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ABSTRACT: Mating and calving records for 51,084
first-parity heifers in Australian Angus herds were
used to examine the relationship between probability
of calving to first insemination (CFI) in artificial insemi-
nation and natural service (NS) mating data. Calving
to first insemination was defined as a binary trait for
both sources of data. Two Bayesian models were em-
ployed: 1) a bivariate threshold model with CFI in AI
data regarded as a trait separate from CFI in NS data
and 2) a univariate threshold model with CFI regarded
as the same trait for both sources of data. Posterior
means (SD) of additive variance in the bivariate analy-
sis were similar: 0.049 (0.013) and 0.075 (0.021) for
CFI in AI and NS data, respectively, indicating lack of
heterogeneity for this parameter. A similar trend was
observed for heritability in the bivariate analysis, with
posterior means (SD) of 0.025 (0.007) and 0.048 (0.012)
for AI and NS data, respectively. The posterior means
(SD) of the additive covariance and corresponding ge-
netic correlation between the traits were 0.048 (0.006)
and 0.821 (0.138), respectively. Differences were ob-
served between posterior means for herd-year variance:
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Introduction

Previous research investigating reproductive perfor-
mance under natural service matings has focused on
the continuous traits of calving date and days to calving
(e.g., Buddenberg et al., 1990; Meyer et al., 1990; John-
ston and Bunter, 1996). These studies found that both
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0.843 vs. 0.280 for AI and NS data, respectively, which
may reflect the higher incidence of 100% conception
rates within a herd-year class (extreme category prob-
lem) in AI data. Parameter estimates under the univari-
ate model were close to the weighted average of the
corresponding parameters under the bivariate model.
Posterior means (SD) for additive, herd-year, and ser-
vice sire variance and heritability under the univariate
model were 0.063 (0.007), 0.56 (0.029), 0.131 (0.013),
and 0.036 (0.007), respectively. These results indicate
that, genetically, cows with a higher probability of CFI
when mated using AI also have a high probability of
CFI when mated via NS. The high correlation between
the two traits, along with the lack of heterogeneity for
the additive variance, implies that a common additive
variance could be used for AI and NS data. A single-
trait analysis of CFI with heterogeneous variances for
herd-year and service sire could be implemented. The
low estimates of heritability indicate that response to
selection for probability of calving to first insemination
would be expected to be low.

traits were lowly heritable but had a clear economic
interpretation. Studies have also used information from
artificial insemination mating data to evaluate repro-
ductive performance (e.g., Evans et al., 1999; Doyle et
al., 2000). Traits that describe female fertility measures
arising from artificial insemination data conform well
to the threshold model and also exhibit genetic
variation.

Little attention has been given to genetic evaluations
of fertility that incorporate both natural service and
artificial insemination information. Such an evaluation
requires trait definitions such that information from
both types of matings can be fairly combined and com-
pared. A binary trait (calving to first insemination) that
evaluates the probability that a female will produce a
live calf from her first insemination could fulfill these
criteria. Under this trait definition, a female that is
pregnant and produces a calf after her first opportunity
to do so in artificial insemination data could be compa-
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rable to a female that produces a calf as a result of
becoming pregnant within the first 21 d of the breeding
season in natural mating data. For a complete analysis
of the trait, full mating information on every female
should be available, including management of estrus
for artificial insemination matings.

The objective of this study was to develop methodol-
ogy to combine both types of mating data into a joint
genetic evaluation, and provide one genetic value to
report for fertility. Genetic parameters for calving to
first insemination were estimated under bivariate and
univariate models during the course of this study.

Materials and Methods

Data

Bivariate Analysis. The data consisted of mating and
calving records for first-parity females from Angus
herds in Australia. Females had either an artificial in-
semination (AI) or a natural service (NS) record, but
not both types of records. Only females having their
first mating record between 270 and 625 d of age were
included in the analysis. Before editing, there were
53,094 mating records from first-calf heifers born be-
tween 1987 and 2000 available in the database. Fe-
males with incomplete records (n = 541) and whose
mating records resulting in multiple births (n = 274)
were removed during edits. Incomplete records in-
cluded those in which the information on sex of calf and
identification of mating sire were missing. In addition,
mating records whose gestation length was more than
two SD lower than the mean (by sex of calf) were consid-
ered outliers (Kadarmideen and Coffey, 2001) and were
removed during edits (n = 471). Gestation length (GL)
was computed using AI data as the difference between
the insemination date and subsequent calving date, and
averaged by sex of calf. Average (SD) GL were 279.2 d
(5.2 d) and 280.3 d (5.2 d) for female and male calves,
respectively. Finally, all herd-year groups containing
only a single record (n = 724) were removed from the
data set. After editing, the AI and NS data sets con-
sisted of 16,358 and 34,726 records, respectively. A total
of 2,239 and 4,465 sires were represented in the AI
and NS data sets, respectively, with 1,658 sires having
progeny in both data sets. The structure of the data
sets is shown in Table 1.

Calving to first insemination for AI records (AICFI)
was defined as a binary trait; records with a GL within
two SD of the mean (by sex of calf) were coded as 1,
whereas records more than two SD above the mean,
including females who failed to calve, were coded as 0.

Calving to first insemination for natural service re-
cords (NSCFI) was defined as a binary trait; mating
records whose approximate date of insemination was
within the first 21 d of the breeding cycle were coded as
1, whereas records outside this range, including females
who failed to calve, were coded as 0. An approximate
date of insemination for NS records was calculated by

Table 1. Descriptive statistics of the datasets for the bivari-
ate and single trait analyses

Variable AIa NSb Combinedc

No. of records 16,358 34,726 51,084
No. of sires 2,239 4,465 5,047
No. of herd × year classes 1,136 2,014 3,150
No. of service sires 687 3,504 3,969
CFI frequency, %d 79.3 53.0 61.5

aArtificial insemination mating data.
bNatural service mating data.
cCombined (AI and NS) data.
dCalving to first insemination.

adjusting days to calving records by mean GL (by sex
of calf) obtained from the AI records. Days to calving
is defined as the number of days between the time a
bull is turned out in the pasture and the subsequent
calving date (Johnston and Bunter, 1996), and was re-
corded in the database.

Single Trait Analysis. Records from the AI and NS
data sets were combined into one data set for a single-
trait analysis of calving to first insemination (CFI). De-
scriptive statistics for the combined data set are found
in Table 1.

Model

Bivariate Analysis. A bivariate threshold model was
used, with both AICFI and NSCFI as binary traits pos-
sessing an underlying bivariate normal distribution.
These models have been implemented in the animal
breeding field using marginal maximum likelihood or
empirical Bayes methods by several researchers (Foul-
ley et al., 1983; Hoeschele et al., 1986), and are an
extension of the univariate threshold model (Gianola
and Foulley, 1983).

A mixed linear model was used for analyses of the
underlying liability for both AICFI and NSCFI. In ma-
trix notation, the model can be written as follows:

λ = Xβ + Zss + Zuu + e

where λ is a vector of unobserved liabilities; β is the
vector of systematic effects (herd × year effects, month
of mating effects, linear and quadratic covariates for
age at mating); s is the vector of service sire effects; u
is the vector of additive genetic values; e is the vector
of residual terms; and X, Zs, and Zu are known inci-
dence matrices.

Conditionally on the model parameters, it was as-
sumed that the sampling distribution of liabilities was

p(λ|β, s, u, R0) ∼ N(Xβ + Zss + Zuu, I ⊗ R0)

where R0 is a 2 × 2 variance-covariance matrix with
the following structure:
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R0 =
⎡
⎢
⎣

σ2
e1 σe12

σe21 σ2
e2

⎤
⎥
⎦

Given the well-known nondefinability problem of the
threshold models, at least two restrictions are needed.
In this study, the threshold and the residual variances
were arbitrarily set to 0 and 1, respectively. Further,
all females had either an AI or a NS record; none had
both traits measured. Consequently, the residual covar-
iance cannot be inferred and it was set to 0, leading to

R0 =
⎡
⎢
⎣

1 0
0 1

⎤
⎥
⎦

The vector of systematic effects was partitioned into

subvectors β = (β′H, β′R)′, where βH is a vector of herd
× year effects and βR is a vector containing month of
mating effects and linear and quadratic covariates for
age at mating. The average number of records per herd
× year class was small, and many herd × year classes
were either all 0s or all 1s for any of the two binary
traits. This causes the well-known problem of extreme
case categories in analysis of threshold models. Hence,
herd × year effects were assigned a normal prior with
unknown mean and variance. This is based on the re-
sults of Rekaya et al. (2000), who found that this prior
distribution alleviated the “extreme category” problems
in such data. The prior distribution for the vector βH was

p(βH|η, H) ∼ N(η, I ⊗ H)

where η = (1′η1, 1′η2)′ is a vector of mean herd × year
effects, with η1 = mean herd × year effect for AICFI and
η2 = mean herd × year effect for NSCFI. Further,

H =
⎡
⎢
⎣

σ2
h1 0

0 σ2
h2

⎤
⎥
⎦

is a 2 × 2 (co)variance matrix and I is the identity
matrix. Both η1 and η2 and the elements of H were
assumed unknown and, hence, priors were specified
as follows:

p(ηi) ∼ U[−10, 10] for i = 1, 2

The diagonal elements of H were assigned the following
uniform prior distributions:

p(σ2
hi) ∼ U[0, 1] for i = 1, 2

where U[.] is the uniform distribution.
The prior distribution for vector βR was

p(βR|σ2
R) ∼ N(0, Iσ2

R)

with σ2
R = 105. Since σ2

R is large relative to the residual
variance, this prior distribution conveys vague prior
knowledge about each of the elements of βR.

A normal distribution was used as prior for the effect
of service sire:

p(s|S) ∼ N(0, I ⊗ S)

where S =
⎡
⎢
⎣

σ2
s1 0

0 σ2
s2

⎤
⎥
⎦

is the service sire (co)variance ma-

trix. The following uniform bounded priors were as-
signed to the diagonal elements of matrix S:

p(σ2
si) ∼ U[0, 1] for i = 1, 2

A multivariate normal distribution was used as prior
for the animal effects:

p(u|A, G0) ∼ N(0, A ⊗ G0)

where G0 =
⎡
⎢
⎣

σ2
u1 σu12

σu21 σ2
u2

⎤
⎥
⎦

is the additive (co)variance ma-

trix, and A is the additive relationship matrix between
animals. The following uniform bounded priors were
assigned to the elements of matrix G0:

p(σ2
ui) ∼ U[0, 1] for i = 1, 2

and

p(σu12) ∼ U
⎡
⎢
⎣
−√σ2

u1σ
2
u2, √σ2

u1σ
2
u2

⎤
⎥
⎦

The joint posterior density is proportional to the prod-
uct of the density of the conditional distribution of the
observation times the joint prior density. Draws from
the conditional posterior distribution of all of the pa-
rameters were obtained using a Gibbs sampler with
data augmentation (Sorensen et al., 1995). The joint
posterior was augmented with the liabilities for each
female. After augmentation, all of the fully conditional
posterior distributions of all model parameters can be
derived as described by Albert and Chib (1993) and
Sorensen et al. (1995). These distributions are normal
for the location parameters; truncated normal for the
liabilities; and scaled-inverted Wishart distributions
for the dispersion parameters. Liabilities were sampled
from their truncated normal distribution using inverse
cumulative distribution function technique (Devroye,
1986).

Single-Trait Analysis. A univariate version of the
above bivariate model was implemented. Similar priors
(after adjustment of dimensions) were assumed to the
model parameters. A full description of the derivation
and implementation using a Bayesian approach via
MCMC methods can be found in Heringstad et al.
(2001).

Results and Discussion

For all analyses, convergence was assessed using
methodology presented by Raftery and Lewis (1992).
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Table 2. Genetic parameter estimates for probability of calving to first insemination for
bivariate analysis

Trait Parameterabc Mean SD HPD (95%)d

AICFIe σ2
h 0.843 0.095 0.685 to 0.999

σ2
s 0.058 0.014 0.034 to 0.085

σ2
u 0.049 0.013 0.032 to 0.074

h2 0.025 0.007 0.016 to 0.038

NSCFIf σ2
h 0.280 0.023 0.235 to 0.324

σ2
s 0.195 0.018 0.161 to 0.231

σ2
u 0.075 0.021 0.043 to 0.120

h2 0.048 0.012 0.031 to 0.077
AICFI-NSCFI σu12 0.048 0.006 0.032 to 0.057

rg 0.821 0.138 0.535 to 0.999

aσ2
h = herd-year variance; σ2

s = service sire variance; σ2
u = additive genetic variance.

bh2 = σ2
u/(σ2

h + σ2
s + σ2

u + 1).
cσu12 is the additive covariance between the two traits, respectively, and rg is the corresponding correlation.
dUpper and lower bounds of high posterior density interval (95%).
eProbability of calving to first insemination in artificial insemination mating data.
fProbability of calving to first insemination in natural service mating data.

The required length of the burn-in period was always
less than 2,500 iterations for all parameters. Thus,
75,000 iterations of the sampler were run with a conser-
vative 25,000 iterations discarded as burn-in. All re-
maining 50,000 iterations were retained without thin-
ning for post-Gibbs analysis.

There was a large difference in the percentage of
females calving to their first insemination between the
AI and NS data sets (79 vs. 53%). It is reasonable to
assume that higher levels of management could be asso-
ciated with slightly higher first insemination concep-
tion rates in AI data. Due to the cost and higher level
of management required to implement an AI program,
these breeders may be employing more intensive tech-
niques in order to maximize pregnancy rates. However,
closer examination of the AI data revealed a high inci-
dence of extreme category problem (ECP) at the herd-
year level (all observations within a class falling into
the same category). For example, 50% of herd-year
classes contained observations that fell into the same
category in AI data, compared to 22% in the NS data.
This suggests that the large difference in percentage
of females calving to their first insemination observed
between the two types of matings is most likely due
to incomplete recording in the AI data; that is, only
successful inseminations have been reported in some
herds.

Summaries of the posterior distributions of (co)vari-
ance components, heritabilities, and genetic correlation
from the bivariate analysis are presented in Table 2.
The posterior mean of the additive variance in the AI
data (0.049) tended to be slightly lower than in NS
data (0.075). Despite this trend, the posterior mean of
additive variance in the AI data was within the high
posterior density (HPD) interval (95%) for the NS data.
These results indicate that there was no major statisti-
cal evidence of heterogeneity of variance for the additive
effect in these two data sets. The posterior mean of the

additive covariance between AICFI and NSCFI was
0.048, and the corresponding genetic correlation was
0.821. These results suggest a high, positive genetic
correlation between CFI for AI matings and the same
trait under NS matings. A large positive genetic correla-
tion means that, genetically, cows with a higher proba-
bility of calving as a result of the first insemination
when mated using AI also have a high probability of
calving as a result of the first insemination when mated
via natural service. The lack of statistical evidence of
heterogeneity observed for the additive variance, to-
gether with the high positive correlation between both
traits, indicates that a single-trait analysis with homog-
enous additive variances is a reasonable assumption.
Thus, combining AI and NS data could be undertaken
for the trait of calving to first insemination, assuming
that other variances in the model did not exhibit hetero-
geneity.

The posterior means (SD) of heritability (h2) for CFI
in both traits were low, and ranged from 0.03 to 0.05
(0.007 to 0.012). These heritabilities represent the
lower bounds for the trait due to the inclusion of herd-
year variance in the total phenotypic variance. By not
including herd-year variance in the total phenotypic
variance, heritability had an upper bound of 0.044 and
0.056 for AICFI and NSCFI, respectively. As a result
of the lower estimate of the additive variance in the AI
data set, the posterior means of both lower and upper
bounds of h2 were slightly smaller than the estimate
in the NS data. Early studies of fertility reported herita-
bilities expressed on the observed scale for traits such
as pregnancy, conception, and calving rates and found
heifer fertility to be lowly heritable (0.05 to 0.17; Koots
et al., 1994). Buddenberg et al. (1990) examined the h2

of pregnancy on both the observed and underlying
scales in Angus, Hereford, and Polled Hereford females.
For first-parity females, these estimates ranged from
0.04 to 0.17 and 0.08 to 0.34 on the observed and under-
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lying scale, respectively. Evans et al. (1999) used
threshold analytical procedures and Method ℜ to esti-
mate variance components for heifer pregnancy and
obtained h2 estimates of 0.138 ± 0.09, with a 90% confi-
dence interval (CI) of 0.015 to 0.347. The point esti-
mates of h2 in our study are lower than the estimates
reported in these studies; however, they are both within
the 90% CI reported by Evans et al. (1999). The lower
estimates of h2 observed in this study could result from
more appropriate analytical procedures for the data,
Bayesian approach vs. Method ℜ for a small data set,
or perhaps are a reflection of the slight differences in
trait definitions. In the study by Evans et al. (1999),
heifer pregnancy was defined as the observation that
a heifer conceived and remained pregnant to palpation,
which occurred approximately 120 d following insemi-
nation. The trait in this study (CFI), however, was de-
fined as the observation that a heifer produced a live
calf from her first insemination.

The posterior mean of herd-year variance was higher
in the AI data in comparison to the NS data (0.843
vs. 0.280). This could be due, in part, to the fact that
insemination technician is nested within herd for AI
data. As well, variation in heat detection and synchroni-
zation techniques may have been partitioned to the
herd-year variance in these data, leading to an inflated
herd-year variance. The type of heat detection and syn-
chronization treatment used was not recorded in the
database, and it is possible that, within a herd-year,
heifers were exposed to different heat detections and/
or treatments to synchronize estrus. In the future, both
heat detection and synchronization treatment should
be recorded for AI matings and herd-year groups be
redefined to include this information. The higher inci-
dence of ECP in the AI data may also have contributed
to differences in herd-year variance between the types
of mating. This bias in the estimate for herd-year vari-
ance for AI data is most likely positive in magnitude,
as the majority of ECP in the AI data were herd-year
classes in which all observations had a trait value equal
to 1. The different estimates for herd-year variance in
AI and NS data sets indicate that some heterogeneity
of variance may be occurring, although it is not clear
whether this is a function of real differences between
the types of mating or a lack of information about man-
agement and/or incomplete recording in the AI data
(ECP). Further research should be undertaken to inves-
tigate whether heterogeneity of herd-year variance is
observed when full management information is avail-
able for AI data.

The posterior means of service sire variance were
lower in magnitude than the herd-year variance, but
higher than the additive variance for both AI and NS
data. As well, the posterior mean was higher in the NS
data in comparison to the AI data (0.195 vs. 0.058).
This result may reflect greater sire differences in NS
data due to variation in libido, reduction in fertility
between breeding soundness exam and actual use, and
differences due to inexperience or bull aggressiveness.

Table 3. Genetic parameter estimates for probability of
calving to first insemination for single-trait analysis

Parameterab Mean SD HPD (95%)c

σ2
h 0.560 0.029 0.505 to 0.618

σ2
s 0.131 0.013 0.107 to 0.157

σ2
u 0.063 0.012 0.042 to 0.086

h2 0.036 0.007 0.025 to 0.048

aσ2
h = herd-year variance; σ2

s = service sire variance; σ2
u = additive

genetic variance.
bh2 = σ2

u/(σ2
u + σ2

h + σ2
s + 1).

cUpper and lower bounds of high posterior density interval (95%).

Further investigation is required to determine whether
service sire variances are really heterogeneous and, if
so, the nature of these differences.

Summaries of the posterior distributions of the vari-
ance components and heritability from the single-trait
analysis are presented in Table 3. The posterior mean
of the additive variance for CFI was very close to the
weighted mean of the point estimates for this parame-
ter in the bivariate analysis. As well, both point esti-
mates from the bivariate analysis were within the HPD
(95%) for the parameter in the single-trait analysis.
Pearson correlations between posterior means of addi-
tive genetic effects for sires with progeny with records
were 0.962, 0.970, and 0.968 for AICFI-NSCFI, AICFI-
CFI, and NSCFI-CFI, respectively. These correlations
indicate that no major reranking of sires would be ex-
pected when AI and NS data is combined. These results,
in conjunction with the lack of heterogeneity for addi-
tive variance observed for the bivariate analysis, indi-
cate that fertility data from AI and NS matings can be
combined using a common additive variance for the
trait of CFI.

The same trend was observed for heritability for CFI,
where the posterior mean was close to the weighted
mean of the point estimates for this parameter in the
bivariate analysis, and both point estimates from the
bivariate analysis were within the HPD (95%) for the
parameter in the single-trait analysis. As discussed pre-
viously, this heritability represents the lower bound for
the trait due to the inclusion of herd-year variance in
the total phenotypic variance. By not including the
herd-year variance in the total phenotypic variance,
heritability for probability of CFI has an upper bound
of 0.05. As in the bivariate analysis, both lower and
upper bound estimates of h2 for the probability of CFI
were lower than literature estimates of heifer fertility
(Evans et al., 1999) but were within range of standard
error associated with these literature estimates, as dis-
cussed previously. These results indicate that the trait,
probability of CFI, with AI and NS data combined for
a single-trait analysis, is lowly heritable, and response
to selection on this trait is expected to be small. The
use of records from later parities should be investigated
as a means of increasing the accuracy of selection for
this trait.
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Posterior means for herd-year and service sire vari-
ance were also close to the weighted mean of the point
estimates for these parameters in the bivariate analy-
sis. However, for both parameters, point estimates from
the bivariate analysis were outside the HPD (95%) for
the corresponding parameter in the single-trait analy-
sis. These results are most likely a reflection of the lack
of information for the AI data, particularly with respect
to heat detection and estrus synchronization, as dis-
cussed previously. If heterogeneous variances do exist
for herd-year and service sire, these need to be ac-
counted for in the model.

Implications

The lack of heterogeneity observed for additive vari-
ance in the bivariate analysis, along with the high,
positive genetic correlation of calving to first insemina-
tion under artificial insemination and natural service
matings, indicates a common additive variance could
be used. Differences were observed between sources of
data for herd-year and service sire variances, which are
most likely a reflection of the poor structure for the
artificial insemination data. These results imply that
a single-trait analysis of calving to first insemination
with heterogeneous variances for herd-year and service
sire could be implemented. Probability of calving to first
insemination had a low heritability in both analyses,
indicating that response to selection is expected to be
low. The use of repeated records over parities to in-
crease the accuracy of selection should be investigated.
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