values qualitatively agree
with the literature values. Discrepancies in the values obtained may arise
from the 2D nature of the simulation, differences in the arterial geometry,
the waveform implemented, the exact location of the measurements and the
manner in which they were taken.
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Figure 4: Pulse waveform implemented at the base of the common carotid
artery geometry shown in figure 2.

As can be observed from figures 5 and 6, the majority of the shear stress
in the artery is concentrated along the walls during the peak velocity. This is
also true for the majority of the pulse cycle, as observed in figures 7 and ?7?.
The largest changes during the simulated stenosis growth occurred near the
boundary of the stenosis itself. In order to examine how the near wall shear
stress along the boundary of the stenosis changes in response to the stenosis
growth, the shear near a section of the wall extending from y = 0.0384 m to
y = 0.0496 m, a total vertical distance of 11.2 mm, encompassing the stenosis
boundary was examined.

Whilst the extrapolation schemes allows the LBM to model the carotid
artery with a sub-grid boundary, the model only outputs velocity values at
nodes within the fluid. Thus to measure near wall shear stress at positions
other than those lying on lattice nodes, a form of interpolation is needed.
Figure 8 shows interpolated near wall shears measured 0.16 mm from the
wall along the selected wall section. This distance is not a limitation of the
LBM model, but was selected to enable comparison with literature results
where wall shear stress is typically measured some distance from the wall.



Table 1: Wall shear stress comparison with data obtained from Ku et al. and
Perktold et al.. All values are given in Pascals (Pa).

Inner wall shear (Pa) Outer wall shear (Pa)
Axial Ku Perktold Model | Ku Perktold Model
Position et al. et al. et al. et al.
A 10.9 6.74 7.4 4.9 6.48 2
B 4.1 4.18 3.7 1.3 1.92 1.7
C 5 12.58 8.4 0.4 0.88 1.2
D 5.6 - 4.0 3.5 - 6.4

The distance of 0.16 mm corresponds to two grid lengths. Due to the sub-gird
boundary resolution, neither the boundary nor the point 2 gird lengths for
the boundary as generally at a grid point, thus the need to interpolated the
shear values. The small oscillations in the curved are mainly generated by the
fact that the interpolation is taken along the links of the lattice, which may
not be perpendicular to the boundary. These curves give a good indication
of the behaviour of the shear near the wall, and thus a more complicated
interpolation scheme is not required.

4 Discussion

4.1 Stenosis Growth

A number of interesting features were observed during the stenosis growth.
The region of low velocity flow observed in figure 5(a) is preserved behind
the growing stenosis. The corresponding region of low near wall shear is also
preserved, particularly along the upper edge of the stenosis.

A small region of slow rotational flow near the outer ICA wall is observed
inside the larger region of low velocity flow, indicated by the small shear
shown by the arrow in figure 5(d). This rotational flow also persists during
the stenosis growth and remains in the area immediately after the upper edge
of the stenosis.

The largest changes in carotid artery VFF occur once the stenosis edge
penetrates into the central higher velocity flow observed in the unstenosed
artery in figure 5(a). This occurs at around increment 15, see figures 5 €)
and 6 a). Higher velocities are exhibited in the central region of the artery
during maximal stenosis growth, particularly in the upper part of the CCA.



This increase in velocity corresponds to an increase in the near wall shear
stress along the lower edge of the stenosis growth. The highest shear along
the edge of the stenosis corresponds to the place where the stenosis edge
penetrates from the initial low velocity region into the high velocity central
flow corresponding to the change in the VFF noted above. A plume of higher
shear extends from this point, with the shear increasing as the stenosis grows.

The velocities and shears outside the central region near the stenosis re-
main relatively unchanged. The shear along the walls of the external carotid
artery, the bifurcation and the inner wall of the ICA remain uniformly high.
A small region of low velocity and low near wall shear is also preserved along
the upper right-hand wall of the CCA. Small rotational flow was also observed
in that area, indicating it may also be a region of the artery susceptible to
atherosclerosis. This is borne out by the literature (Gnasso et al. 1997).

Along the wall of the stenosis, it can be seen that as the stenosis grows,
two regions of higher shear stress develop. The high shear stress that develops
in the lower portion of the wall is centered around y = 0.042 m. This region
of high shear stress corresponds to the portion of the stenosis wall which
is closest to the interface between the central high velocity flow and the
region of low velocity flow seen in figures 5 and 6. The wall shear stress in
this portion of the stenosis boundary increases with the stenosis growth, the
length of the boundary wall which is subject to the higher shear stresses also
increases with the stenosis growth.

The second region of high wall shear stress is initially centered around
y = 0.0456 m. As the stenosis grows, this region of high shear stress moves
up the artery wall. During the initial stages of growth, this shear stress in
this region increases, figures 8 a) - ¢), but then steadily decreases as it moves
up the wall, figures 8 d) - f). This region of higher shear stress corresponds
to the area of low velocity rotational flow observed in figure 5 d).

The wall shear stress between these peaks remains low for the duration of
the stenosis growth. Thus it can be seen that the high wall shear stresses cre-
ated by the stenosis growth is mainly concentrated in the area of the stenosis
wall that breaches the interface between the regions of higher velocity central
flow and the lower velocity flow near the wall. This high shear stress may
play a role in the rupturing of such a stenosis growth. This is an interesting
result which merits further study, the model used in this study does not have
the capability to study this process however.

4.2 Pulse Cycle

It can be seen from figure 4 that the peak velocity flows presented in figures
5 and 6 only occur for a relatively brief period in the pulse cycle. For the



rest of the pulse cycle the flow velocity remains relatively low. It is, however,
interesting to consider how the velocity and shear stress changes over a pulse
period. This is shown in figure 7 which show the velocity and shear stress at
selected times for the maximum level of stenosis.

At times t = 0.17 s and ¢ = 0.22 s in figures 5 e) - f) and 5 g) - h)
respectively, large regions of rotational flow are observed. These regions
occur after the peak velocity flow and were also observed for the unstenosed
case. The region of rotational flow occurs upstream of the stenosis and
remains relatively fixed before completely dissipating before the next pulse
cycle. The upper part of the large region seen in figure 5 €) does, however,
break away and move further up the ICA.

The majority of the high shear stress is concentrated near the walls of the
artery. It is observed that higher shear stresses were always present around
the point of bifurcation in the artery. High shear stress was also present
along the walls of the ECA for a large part of the pulse cycle. The regions of
rotational observed also created patches of higher shear stress in the central
region of the ICA. Low wall shear stress was prevalent for most of the pulse
cycle in the CCA The right hand wall of the ICA also had large regions of low
wall shear stress during most of the pulse cycle. The largest areas high shear
stress along the wall of the ICA occurred near the times of peak velocity flow.

5 Conclusion

Despite the 2 dimensional nature of the model, results for the peak near wall
shear compared well with literature values. Regions of low velocity, rotational
flow and low near wall shear are observed in areas of the unstenosed artery
known to be susceptible to atherosclerosis. These regions persist during the
simulated stenosis growth as well as during the pulse cycle, suggesting that
growing stenosis maintain conditions in the artery which can further promote
their growth. In particular, a small region of rotational flow is observed just
upstream of the upper edge of the implemented stenosis. This may increase
the particle residency time for lipids and blood cells in this region and further
promote stenosis progression.

High shear along the wall of the stenosis is observed when the wall of the
stenosis penetrates into the higher velocity central flow, a factor that may be
relevant when studying the events leading to plaque rupture and ischaemic
stroke.

These results show the promise of the LBM for arterial blood-flow sim-
ulation and in particular its possible application to the further study of the
haemodynamic influences on atherosclerotic progression and plaque rupture.
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Future directions for this work include a 3 dimensional implementation of the
LBM. The local nature of the LBM also makes it ideal for parallel implemen-
tation enabling 3 dimensional simulations to be performed.. More realistic
artery conditions such as compliant walls (Fang et al. 2002) and red blood
cells (Li et al. 2004a) can also be added. These areas will be the focus of
continuing work in this area.
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Figure 6: Velocity and shear stress fields in response to implemented stenosis
growth. Stenosis increments 20 (a-b), 25 (c-d) and 30 (e-f) shown. The
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Figure 7: Velocity and shear stress during pulse cycle for maximally stenosed
artery. (a-b) t = 0.05s, (c-d) ¢t = 0.12 s and (e-f) t = 0.17 s, (g-h) ¢t = 0.22
s, (i-j) t = 0.28 s, (k-1) ¢t = 0.50 s. The artery wall is represented by the
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Figure 8: Response of near wall shear stress to stenosis growth, increments
a) 0, b) 10, ¢) 15, d) 20, e) 25, and f) 30 shown. Shear stress two grid-lengths
from the wall shown.
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