
Chapter 8

A Statistical Classification Model
for SAXS Images

This chapter develops a statistical model to estimate the probability that a sample is normal, be-
nign or malignant breast tissue from the coefficients of the adaptive transformation of a SAXS
image. The coefficients are produced when the filters described in Chapter 7 are used in the
adaptive image transform and applied to the SAXS image data set.

These coefficients can be considered measures of features that can be input into the statistical
model to provide a classification of the most probable tissue type for each SAXS image. The
samples that are imaged may be deemed to be ‘macro’ in size yet the features being sought are
measured on the nano-scale. Each sample is likely to be a mixture of normal, benign and malig-
nant nano-structures. The critical malignant structures may not be dominant in the sample and
for those cases, the adaptive image transform coefficients will be predominately those associated
with normal or benign features. Yet it is vital that the features indicative of malignant tissue,
however slight, are not ignored when determining the tissue type. This classification model is
designed to utilise features in the coefficient data set that are indicative of malignancy, even when
those features may not be dominant.
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Some samples may produce greater evidence of belonging to a certain group than others and
as a result will have a greater probability of belonging to particular tissue type. This probability
will from hence forth be termed the ‘posterior probability’ of the group; it is the probability that
data from a sample belongs to a particular tissue group as determined by the classification model.

The initial process of model development is quite lengthy as it involves the estimation of this
posterior probability for each of the many coefficients across each scale and location for all of the
filters in the library that was described in Chapter 7. The reason for proceeding in this exhaustive
fashion is so that any coefficient that suggests malignancy is noted.

This chapter is organised into four sections. Section 8.1 specifies the objective of the model
to be designed and the modeling challenges that must be met. The statistical methods of Sec-
tion 8.2 use each transform coefficient (from the very large set of such coefficients) to predict
the probability that the tissue sample is labeled either ‘normal’, ‘benign’ or ‘malignant’. In other
words, the posterior probability of a sample belonging to each group for each coefficient of the
transform is estimated. This is the first step in a model that will assess the joint effects of the
coefficients. Section 8.3 details the statistical model that assesses these joint effects by combin-
ing these individual probability estimates to yield an overall probability that the SAXS image
belongs to each group. A summary of these methods in Section 8.4 concludes the chapter.

The vast amount of coefficients produced by the adaptive image transformation needs to be
reduced to a manageable set whilst retaining most of the useful information. This distillation is
done by dividing the total data set into four subsets: (i) training, (ii) validation (iii) adjustment,
(iv) test and by using a series of statistical models.

Starting with the data in the training set, the adaptive image transform based upon the library
of filter functions produced a multitude of coefficients for each filter, scale and location. The
filter function selection algorithm (Section 7.4) reduces these to the optimal set of adaptive im-
age transform coefficients for each scale-location. Nonetheless, we are still left with a very large
number of coefficients.

The remaining coefficients are summarised by a probability density function (at each scale-
location) which may be parametric or non-parametric. In general, the coefficients that are asso-
ciated with scatter from amorphous substances within the tissue are represented by parametric
probability density functions whilst those capturing SAXS image features are represented by
non-parametric probability density functions. Since scatter from amorphous substances may
explain some of the differences amongst tissue types, that information may be useful in classi-
fication. The bivariate Gaussian probability density function is trialled first but if this is found
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unsuitable, a non-parametric probability density function is used. The non-parametric density
estimates are derived using the Mexican hat contourlet which reduces storage requirements. The
Mexican hat contourlet transform is applied to a two-dimensional histogram of the real and imag-
inary components of each adaptive image transform coefficient. The magnitude of the resultant
Mexican hat contourlet transform coefficients is then modified before back transforming to give
the smooth bivariate non-parametric probability density function estimate of the adaptive image
transform coefficients for each group. A very detailed explanation of the Mexican hat con-
tourlet smoother is provided in Sections 8.2.4-8.2.8 in order to make the steps to obtain the
non-parametric density estimates very explicit.

These results are now used in the validation set. Images in the validation set are still grouped
as normal, benign or malignant and the coefficients in this set have the same indices (i.e. filter
number, scale, location) as those in the training set. Across images for each coefficient at a time,
the coefficients, z j

l,a,x,y are transformed into density estimates p̂g
Nadj (z

j
l,a,x,y), using the proba-

bility density functions derived from the training set. These density estimates are now used in
Bayes” rule (equation 8.2) to estimate the posterior probability of group membership for each
group at each scale-location of the adaptive image transform coefficients of each image. For a
single coefficient at a particular scale-location, these probabilities of each of the j images is en-
coded by the triple ( ˆProbn(z j

l,a,x,y), ˆProbb(z
j
l,a,x,y), ˆProbm(z j

l,a,x,y)). These probability estimates
are obtained for each coefficient (at each filter, scale and location) for each of the j images in the
validation set. The adaptive image transform coefficients which are potentially the most useful
in discriminating amongst groups can be identified as those which have large probability of be-
longing to the true group.

For each image in the validation set, a naive estimate of posterior probabilities of group mem-
bership is obtained by averaging the probabilities across filters, scales and locations. For the jth
image, these naive probability estimates are written as

( ˆProbj,norm, ˆProbj,ben, ˆProbj,mal). (8.1)

The last operation with the validation set is to make a histogram (across images within each
group) to summarise the naive posterior probability estimates (equation 8.1) for each group. The
histograms are smoothed using the Walsh wavelet packet transform because the functions used
in this transform are appropriate for data which take values on the interval [0, 1].
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The adjustment set serves the purpose of calibrating the smoothed univariate histograms. The
purpose of this is to adjust the histograms derived by the naive posterior probability estimates
for each group. The adjustment is performed by using the observed data in the adjustment set to
correct predictions made from the univariate histograms in the validation set.

Finally the adaptive image transform coefficients of the test data set are used to predict group
membership via the functions derived above. These predictions can then be compared with the
known classifications to assess the accuracy of the methodology.

The specific statistical contributions of this chapter include:

i) A probability density function estimation method for large amounts of image data that is
termed conditional-or estimation. The term ‘exclusive-or’ is abbreviated by the acroynm
XOR in this thesis (Section 8.2.2).

ii) The Mexican contourlet transform: a multi-scale, multi-dimensional transformation of bi-
variate data (Section 8.2.4).

iii) Developing methods of smoothing two-dimensional histograms using the Mexican hat con-
tourlet transform (Sections 8.2.5 and 8.2.8).

iv) Creating a multi-scale smoother using the Walsh wavelet packet transform for data defined
on the interval (Sections 8.3.3 and 8.3.5).
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8.1 Modeling Objectives and Challenges

The classification model is a key component of the SAXS diagnostic system and provides a
means to infer tissue state. A wide range of classifiers already exist in the literature including:

a) discriminant analysis (Fischer 1936; Rao 1948; Lachenbruch & Goldstein 1979; Hand
1982; Friedman 1989; Hastie, Buja & Tibshirani 1995; Biernacki et al 2005; Li & Yuan
2005; Zhu & Martinez 2006 )

b) nearest-neighbour classifiers (Fix & Hodges 1951; Cover & Hart 1967; Dasarathy 1991;
Hastie & Tibshirani 1996 )

c) support-vector machines/machine learning (Agrawala 1977; Vapnik 1995; Cristianini &
Shawe-Taylor 1999; Abe 2005; Rossi & Villa 2006)

d) neural networks (Rumelhart & McClelland 1986; Hertz, Krogh & Palmer 1991; Cheng &
Titterington 1994; Bishop 1995; Haykin 1999)

e) tree classifiers (Morgan & Sonquist 1963; Morgan & Messenger 1973; Breiman et al 1984;
Buntine 1992; Breiman 2001)

Many of these classifiers could be applied as ‘off-the-shelf’ technology and used to clas-
sify the SAXS images. This has already been done by Butler et al (2003), Erickson (2005) and
Round (2006), such an approach misses an opportunity to design a classification model suited to
the structure of the data at hand. Given the important and central role of the classifier it is prudent
to focus upon the development of a model that is not only accurate but also interpretable.

The objective of the statistical model to be developed is to accurately identify the pathology of

the tissue sample based upon the observed SAXS image. A model that simply assigns a label (for
instance: normal, benign or malignant) given image feature data is not sufficient. Estimates of
the probability that the sample belongs to each of these three groups is required, medical experts
will then be able to use this information in the wider context to determine if there is a need to do
further assessment. The assessment of the model is not then as simple as determining the number
of samples correctly identified on a future test or validation set (as done in Butler et al (2003),
Erickson (2005), Round (2006)), but includes a detailed consideration of how well the model
is estimating the probabilities of group membership. The problem is at heart one of regression,
using the adaptive transform coefficients to predict the probability that the tissue belongs to a par-
ticular group. This approach allows incorporation of the concept that some samples may present
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greater evidence of belonging to a certain group than others. For instance, two breast tissue
samples might be malignant but belong to different histological stages. The more advanced his-
tological stage tissue sample might have more evidence of collagen structure alteration than the
less advanced sample. Using a statistical model to estimate the probability of group membership
allows for this possibility and others. A ‘hard’ classification that assigns a label (say ‘normal’,
‘benign’ or ‘malignant’) to a tissue sample under investigation might completely fail to detect
a situation in which only a small proportion of the tissue sample is malignant, the rest being
either benign or normal healthy tissue. In such a situation the majority of the scatter recorded
on the SAXS image will be from either normal or benign tissue and the contribution from the
malignant tissue might be obscured. Estimation of the probability of group membership allows
this evidence (however slight to be recorded) and the experts alerted to the risk associated with
the sample. Statistical scientists are very familiar with the concept of estimating probabilities
in classification problems (as evidenced by Ripley, 1996), but the concept seems to have been
missed in the SAXS image analysis fraternity. The model developed in this thesis advocates the
use of the probability of group membership, rather than the ‘hard’ classification to infer the state
of the tissue.

The modeling of the probability of membership tissue group given the adaptive image trans-
form coefficients of breast tissue SAXS images presents several challenges. The most demanding
of which are:

i) High dimensionality: a large number of transform coefficients might provide important
diagnostic information that needs to be incorporated in the classification model.

ii) Limited training sample size: a relatively small number of SAXS images from unique
tissue samples combined with a large number of input features (coefficients) can lead to
inaccurate model estimates. This problem might have manifested itself in the models pre-
sented by Butler et al (2003) and Erickson (2005).

iii) A need and desire to capture the main complexities and dependencies between transform
coefficients. This desire drives investigations using non- or semi-parametric techniques in
which a more general modeling strategy is sought that is applicable for wider SAXS image
analysis applications. We seek a strategy that allows not only the statistical properties of
the transform coefficients of SAXS images of normal, benign and malignant breast tissue
to be modeled, but also the statistical properties of transform coefficients of SAXS images
of different breast tissue grades and brain cancer samples to be modeled. In other words,



8.1. MODELING OBJECTIVES AND CHALLENGES 187

we seek a unified cohesive framework to model the transform coefficients of SAXS images
in general.

iv) The opportunity to model the SAXS image across scales using the adaptive image trans-
form.

v) A scientific need to understand how the transform coefficients and hence both the image
and physical structure influence the classification. The ability to understand and interpret
the classification model is viewed as a very positive attribute in this context.

This thesis will advocate a modeling strategy in which each adaptive image transform coef-
ficient is first considered individually, allowing group conditional probabilities to be assigned to
each relevant filter,scale and location of the transform. Such a strategy is adopted so that vital
evidence is not lost, even when that evidence is muted. The classification algorithm that is devel-
oped combs deep and wide through all filters, scales and locations of the coefficients to provide
the best chance of discovering every useful grain of diagnostic information. This approach will
also allow users to identify those coefficients most indicative of group membership (tissue state)
and to associate those coefficients with particular image and hence collagen structural features.

The group conditional probabilities from each of the adaptive image transform coefficients
will then be collated into a naive overall group conditional probability estimate, which will be
further adjusted to account for the fact that the group conditional probabilities at nearby scale-
locations may not be mutually exclusive. This adjustment is performed by first estimating proba-
bility density functions of the naive overall group conditional probabilities for each group. These
probability density function estimates are then modified to ensure the maximum number of cor-
rect classifications (by assignment of an observation to the group with the highest posterior prob-
ability) on an independent adjustment data set. It is these adjusted probability density functions
that are used to estimate the overall group posterior probabilities which are used to diagnose the
tissue state of SAXS image observations from an independent test data set.
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8.2 Statistical Modeling of the Transform Coefficients

This section is divided into ten components.

(i) Section 8.2.1 describes how the posterior probabilities of each group at each filter, scale
and location of the coefficients of the adaptive image transform of each SAXS image can
be estimated.

(ii) Section 8.2.2 presents the XOR estimation model, that allows either parametric or non-
parametric probability density functions to be fit for the adaptive image transform coeffi-
cients at different filters, scales and locations.

(iii) Section 8.2.3 justifies the use of the bivariate Gaussian distribution to model the parametric
component of the XOR estimation model.

(iv) Section 8.2.4 introduces a modified version of the contourlet transform called the Mexican
hat contourlet transform.

(v) Section 8.2.5 describes generally how the Mexican hat contourlet transform can be used
for non-parametric probability density function estimation.
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(vi) Section 8.2.6 models the raw two-dimensional histograms that are used to obtain the non-
parametric probability density functions as a combination of deterministic (smooth) and
stochastic (rough) components.

(vii) Section 8.2.7 details the practical method for estimating probability density functions non-
parametrically using the Mexican hat contourlet transform.

(viii) Section 8.2.8 specifies how to modify the coefficients of the Mexican hat contourlet trans-
form of a two-dimensional histogram in order to obtain a smooth non-parametric proba-
bility density function estimate.

(ix) Section 8.2.9 explains how the individual probability estimates at each filter, scale and lo-
cation index of the adaptive image transform of a SAXS image are collated into probability
arrays.

(x) Section 8.2.10 provides an overall summary to this section.

The overall achievement of Section 8.2 is a method that allows estimation of the posterior prob-
ability for each group at each coefficient filter, scale and location index from the adaptive image
transform of a SAXS image.
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8.2.1 Probability Estimates Using Coefficient Information Independently

The objective of this section is to discuss how to reliably estimate the posterior probability of
each group for each coefficient of the adaptive image transform. The data set of interest consists
of a set of training image, TI . This set can be indexed according to group as follows,

Image Group Filter Scale Location Coefficient
1 g1 1 a1 (x1, y1) z1,a1,x1,y1

...
...

...
...

...
...

NT gn L am (xN1 , yN2) zL,am,xN1,yN2

For the filter functions studied in this thesis each coefficient, zl,a,x,y, of the super-array of
coefficients D! (refer to page 175, Section 7.4) contains a real, 6(zl,a,x,y) and an imaginary,
+(zl,a,x,y) component. Recall that equation (7.54) which gives the posterior probability for each
group given the relevant coefficients (from the set R = [zl,a,x,y(r, 1), . . . , zl,a,x,y(r,Ng)] of the
adaptive image transform coefficients form the group g, with indices (l, a, x, y)) is,

Pr[G = g
Nadj|zl,a,x,y(r) = z, r ε R] =

πg
Nadjpg

Nadj (z)
∑n

l=1 πgn" pgn" (z)
(8.2)

(adapted from equation 2.4, page 19, Ripley 1996). Accurate determination of this probabil-
ity requires accurate estimates of the probability density functions, pgn" (z), these estimates are
denoted as p̂gn" (z). Similar probability density function estimates were required in Section 7.4
to estimate the probability of misclassification. In this case there are potentially an immense
number of probability density functions that need to be estimated, one for each filter, scale and
location. The methodology requires that all probability density functions be estimated for calcu-
lation of the probability of misclassification in the filter function selection algorithm but the XOR
estimation model reduces the number of probability density functions that need to be stored in
the final model.
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Many methods exist for density estimation including:

(i) histogram estimators (Sturges 1926; Tarter & Kronmal 1976; Scott 1979; Freedman &
Diaconis 1981; Chambers et al 1983; Fox 1990; Wand 1997)

(ii) kernel smoothing (Rosenblatt 1956; Whittle 1958; Parzen 1962; Devroye & Györfil 1985;
Silverman 1986; Härdle 1991; Sheather & Jones 1991; Terrell & Scott 1992; Wand &
Jones 1995)

(iii) orthogonal series (Schwartz 1967; Watson 1969; Tarter & Kromal 1970; Brunk 1978;
Wahba 1981)

(iv) wavelet nonparametric smoothing (Masry 1994; Hall & Patil 1995a; Donoho et al 1996;
Penev & Dechevsky 1997; Mueller & Vidakovic 1998).

All of these techniques could be applied to the data set of adaptive image transform coefficients.
One challenge that must be addressed is that the posterior probabilities for each group must be
estimated and stored for each coefficient in the transform. Because each coefficient consists of
both a real and an imaginary component, bivariate probability density functions are required.
This can be a computationally demanding problem. For instance, the SAXS images used in this
thesis contain 262,144 (512 x 512) pixels. Assuming that all of the coefficients of the adaptive
image transform are retained, then at least gn x am x L x 262144 (or gn x am x L x N1 x N2 for
gn groups, am scales, L filters and image dimensions of size N1 by N2 in general) bivariate prob-
ability density must be estimated and stored prior to the calculation of the posterior probabilities
for each group.
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8.2.2 The XOR Probability Density Function Estimation Model

This section proposes a practical solution to the estimation and storage of a large number of
probability density functions. The solution is called the XOR estimation model and it is used
to represent a probability density function either parametrically or non-parametrically. At each
scale-location, the transform coefficients from the training data set TI are summarised by prob-
ability density functions. The coefficients are those from the filters chosen by the filter function
selection algorithm. Thus at each scale-location, the information from the SAXS image is con-
densed into one, two or possibly three probability density functions of coefficients from the
transform which is designed to extract specific features at that scale-location.

Where the probability density functions can be represented parametrically, there is compres-
sion and reduced data storage. However, not all probability density functions are suitable for
parametric modeling and non-parametric estimates of the probability density functions are used
in these cases. The cost of using the non-parametric probability density function estimates is
increased computation time and storage.

The reasons for having a mix of parametric and non-parametric densities are that:

(i) Most of the adaptive image transform coefficients are associated with amorphous scatter
and these are reliably represented by bivariate Gaussian probability density functions. This
is a succinct way of summarising those coefficients.

(ii) Those coefficients that are associated with distinguishing SAXS image features are not
usually well represented by bivariate Gaussian probability densitiy functions. Were the
desire for minimum storage of the probability density function estimates to take prece-
dence, the utility of that feature in calculating the group membership (of the SAXS image)
would be compromised.

The first move is to estimate the parametric probability density functions for each set (over im-
ages) of adaptive image transform coefficients. If this probability density function estimate is
satisfactory, the parameter estimates of the probability density function are saved and the XOR
estimation algorithm jumps to the next coefficient. If the estimated bivariate Gaussian density
is unsuitable (as determined by a statistical measure), then a non-parametric probability density
function estimate is calculated in a way that avoids excessive storage.
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The XOR estimation model represents each probability density function pgn" (z) from each
group gn" and for each coefficient zl,a,x,y as,

p̂gn" (zl,a,x,y) = p̂ Parametric[6(zl,a,x,y),+(zl,a,x,y)|gn" ]

! p̂ Non-parametric[6(zl,a,x,y),+(zl,a,x,y)|gn" ] (8.3)

where the ! symbol denotes the logical operation of exclusive disjunction, which means that the
probability density function estimate p̂l(zl,a,x,y) can be either p̂ Parametric(6(zl,a,x,y),+(zl,a,x,y)|gn")

or p̂ Non-parametric(6(zl,a,x,y),+(zl,a,x,y)|gn") but not both.
Parametric estimates of the probability density function are preferred when the number of

samples in the training data set is limited. The disadvantage of parametric models (and hence the
need for non-parametric models) is that it is possible that they may miss important aspects of the
probability density functions and hence obscure key diagnostic aspects of the data.

In this thesis a bivariate Gaussian distribution was used as a model of the parametric version
of the probability density function. Selection between the parametric or non-parametric version
of the probability density function estimate for a particular group and coefficient is guided by sta-
tistical tests to determine how well the data fits a certain parametric model. For instance, the data
could be assessed to determine how good a description the bivariate Gaussian distribution fits.
Ascertaining the suitability of either parametric or non-parametric probability density function
estimates requires a large number of Shapiro-Wilk tests. This can lead to an unacceptable num-
ber of false positives for either type of density estimate. To optimise storage and sustain accuracy
of prediction, Benjamini & Hochberg’s (1995) false discovery rate method was used to control
the expected proportion of errors among the rejected hypotheses (parametric or non-parametric)
thereby improving the reliability of selecting the appropriate type (parametric or non-parametric)
probability density functions.
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8.2.3 Parametric Probability Density Functions of the XOR model for
SAXS Images.

This section explains that the bivariate Gaussian probability density function is suitable for the
parametric component of the XOR estimation model. Figures 8.1(a)-(f) displays the univariate
kernel density estimates for real and imaginary components of the coefficients of the inner prod-
uct of SAXS images using the Chebyshev filter function. The plotted probability density function
estimates were obtained using unbiased cross-validation to select the bandwidth of the Gaussian
kernel smoother for select coefficients of the transform for SAXS images (n = 50) produced by
malignant breast tissue. Coefficient locations for this figure were selected to correspond to par-
ticular image features; these features were the amorphous scatter, the axial scattering ring and the
equatorial scattering ring. The probability density function estimates of the real and imaginary
components of the coefficient

[
scale a = 1, location (x, y) = (2, 2)

]
that is associated with the

amorphous scatter are displayed in Figures 8.1(a) and (b).
Visual inspection suggests that both components of the coefficients can be modeled using a

Gaussian distribution. The Shapiro-Wilk test applied to the real and imaginary components of
the coefficients separately can be used to assess the fit of the Gaussian model (Shapiro & Wilk
1965; Royston 1982; Royston 1982; 1992). It compares the null hypothesis H0 that the Gaussian
distribution fits the data to the alternative hypothesis Ha that the Gaussian distribution does not
fit the data well. If the null hypothesis is accepted for both components then the bivariate Gaus-
sian distribution and hence a parametric estimator is used, otherwise a non-parametric estimator
is used to calculate the probability density function estimate.
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Figure 8.1: Kernel density estimates of select coefficients of the inner product of the Chebyshev
filter with the SAXS images of malignant tissue. Figures (a) and (b) correspond to the real
and imaginary components of an amorphous scatter feature, figures (c) and (d) to the real and
imaginary components of an axial scattering ring feature and similarly (e)-(f) to an equatorial
scattering ring feature.
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The statistical assessments using Shapiro-Wilk tests across all data support the hypothesis
that the bivariate Gaussian distribution models well the distribution of those coefficients asso-
ciated with amorphous scatter. For instance, the coefficient formed by the Chebyshev filter for
parameters

[
scale a = 1, location (x, y) = (2, 2)

]
produced Shapiro-Wilk tests with p-values

of 0.44 and 0.59 respectively. In contrast, the density estimates of coefficient magnitude in Fig-
ures 8.1(c) and (d) appear to be multi-modal. The coefficients extracted for use in this figure
correspond to scale-location

[
a = 1, (x, y) = (256, 382)

]
and are associated with an axial

scattering ring feature. In this particular case, Shapiro-Wilk tests report p-values of 0.05 and
0.01 respectively - providing some evidence that a Gaussian distribution is a poor model of this
data. The density estimates displayed in Figures 8.1(e) and (f) are of coefficients extracted from
scale-location

[
a = 1, (x, y) = (185, 256)

]
which corresponds to the location of an equatorial

scattering peak. A Gaussian distribution might also be a poor fit in this case, as the Shapiro-Wilk
test produces p-values of 0.01 and 0.04 respectively.

In all cases examined those coefficients that correspond to image locations that describe
amorphous scatter have magnitudes that are well modeled by a Gaussian distribution. For
those image locations corresponding to scattering (meridional or equatorial) rings, the Gaus-
sian distribution does not appear to fit well. Space does not permit a full presentation of the
density estimates of each coefficient (across scales and positions), for each tissue group and
each filter function of the transform. Furthermore, in some instances it was difficult to reli-
ably associate coefficient location with image feature. The three locations

[
a = 1, (x, y) :

(2, 2), (256, 382), (185, 256)
]

required expert knowledge of the problem to reliably associate
them with a particular image feature and the coefficients extracted are still subject to (however
unlikely) mislabeling errors. The Shapiro-Wilk tests used to assess the fits of Gaussian distri-
butions to this data must only be considered as a guide to model development. The results of
the Shapiro-Wilk tests are only presented to provide a numerical assessment of the plots in Fig-
ures 8.1(a)-(f) and should not be interpreted as an all encompassing test that determines whether
a Gaussian distribution should be fit to the data.

With these limitations in mind, the following general trend has been observed (when coeffi-
cient location and image feature can be associated), the Gaussian distribution does not describe
the magnitude of the coefficients well when these coefficients describe scattering ring image
features. It appears that non-gaussianity in the density of coefficient magnitude is indicative
of particular features of interest. This property can be exploited in the XOR estimation model
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of coefficient densities. Parametric components are described by bivariate Gaussian distribu-
tions and are used to describe amorphous (or non-visual, background) image structure and the
non-parametric components are used to describe the scattering ring (or visual, non-stationary,
image edge) structures. Both the amorphous and the scattering ring structures are of interest for
diagnosis. We are interested in both of these features because:

(i) Both Lewis et al (2000) and Fernández et al (2002) reported changes in the axial ring
scattering feature for malignant breast tissue that are believed to be associated with the
axial D-repeat of collagen.

(ii) Both Fernández et al (2004) and Round (2006) reported increases in the intensity of the
amorphous scatter feature in SAXS images of malignant breast tissue.

Therefore both the parametric and the non-parametric probability density functions of the coef-
ficients in the data set are important to consider when creating a diagnostic model.

The XOR estimation model approach to probability density function estimation provides a
conceptual framework that might assist the modeler with interpretation of the results, the para-
metric probability density functions in the model correspond to the amorphous scatter features
and the non-parametric probability density functions in the model correspond to the scattering
ring features in the SAXS images. The model might also allow highly compressed representa-
tions of the probability density functions. Visual inspection of the SAXS images, such as those
in Figures 2.3(a)-(c), suggest that a large proportion of the pixels from the SAXS images do not
correspond to scattering ring features. Coarse estimates obtained by setting those image intensi-
ties less than a threshold (in this case a magnitude of seventy five) and counting the number of
non-zero pixels suggests that no more than twenty five percent of the image pixels are associated
with scattering ring features.

It is therefore reasonable to expect (in this case) that a large number of the coefficients of the
adaptive transform of the SAXS image will be well modeled by bivariate Gaussian distributions.
This property allows many coefficients to be accurately described by a four parameter vector
Nzl,a,x,y|g

Nadj =
[
µ)(zl,a,x,y), µ*(zl,a,x,y), σ2

)(zl,a,x,y), σ
2
*(zl,a,x,y)

]
, that is a succinct description of the

bivariate Gaussian distribution. It is difficult to estimate the number of coefficients that will be
described by the Gaussian parameter vectorNzl,a,x,y|g

Nadj in general, because this depends on the

properties of the SAXS images in the Nadjth group as well as the number and type of coefficients
retained during the filter function selection process of the transform as described in Section 7.4.
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8.2.4 The Mexican Hat Contourlet Transform - A Generic Description

This section develops and discusses the Mexican hat contourlet transform for use in the generic
smoothing of bivariate data. This transform will later be used for non-parametric estimation of
probability density functions in the XOR estimation model of equation (8.3).

The classification of tissue types using the coefficients from transforms of the image data
is done using probability density functions of the coefficients in Bayes” rule. Non-parametric
probability density functions are not described as succinctly as parametric probability density
functions. With such a large number of coefficients coming from the images, it is essential to
find a sparse representation of the non-parametric probability density functions and we achieve
this with the Mexican hat contourlet transform. This can substantially reduce the storage require-
ments of the SAXS image classification model.

The contourlet transform was discussed in Section (5.3.3) where it was stated that it offered
a sparse representation of images. Other bivariate digital data can also be represented with rela-
tively few (compared to the number of data entries) contourlet transform coefficients. Therefore
the contourlet transform can be used to provide highly compressed representations of bivariate
data. Because it provides a spare representation of bivariate data, it can be inferred that a large
proportion of the energy (sums of squares of the coefficients) is contained within a few large
magnitude coefficients. This implies that many of the contourlet transform coefficients can be
discarded without substantial information about the bivariate data being lost. Furthermore, the
large magnitude contourlet coefficients can be understood to be capturing the general trends in
the data and the small magnitude ones capturing spurious oscillations or ‘noise’. As such the
contourlet transform is useful for the smoothing of digital bivariate data.

Despite the sparse representation that the contourlet transform offers it still produces a re-
dundant representation of the data. This is due to the multi-scale step of the transform which is
based upon the Laplacian pyramid. This multi-scale step results in there being up to as many as
4/3 times more coefficients than data entries. This increased redundancy translates into increased
computation time and is unnecessary. On first consideration the contourlet transform does not
appear to be the best method to use for non-parametric estimation of probability density func-
tions. A modification of the contourlet transform is proposed that overcomes this redundancy
problem.
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The inherent redundancy of the contourlet transform is easily removed using a two-dimensional
wavelet function (denoted ψj,k1,k2(x, y)) instead of the Laplacian pyramid in the multi-scale step
of the contourlet transform. This two-dimensional wavelet function is a special case of the inte-
gral wavelet transform functions ψa,b,θ(x, y) (with parameters a denoting scale, b location and
θ rotation/orientation) of Section 5.2.1. The key difference between the two functions is that the
parameters of ψj,k1,k2(x, y) are set so that they obey critical sampling (refer to equation 5.15).
The scale parameter a ε R+ of the integral wavelet transform functions is restricted to a subset
ar ⊂ a such that ar = 2j where j ε N. Similarly the location parameters b = (b1, b2) ε Z2

of the integral wavelet transform functions are equivalent to the parameters k = (k1, k2) ε Z2

when b1 = k1 2j, b2 = k2 2j . The rotation parameter θ of the integral wavelet transform
functions does not exist for the wavelet function ψj,k1,k2(x, y) because this function is held at a
fixed orientation throughout the analysis. This is equivalent to setting θ = C where C ε [0, 2π)

for the integral wavelet ψa,b,θ(x, y).
One possible choice for the wavelet function ψj,k1,k2(x, y) is the Mexican hat wavelet which

was first specified in equation (7.3). The mother wavelet function (from which all other re-scaled
and translated versions of the Mexican wavelet are derived) can be described in terms of spatial
coordinates as,

ψ(x, y) =
[
2− (x2 + y2)

]
exp[−1

2
(x2 + y2)]. (8.4)

The wavelet function ψj,k1,k2(x, y) can then be determined from ψ(x, y) using,

ψj,k1,k2(x, y) =
1

|j|ψ
(x− k1

j
,
y − k2

j

)
. (8.5)

(equation 3.1, page 44, Vidakovic 1999). The term 1
|j| is a common variant of the normalisation

constant C
− 1

2
ψ that is used to ensure the energy (sums of squares of coefficients) is preserved

across scales (page 55, Addison 2002). The Mexican hat wavelet function allows very precise
determination of the location of features in bivariate data at the cost of precision in the estimate
of its scale. In other words, coefficients (produced by the inner product of the function and the
wavelet) have a very localised response to a feature in space but a less local response in scale.
As a result, the large magnitude wavelet coefficients that are associated with a feature will then
tend to persist across scales.
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The search for a suitable smoother resulted in the choice of the Mexican hat contourlet trans-
form. This result came from comparing the Mexican hat contourlet transform coefficients of data
simulated from bivariate distributions with known mean and variance to those coefficients from
the Mexican hat contourlet transform of random noise. Random noise seldom transforms into
large magnitude coefficients and so the Mexican hat contourlet transform coefficients that are of
large magnitude most likely arise from signal.

It is preferable to have a few large magnitude coefficients (that are associated with a partic-
ular feature in the data) distributed across several different scale bands rather than many smaller
magnitude coefficients within the same scale band. The Mexican hat wavelet function provides
this capability and this is the reason why it was selected to modify the multi-scale step of the
contourlet transform. A wide range of other wavelet functions could also be substituted for
ψj,k1,k2(x, y) in the multi-scale step of the transform and doing so would produce a transform
with different feature detection properties.

Decomposing data using the Mexican hat contourlet transform across scales is achieved in a
manner similar to the separable two-dimensional discrete wavelet transform (Section 5.2.2).
The method is described as follows:

i) Starting with the parameter j = J, convolve the digital representation of the multi-scale
filter, ψJ,k1,k2(x, y) ≡ w1[2k1]w2[2k2] with the digital data f(x, y). The rows of f(x, y)

are first convolved by w1[2k1] and then down-sampled by removing every second entry
along the rows. Denote this result C̃J,k1,k2 , to the columns of this matrix we apply the filter
w2[2k2] and down-sample this result by two along the columns.

ii) This process produces the approximation coefficient matrix CJ,k1,k2 . Continued iterations
of the multi-scale are applied for parameters j = (1, . . . , J − 1).

iii) The ‘pkva’ directional filters that are often used in the ordinary contourlet transform (Phoong
et al 1995; Do & Vertelli 2001; Po & Do 2006) are then applied to all of the multi-scale co-
efficient matrices {CJ,k1,k2 ,CJ−1,k1,k2 , . . . ,C1,k1,k2} to yield the detail coefficient matrices
{DJ,lJ ,k1,k2 ,DJ−1,lJ−1,k1,k2 , . . . ,D2,l2,k1,k2} and the remaining multi-scale coefficient ma-
trix C1,k1,k2 is retained. Use of the ‘pkva’ filter in the directional step of the Mexican hat
contourlet transform ensures that the chance of artificially inducing correlations amongst
coefficient magnitudes is minimised (Phoong et al 1995).
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iv) The full set of coefficients of the Mexican hat contourlet transform is then:
{C1,k1,k2 ,DJ,lJ ,k1,k2 , . . . ,D2,l2,k1,k2}where parameter J denotes the depth of scale selected
such that the dimensions of the bivariate data are expressed as 2J x 2J , parameter lj denotes
the number of directions at scale J , so that lj ε (1, . . . , lJ) and k1 ε Z and k2 ε Z indicate
location parameters.

Because of the construction of the Mexican hat contourlet transform, the original data f(x, y)

can be recovered from the coefficient matrices DJ,lJ ,k1,k2 in a simple way. First we the apply the
inverse directional filter bank (as per Do & Vertelli (2003) or any other equivalent method) to the
DJ,lJ ,k1,k2 matrices to produce a single detail coefficient matrix D1,k1,k2 . This coefficient matrix
is up-sampled by inserting a zero between every coefficient along both the rows and columns to
give matrix D̃1,k1,k2 . The inverse filter ψ̄J,k1,k2)(x, y) = w1[−(2k1)]w2[−(2k2)] is then applied
to give the original data f(x, y) = CJ,k1,k2 . Note that reconstruction of f(x, y) could also have
been achieved using the C1,k1,k2 coefficient matrix in conjunction with repeated iterations of the
inverse filters and up-sampling.
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8.2.5 Non-parametric Probability Density Function Estimation Using the
Mexican Hat Contourlet Transform

8.2.5.1 Overview of Probability Density Function Estimation Using the Mexican Hat
Contourlet Transform.

The objective of this section is to smooth the two-dimensional histogram of the real and imagi-
nary parts of the adaptive image transform coefficients, for those coefficients where the bivariate
probability density function representation is rejected. The Mexican hat contourlet transform
is used to produce estimates f̃ [6(zl,a,x,y),+(zl,a,x,y)] of bivariate probability density functions
f [6(zl,a,x,y),+(zl,a,x,y)] based upon the two-dimensional histograms fraw [6(zl,a,x,y),+(zl,a,x,y)]

that are produced by observations on the magnitude of the adaptive image transform coefficients
[6(zl,a,x,y),+(zl,a,x,y)] in the sample for each group.

The two-dimensional histogram fraw[6(zl,a,x,y),+(zl,a,x,y)] is produced by assigning the ‘fre-
quencies’ that the coefficient magnitudes [6(zi,a,,x,y),+(zl,a,x,y)] occur in the data sample to the
locations [u = 76(zl,a,x,y)8, v = 7+(zl,a,x,y)8] on a data grid which is denoted Fraw. On its own
the two-dimensional histogram, fraw[6(zl,a,x,y),+(zl,a,x,y)] is not very useful as in future cases
we will need to obtain estimates of the probability density function at previously unobserved
values of [6(zl,a,x,y),+(zl,a,x,y)]. In order to do this, we smooth the two-dimensional histogram
fraw[6(zl,a,x,y),+(zl,a,x,y)] and retain this smoothed version as our estimate f̃ [6(zl,a,x,y),+(zl,a,x,y)]

of the probability density function f [6(zl,a,x,y),+(zl,a,x,y)]. That is,

fraw [6(zl,a,x,y),+(zl,a,x,y)] = f̃ [6(zl,a,x,y),+(zl,a,x,y)] + ε[6(zl,a,x,y),+(zl,a,x,y)] (8.6)

so that the observed two-dimensional histogram fraw[6(zl,a,x,y),+(zl,a,x,y)] can be expressed as
the sum of a ‘smooth’ estimate f̃ [6(zl,a,x,y),+(zl,a,x,y)] and a stochastic component ε[6(zl,a,x,y),+(zl,a,x,y)].
The smooth component f̃ [6(zl,a,x,y),+(zl,a,x,y)]] is retained and the stochastic component
ε[6(zl,a,x,y),+(zl,a,x,y)] is discarded.
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To facilitate the development of a statistical model (Section 8.2.6) and a method to remove
the stochastic component ε[6(zl,a,x,y),+(zl,a,x,y)] (Section 8.2.8) the two-dimensional histogram
fraw[6(zl,a,x,y),+(zl,a,x,y)] is re-scaled so that it has a range in the interval [0, 1]. This is achieved
by first normalising the two-dimensional histogram fraw [6(zl,a,x,y),+(zl,a,x,y)] by dividing all
entries in the histogram by the magnitude of the entry with the maximum value in the histogram,
which is denoted max{fraw [6(zl,a,x,y),+(zl,a,x,y)]}.
The normalised two-dimensional histogram fN

raw [6(zl,a,x,y),+(zl,a,x,y)] is then found by,
fN

raw [6(zl,a,x,y),+(zl,a,x,y)] = fraw [6(zl,a,x,y),+(zl,a,x,y)]/ max{fraw [6(zl,a,x,y),+(zl,a,x,y)]}.
The magnitudes of entries in fN

raw [6(zl,a,x,y),+(zl,a,x,y)] are then in the range [0, 1]. As a conse-
quence of this normalisation, the model in equation (8.6) becomes

fN
raw [6(zl,a,x,y),+(zl,a,x,y)] = f̃ N [6(zl,a,x,y),+(zl,a,x,y)] + εN[6(zl,a,x,y),+(zl,a,x,y)] (8.7)

where f̃ N [6(zl,a,x,y),+(zl,a,x,y)] and εN[6(zl,a,x,y),+(zl,a,x,y)] are modified versions of the
smooth f̃ [6(zl,a,x,y),+(zl,a,x,y)] and the absolute value of the stochastic components
ε[6(zl,a,x,y),+(zl,a,x,y)] (in equation 8.6) that have been re-scaled so that they have a range of
[0, 1]. To reduce notational complexity, from here on in it is understood that the notations
fraw [6(zl,a,x,y),+(zl,a,x,y)], f̃ [6(zl,a,x,y),+(zl,a,x,y)], ε[6(zl,a,x,y),+(zl,a,x,y)] assume normali-
sation so that these functions in fact correspond to fN

raw [6(zl,a,x,y),+(zl,a,x,y)],
f̃ N [6(zl,a,x,y),+(zl,a,x,y)] and εN[6(zl,a,x,y),+(zl,a,x,y)] respectively.
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Several methods can be used to produce the estimate f̃ [6(zl,a,x,y),+(zl,a,x,y)] including ker-
nel density methods (Wand & Jones 1995), but most of these methods will ultimately lead to
results that require large amounts of computer memory to store. The Mexican hat contourlet
transform offers an alternative solution to this problem, analysing fraw[6(zl,a,x,y),+(zl,a,x,y)]

over scales, directions and locations. It achieves this using scaling functions φ1,k1,k2(x,y) that are
of fixed size (scale) but that are translated over a variety of positions in the grid as specified by pa-
rameters (k1, k2). The Mexican hat contourlet transform also uses detail functions ρj,lj ,k1,k2(x, y)

of varying size (as specified by the scale parameter, j = 2, . . . , J), at different orientations
(as specified by the direction parameter lj = 1, . . . , 2j) and at different locations on the grid
(as specified by location parameters (k1, k2)). The analysis of the two-dimensional histogram
fraw [6(zl,a,x,y),+(zl,a,x,y)] with the scaling function φ1,k1,k2(x, y) gives coefficients (denoted
c1,k1,k2) which are stored as entries in the CJ coefficient matrix. These coefficients are formed by
taking the inner product of the two-dimensional histogram, fraw[6(zl,a,x,y),+(zl,a,x,y)] with the
scaling function φ1,k1,k2(x, y). That is c1,k1,k2 =< fraw [6(zl,a,x,y),+(zl,a,x,y)], φ1,k1,k2(x, y) >.
Each entry of the CJ matrix corresponds to the c1,k1,k2 coefficient for a particular grid location
that is specified by (k1, k2) = (u, v). Analysis of the two-dimensional histogram
fraw[6(zl,a,x,y),+(zl,a,x,y)] with each of the detail functions ρj,lj ,k1,k2(x, y) also produces coeffi-
cients dj,lj ,k1,k2 =< fraw[6(zl,a,x,y),+(zl,a,x,y)], ρj,lj ,k1,k2(x, y) > that are stored as entries in the
coefficient matrix Dj,lj . Therefore, the two-dimensional histogram can be represented in terms
of the Mexican hat contourlet transform scaling and detail functions as,

fraw[6(zl,a,x,y),+(zl,a,x,y)] =
K1∑

k1=1

K2∑

k2=1

c1,k1,k2φ1,k1,k2(x, y)

+
J∑

j=2

2j∑

lj=1

2−jk1∑

k1=1

2−jk2∑

k2=1

dj,lj ,k1,k2ρj,lj ,k1,k2(x, y).

(8.8)

Given the coefficients
{
C1,D2,l2 , . . . ,DJ,lJ

}
the two-dimensional histogram fraw[6(zl,a,x,y),+(zl,a,x,y)]

can be recovered by applying the inverse Mexican hat contourlet transform.
Information in the two-dimensional histogram are captured by the scaling and detail func-

tions, φ1,k1,k2(x, y) and ρj,lj ,k1,k2(x, y) in a different manner. Both are designed to average the
frequencies in the two-dimensional histogram over a particular region but differ according to the
geometry of the region that is used. The scaling function φ1,k1,k2(x, y) that is used in the first
scale of the Mexican hat contourlet transform is actually a Mexican hat wavelet function at scale
a = 1. Figure 8.2 displays how the φ1,k1,k2(x, y) function extracts data from the two-dimensional
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histogram in order to produce a smooth estimate of the probability density function. The scaling
function φ1,k1,k2(x, y) centered on location (k1, k2) extracts all those entries within a fixed radius
r1 from this centre. The values of the scaling function φ1,k1,k2(x, y) outside this circle are essen-
tially zero. The coefficient c1,k1,k2 magnitude (which is found by taking the inner product of the
Mexican hat wavelet function and the two-dimensional histogram) will therefore be influenced
by only those entries in the two-dimensional histogram that fall within this circle. All entries in
the two-dimensional histogram that fall outside this circle will eventually be captured by other
scaling functions φ1,k"
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Figure 8.2: The scaling function φ1,k1,k2(x, y) extracts those entries from the two-dimensional
histogram fraw[6(zl,a,x,y),+(zl,a,x,y)] that are within a circle of fixed radius, r1 centered at lo-
cation (k1, k2). These entries are denoted ’•’ and its is this information that is used to produce
the magnitude of the coefficient c1,k1,k2 . The function φ1,k"

1 ,k"
2
(x, y) that is of radius r1 and cen-

tered on (k!
1, k

!
2) also extracts different entries which are used to form the coefficient c1,k"

1 ,k"
2
.

Other entries in the grid which are denoted ‘◦’ are not captured by either of these functions (nei-
ther φ1,k1,k2(x, y) nor φ1,k"

1 ,k"
2
(x, y)) but will be captured by other scaling functions and stored as

coefficients in the coefficient matrix CJ .
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Figure 8.3: Changes in the parameters in the detail functions ρj,lj ,k1,k2(x, y) may result in dif-
ferent entries in the two-dimensional histogram being captured, as denoted by the symbol •.
The first figure, Figure (a), demonstrates that changes in the location parameter (k1, k2) alter the
position of the detail function, Figure (b) demonstrates that changes in the direction parameter
lj ε 1, . . . , 2j influence the orientation of the detail function and Figure (c) demonstrates that
changes in the scale parameter, j ε 2, . . . , J influence the width and length of the detail functions.
All of these changes in parameters alter those entries in the two-dimensional histogram that are
included in the determination of the coefficient dj,lj ,k1,k2 .
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In contrast, the detail functions ρj,lj ,k1,k2(x, y) extract the information in the two-dimensional
histogram fraw[6(zl,a,x,y),+(zl,a,x,y)] using a very different geometry. The non-zero regions of
the detail functions ρj,lj ,k1,k2(x, y) resemble arcs rather than circles. Figures 8.3(a)-(c) displays
the analysis of the two-dimensional histogram using different detail functions. Thus the coef-
ficient matrices

{
C1,D2,l4 , . . . ,DJ,lJ

}
are considered to encode the results of smoothing the

two-dimensional histogram fraw[6(zl,a,x,y),+(zl,a,x,y)] using a different type of smoothing func-
tion in each case.

The Mexican hat contourlet transform is designed to provide a succinct representation of bi-
variate data. It inherits this property from the contourlet transform which has close to optimal
representation for bivariate data (page 221, Candés & Donoho 2003; Do & Vertelli 2003). Select
Mexican hat contourlet transforms are stored in computer memory as a smooth representation of
the two-dimensional histogram. Reconstructing the two-dimensional histogram using only the
n-largest absolute magnitude coefficients of the Mexican hat contourlet transform produces an
n-term smooth of the two-dimensional histogram which is denoted fraw,n [6(zl,a,x,y),+(zl,a,x,y)].
Candés & Donoho (2003) demonstrated that the squared error of ||fraw[6(zl,a,x,y),+(zl,a,x,y)]−
fraw,n [6(zl,a,x,y,+(zl,a,x,y)]|| of the curvelet transform (and hence its discrete counterpart the
contourlet transform) will converge as O(n−2) as n → ∞. This rate of convergence is an
order of magnitude quicker than that which is possible with the wavelet transform (Candés &
Donoho 2003). Therefore in terms of the squared error of an n-term coefficient reconstruction,
the contourlet family of transforms (which includes the Mexican hat contourlet transform) is an
optimal representation of bivariate data. In other words, the majority of information in the two-
dimensional histogram fraw[6(zl,a,x,y),+(zl,a,x,y)] is compressed into only a few relatively large
magnitude coefficients. Furthermore, it will be demonstrated in Section 8.2.8.3 that the Mexi-
can hat contourlet transform for a range of probability density functions tends to produce larger
absolute magnitude coefficients in the lower scale bands. This means that we can remove many
of the lower absolute magnitude coefficients but still retain a good representation of the original
two-dimensional histogram of the real and imaginary components of the coefficient zl,a,x,y ex-
tracted from the SAXS image using the adaptive image transform. If we order the coefficients
by their absolute magnitude and then remove (by setting to zero) the n smallest coefficients,
then we will tend to retain those coefficients in the lower scale bands. These lower scale bands
correspond to lower spatial frequency information and upon applying the inverse Mexican hat
contourlet transform, the probability density function estimate f̃n [6(zl,a,x,y),+(zl,a,x,y)] based
upon n non-zero Mexican hat contourlet transform coefficients will be a smoother version of the
original two-dimensional histogram fraw[6(zl,a,x,y),+(zl,a,x,y)].
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If instead Nadj > n coefficients in the transform were set to zero, then upon back trans-
formation the estimate f̃

Nadj [6(z j
l,a,x,y),+(zl,a,x,y)] based upon Nadj non-zero coefficients will

be even smoother than the previous estimate f̃n [6(zl,a,x,y),+(zl,a,x,y)]. Setting to zero greater
and greater numbers of coefficients in the coefficient matrices of the Mexican hat contourlet
transform also has the advantage of reducing the number of non-zero coefficients that need to be
stored in computer memory. This representation of f̃n [6(zl,a,x,y),+(zl,a,x,y)] is different from
that of fraw [6(zl,a,x,y),+(zl,a,x,y)] (in equation 8.8) because the coefficients have been modified.
That is,

f̃n [6(zl,a,x,y),+(zl,a,x,y)] =
K1∑

k1=1

K2∑

k2=1

c1,k1,k2φ1,k1,k2(x, y)

+
J∑

j=2

2j∑

lj=1

2−jk1∑

k1=1

2−jk2∑

k2=1

d̃j,lj ,k1,k2ρj,lj ,k1,k2(x, y)

(8.9)

where |d̃j,lj ,k1,k2| ≤ |dj,lj ,k1,k2 |. The method for modifying the coefficients dj,lj ,k1,k2 to produce
the smoothed coefficients d̃j,lj ,k1,k2 will be the subject of Section 8.2.8.

A problem when using the Mexican hat contourlet transform for probability density function
estimation is the presence of negative values in the scaling function φ1,k1,k2(x, y). This can result
in negative values in the probability density function estimate f̃n [6(zl,a,x,y),+(zl,a,x,y)], which
is undesirable as it can result in the assignment of negative probabilities to future observations.
The scaling function takes on negative values over certain ranges which are called the negative
‘lobes’ of the function. Two possible approaches to the solution of this problem include:

(i) Using a filter function that does not take on negative values.

(ii) Adjusting the probability density function estimate f̃n [6(zl,a,x,y),+(zl,a,x,y)] to compen-
sate for the negative values in the multi-scale filter of the transform.

The first solution in point (i) cannot be achieved using any wavelet function ψa,k1,k2(x, y), as by
definition the wavelet function must integrate to zero. That is

∫∞
−∞

∫∞
−∞ ψa,k1,k2(x,y) dx dy = 0

(adapted from page 44, Vidakovic (1999)). This implies that the wavelet function ψa,k1,k2(x, y)

must contain an equal amount of positive and negative parts and therefore the first approach
above is not a valid solution to the problem. Using wavelet functions ψa,k1,k2(x, y) in the multi-
scale step of any modified version of the Mexican hat contourlet transform will not ensure that
the probability density function estimate f̃n [6(zl,a,x,y),+(zl,a,x,y)] does not contain negative val-
ues. Therefore, we adopt the second approach to solve the problem and adjust the probability
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density function estimate f̃n [6(zl,a,x,y),+(zl,a,x,y)]. Practical implementation of the probability
density function estimation method using the Mexican hat contourlet transform and the method
to adjust the estimate to exclude negative values is described in Section 8.2.7. Prior to the specifi-
cation of this algorithm a model needs to be developed to fully specify the stochastic component,
ε[6(zl,a,x,y),+(zl,a,x,y)].
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8.2.6 A Model for Smoothing the Raw Two-dimensional Histogram
fraw [6(zl,a,x,y),+(zl,a,x,y)]

The Mexican hat contourlet transform can be used for the estimation of bivariate probability
density functions. The basic principle behind this density function estimation technique is that
the analysis functions of the Mexican hat contourlet transform can describe the density functions
using only a relatively few coefficients. These coefficients are substantially larger than the other
coefficients which do not contain significant information about the probability density function.
Equation (8.6) models the two-dimensional histogram data fraw [6(z j

l,a,x,y),+(z j
l,a,x,y)] in terms

of smooth f̃ [6(z j
l,a,x,y),+(z j

l,a,x,y)] and stochastic ε[6(z j
l,a,x,y),+(z j

l,a,x,y)] components.
We wish to retain the smooth component f̃ [6(z j

l,a,x,y),+(z j
l,a,x,y)] as our estimate of the

probability density function f [6(z j
l,a,x,y),+(z j

l,a,x,y)] and remove the stochastic component
ε[6(z j

l,a,x,y),+(z j
l,a,x,y)]. This is achieved by taking the Mexican hat contourlet transform of the

normalised two-dimensional histogram fraw [6(z j
l,a,x,y),+(z j

l,a,x,y)] and modifying the resulting
coefficients dj,lj ,k1,k2 to produce the smoothed coefficients d̃j,lj ,k1,k2 .

The coefficients are modified in a process called thresholding. In this process, coefficients
below a fixed value, λ ε C, are attenuated or set to zero according to a pre-specified thresholding

policy. This policy is set by the modeler and is often determined by the statistical properties of
the data to be analysed.

The method that is proposed in this thesis models the stochastic component,
ε[6(z j

l,a,x,y),+(z j
l,a,x,y)] of the two-dimensional histogram fraw [6(z j

l,a,x,y),+(z j
l,a,x,y)] as sam-

ples from many different Gaussian distributions. The specific model considers a discrete digital
representation of the model that was presented in equation (8.6).

Fraw = F̂ + E (8.10)

where the grid Fraw corresponds to a large number of samples from the two-dimensional his-
togram fraw[6(zl,a,x,y),+(zl,a,x,y)], the grid F̂ corresponds to samples from the probability den-
sity function estimate, f̂ [6(zl,a,x,y),+(zl,a,x,y)] and the grid E corresponds to the stochastic com-
ponent ε[6(zl,a,x,y),+(zl,a,x,y)] of the model specified in equation (8.6). The data in the grid E

are modeled such that the samples at each location E(u, v) are independently sampled from a
N (0, σ2

r) distribution. The variance parameter σ2
r is random on the interval [0, 1] and is drawn

from a continuous uniform U(0, 1) distribution. The continuous uniform distribution U(0, 1)

was selected such that the variance of the stochastic component E(u, v) at each location(u, v) is
of the same order of magnitude as the two-dimensional histogram grid Fraw(u, v) data.
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To ensure that we obtain values of ε[6(z j
l,a,x,y),+(z j

l,a,x,y)] that are consistent with the range
of the normalised version of fraw [6(z j

l,a,x,y),+(z j
l,a,x,y)], we must re-scale the E grid values.

After samples have been taken from the N (0, σ2
r) distribution for every location (u, v) in the E

grid, the absolute value of the magnitudes of the entries in this grid are found and the maximum
value max[E(u!, v!)] at location (u!, v!) is recorded. The magnitude of each entry in the E(u, v)

grid is then divided by this maximum value max[E(u!, v!)] in order to re-scale the entries in the
E grid to the range [0, 1].

The model that has been proposed in equation (8.10) in combination with sampling the mag-
nitude of each entry from a N (0, σ2

r) distribution states that each pair of entries E(u1, v1) =

E(u2, v2) u1 .= v1, u2 .= v2 might well be sourced from different Gaussian distributions. We
call such a statistical process a heteroskedastic noise model. The model states that for each sam-
ple Fraw(u, v) in the two-dimensional histogram there is a certain amount of uncertainty but the
extent of that uncertainty is unknown. All we can say is that the magnitude of each entry E(u, v)

is drawn from a random distribution N (0, σ2
r). The magnitude (hence the extent) of the variance

parameter σ2
r for each pair (u, v) in the E grid is completely random.

The process that generates each of the σ2
r parameters involves sampling a continuous uniform

U(0, 1) distribution. Use of the continuous uniform U(0, 1) distribution communicates that we
are in total ignorance of the uncertainty that should be assigned to each location (u, v) on the grid
E. If we better understood how the uncertainty varied with the parameters (u, v) then a more
precise model could be developed to describe the stochastic component more accurately. This is
not the case at the present and we need to implement a general model for the values of the entries
E(u, v), such as the heteroskedastic noise model that was introduced in this section. Nonetheless,
the heteroskedastic noise model captures key characteristics of the type of stochastic processes
that are of interest.
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These include:

(i) A process E in which samples at different locations (u1, v1) and (u2, v2) are very likely
drawn from different distributions N (0, σ2

r,1) and N (0, σ2
r,2). This can be interpreted as

meaning that the uncertainty varies across each location in the E grid.

(ii) Generating multiple E grids - say E1 and E2 by sampling from N (0, σ2
r), σ

2
r ∼ U(0, 1)

will in most cases generate two grids that have different magnitudes at each location (u, v).
In other words, the heteroskedastic model can generate different realisations of the stochas-
tic process/component.

(iii) It accounts for the randomness in the sampling process in which tissue samples where ob-
tained in order to produce SAXS images. To understand this problem, consider two data
sets T1 = [I1,1(x, y), . . . , In1,1(x, y)] and T2 = [I1,2(x, y), . . . , In2,2(x, y)] of SAXS im-
ages produced by the tissue samples all of which were (supposedly) drawn independently
of each other. Upon taking the adaptive image transform of the images and implement-
ing the methodology that is described in this chapter, we arrive at the probability density
function estimates f̃T1 [6(z j

l,a,x,y),+(z j
l,a,x,y)] and f̃T2 [6(z j

l,a,x,y),+(z j
l,a,x,y)] formed by the

data from training sets T1 and T2 respectively. In general, f̃T1 [6(z j
l,a,x,y),+(z j

l,a,x,y)] .=
f̃T2 [6(z j

l,a,x,y),+(z j
l,a,x,y)], because the probability density function estimate depends on

the data in the training sets T1 and T2.

Point (iii) above is of great practical importance as the probability density function estimates are
used to estimate the probability that an observation belongs to each tissue group. The key issue is
that the probability density function estimate f̃ [6(z j

l,a,x,y),+(z j
l,a,x,y)] and hence the probability

estimate of the sample belonging each tissue group is dependent on the data sample. This data
sample is obtained by sampling the population of subjects within a particular tissue group. For
instance, the samples of malignant tissue used in the this thesis were obtained by sampling the
population of all patients with malignant breast tissue.
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Now this sampling process is itself influenced by a whole range of factors such as:

(i) the hospital(s) from which the samples were obtained.

(ii) the age of the subjects.

(iii) the stage (maturity of the cancer) at which the samples were collected.

These factors might in turn be influenced by other epidemiological variables that:

(i) might bias the distribution of ages from which samples are collected.

(ii) influence the types of tissue pathologies that occur.

(iii) determine the hospital(s) participating in the sample collection process.

(iv) might favour particular stages of cancer being detected.

Such processes are not very well understood and it is very difficult to identify let alone explicitly
model the influence of such factors on the sampling process. The solution proposed is to incorpo-
rate a certain amount of uncertainty (as specified by the N (0, σ2

r) distributions) when producing
the estimate f̃ [6(zl,a,x,y),+(zl,a,x,y)] of the bivariate probability density function.
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8.2.6.1 Coefficient Thresholding Methodology

A statistical model was required to describe the stochastic component ε[6z j
l,a,x,y,+z j

l,a,x,y] of the
model in equation (8.6). This component was assumed to have been generated by repeated sam-
pling of random N (0, σ2

r) distributions. Now that the model for the stochastic component has
been specified, the Mexican hat contourlet transform can be used to remove its influence and
produce the estimate f̃ [6(z j

l,a,x,y),+(z j
l,a,x,y)]. This is achieved by applying the Mexican hat

contourlet transform to Fraw, applying a thresholding policy and then applying the inverse Mex-
ican at contourlet transform to obtain F̂. This thresholding policy needs to be developed before
F̂ can be estimated.

Probability density function estimation methods that combine multi-scale transforms with
thresholding policies are not without precedent. Wavelet transform methods have been used by
Donoho (1993), Donoho et al (1996), Hall & Patil (1995a; 1995b; 1996) and Walter (1994)
among others to produce probability density function estimates. These models take advantage of
the energy compaction property of the wavelet transform in order to produce succinct represen-
tations of the probability density function estimates. The term ‘energy compaction’ refers to the
property of both wavelets and contourlets in which the transform of the data contains relatively
few large magnitude coefficients. By keeping only the largest magnitude coefficients, wavelet
methods have been able to produce succinct (in scale-location space) and accurate probability
density function estimates. The Mexican hat contourlet transform offers potentially superior per-
formance over the wavelet methods of bivariate probability density function estimation because
it combines the advantages of the wavelet transform with the advantages of the contourlet trans-
form. Incorporating sub-sampling and the Mexican hat wavelet function removes the inherent
redundancy in the multi-scale step of the contourlet transform (refer to Section 5.3.3). Whilst
retaining the directional component of the contourlet transform (in the Mexican hat contourlet
transform) ensures rapid (O(n−2) for n coefficients) convergence of the probability density func-
tion estimate formed by retaining the n largest coefficients f̃n [6(z j

l,a,x,y),+(z j
l,a,x,y)] to the ideal

representation of the probability density function estimate f̃ [6(z j
l,a,x,y),+(z j

l,a,x,y)]. This is an or-
der of magnitude faster than the rates possible with the wavelet transform (refer to Sections 5.3.2
and 5.3.3, as well as page 221, Candés & Donoho 2003). Therefore it is likely that methods
based upon the Mexican hat contourlet transform can provide probability density function esti-
mates that are more succinct than those methods that are based upon the wavelet transform.
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Eslami & Radha (2003) and Varshney (2004) developed thresholding methodology for con-
tourlet transform coefficients. Their methods assumed that the stochastic component of the data
(the ‘noise’) could be modeled by a N (0, σ2) distribution. In the context of probability density
function estimation, such models assume that every entry in the E grid of equation (8.10) is sam-
pled from the same N (0, σ2) distribution. This is very different model from the heteroskedastic
noise model that was proposed in Section 8.2.6. The heteroskedastic noise model uses (in gen-
eral) a different N (0, σ2

r) distribution to determine the magnitude of each entry in the E grid.
Therefore, the methods of Eslami & Radha (2003) as well as Varshney (2004) are not readily
extended in order to develop a thresholding policy of Mexican hat contourlet transform coeffi-
cients. Nonetheless, a thresholding policy can be developed based upon the results of simulation
studies. These studies generated random matrices of data by sampling N (0, σ2

r), σ2
r ∼ U(0, 1)

distributions and assigning the sampled value to the relevant entry for each matrix. The Mexi-
can hat contourlet transform was applied to these random matrices and parametric (generalised
extreme value) distributions were fit to the maximum absolute values of coefficient magnitude.
The specific motivations for such a model and the methodology of the thresholding policy will be
the subject of Section 8.2.8 of this chapter. Before examining the thresholding policy in detail,
we will examine the specific algorithm that can be used to perform non-parametric probability
density function estimation using the Mexican hat contourlet transform in Section 8.2.7.
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8.2.7 Practical Implementation of the Mexican Hat Contourlet Transform
Method for Non-parametric Probability Density Function Estima-
tion

In order to perform non-parametric probability density function estimation using the Mexican
hat contourlet transform a practical algorithm is required. The data which are now ingredients to
the non-parametric probability density function estimates are those complex coefficients which
are stored in the reduced, but still large array D! (refer to Section 7.4 on page 178 ). To develop
the classifying model for groups, D! is divided into g blocks corresponding to the tissue types
from which the images were made (it is three groups in the data that are analysed in this thesis).
The diagram of D! is reproduced in Figure 8.4, it is annotated to show the division into g blocks
in order to aid explanation.

Image

!

Coefficients" #

1
2
3
j1

j2

g∗1

g1

g2

...

!zl1,j2,a1,x1,y1

!zl1,j1,a1,x1,y1

!zl2,j2,a2,x2,y2

!zl2,j1,a2,x2,y2

1

Figure 8.4: Schematic diagram to represent the array D!. The coefficients along a column are
extracted and sub-divided according to the group to which they belong, these coefficients then
serve as the basic data that is input into the non-parametric bivariate probability density function
algorithm that is described in this section.
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For each tissue type/group, we require adequate sample sizes say Ng ≥ 50 images from
which we will use the corresponding coefficients in D!. The strategy is now to calculate a
bivariate probability density function estimate over the samples in a group for each filter, scale
and location. That is, one at a time, calculate the density of each column of D! in Figure 8.4.
This estimate will be denoted f̂ [6(zl,a,x,y),+(zl,a,x,y)].

(i) When we extract the target coefficients from D!
g , they are collated into a matrix Zg

Nadj
which has Ng

Nadj rows (i.e. the number of samples in the group) and two columns for
the real and imaginary parts. For instance the jth SAXS image belonging to the group
g

Nadj corresponds to the pair of coefficient components [6(z j
l,a,x,y),+(z j

l,a,x,y)]. The com-
ponent entry 6(z j

l,a,x,y) is assigned to the position Zg
Nadj (j, 1) in the data matrix, whilst

the component +(z j
l,a,x,y) is assigned to the position Zg

Nadj (j, 2) in the data matrix.
Figure 1: Schematic diagram to show the format of spatial positions of coef-
icents for the contourlet transform
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R(Z)I(Z)Image

!
1
2
3
j1

j2

g∗1

g1

g2

...
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Figure 8.5: Mapping the Zg1 matrix to the raw Fg1 matrix. Coefficients z j1
l1,a1,x1,y1

, . . . , z
g"
1

l1,a1,x1,y1

belonging to the images in the group g1 from the array D! are extracted and placed in the
matrix Zg1 . The rows of this matrix correspond to the jkth (k = 1, . . . , g!

1) image and the
columns correspond to the real 6(Zg1) and the imaginary +(Zg1) parts respectively. The entries
ujk

= 6[zl1,a1,x1,y1
jk ] and the imaginary +[zl1,a1,x1,y1

jk ] of the Zg1 matrix are then mapped to the
raw F(g1) matrix with an increment of one being placed at the grid location that is relevant to
(ujk

, vjk
). Coefficients may have the same coordinates (ujk

, vjk
) and the the Fg1 matrix will then

register as a two at this particular location.
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(ii) In order to get the columns of Zg
Nadj into an amenable format for the Mexican hat con-

tourlet transform its is necessary to map the real and imaginary components of the coef-
ficients onto a two-way grid (magnitude real x magnitude imaginary coefficient) where
presence of the sample on the grid is marked by a ‘1’ at the location corresponding to real
and imaginary components of the coefficients and a ‘0’ otherwise. This mapping is repre-
sented schematically in Figure 8.5 and the grid is referred to as the raw Fg

Nadj matrix. The
entries in the raw Fg

Nadj matrix are all initially zero and are systematically modified with

ones for each sample in the Zg
Nadj matrix at the locations indicated by the 6(z j

l,a,x,y) and

+(z j
l,a,x,y) components of the coefficients.

(iii) The dimensions of the raw Fg
Nadj matrix are of size 2M1 rows and 2M2 columns. The pa-

rameters, M1 and M2 are positive integers that are selected to ensure sufficient resolution
of the probability density function estimate, f̂ [6(zl,a,x,y),+(zl,a,x,y)]. In this thesis, these
parameters and hence the number of data entries in the grid was selected to ensure that
the range of possible coefficients values is covered. Denote R1 as the range of the real
components of the coefficients and R2 as the range of the imaginary components of the
coefficients irrespective of group. That is, R1 = |max [6(zl,a,x,y)]−min [6(zl,a,x,y)] | and
R2 = |max [+(zl,a,x,y)]−min [+(zl,a,x,y)] |. Similarly calculate the sample standard devi-
ation (denoted s) of each of the components of the coefficients irrespective of group. That
is calculate, s1 = s[6(zl,a,x,y)] and s2 = s[+(zl,a,x,y)], for all of the coefficients (related to
the ith filter at the ath scale for the (x, y)-th location) from all of the SAXS images in the
data set. Then the parameters are given by M1 = 7R1 + s18 and M2 = 7R2 + s28, where
the notation ‘7 R1 + s1 8’ represents the floor function that gives the largest integer less
than or equal to (R1 + s1). Denote this grid as the ‘empty’ Fg

Nadj matrix. When informa-
tion related to the magnitude of the real and imaginary components for the coefficients in
the data set is added, this matrix will serve as a ‘raw’ template from which a digital rep-
resentation of f̂ [6(zl,a,x,y),+(zl,a,x,y)] can be obtained using the Mexican hat contourlet
transform.

(iv) Along each row of the data matrix Zg
Nadj extract the entry belonging to the jth image.

Calculate the row index as Ir = 7Zg
Nadj (j, 1)8 = 76(zj,i,a,x,y)8 and the column index as

Ic = 7Zg
Nadj8 = 7+(zj,i,a,x,y)8. Then in the Fg

Nadj matrix at the Ir th row and the Ic th
column assign the magnitude one to indicate the location of the data entry. Repeat this
process for all Ng

Nadj entries in the data matrix Zg
Nadj .
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(v) The probability density function estimate f̂ [6(zl,a,x,y),+(zl,a,x,y)] is calculated by the
weighted grid positions (where the weights are the incidences of coefficients in these posi-
tions) according to the Mexican hat contourlet transform. This probability density function
estimate f̂ [6(zl,a,x,y),+(zl,a,x,y)] is provided by the Fg

Nadj matrix which is also called the
Fg

Nadj grid.

(vi) The probability density function estimate f̂ [6(zl,a,x,y),+(zl,a,x,y)] might take on negative
values in those regions of the Fg

Nadj grid that have few observations. These negative values
in the estimate are an artifact produced by the negative values in the ‘lobes’ surrounding
the central peak in the Mexican hat wavelet function that is used in the multi-scale step of
the Mexican hat contourlet transform. This is undesirable for diagnostic applications be-
cause it may produce negative probabilities of a sample belonging to a particular group if
it is used in unusually extreme observations. For instance, a sample may produce a SAXS
image that when analysed with the adaptive image transform has particular coefficients
that would strongly suggest the sample is from malignant tissue. It might be that the data
set that is used to estimate the probability density function (for a coefficient at fixed filter,
scale and location) of the malignant tissue group has very few observations at these ex-
treme values. To an outside observer it would appear that the sample would be associated
with a high probability of being malignant, yet because of the negative values of the prob-
ability density function at these extreme magnitudes could produce absurd results, such as
a probability estimate of negative value. To overcome this problem, we take the square
root of frequencies of the Fg

Nadj grid to get the modified histogram +
√

Fg
Nadj . We then

estimate the transformed density function
√

f̂ [6(zl,a,x,y),+(zl,a,x,y)] using this modified
histogram. The inverse transform,

[√
Fg

Nadj
]2 is then performed to obtain a probability

density function estimate f̂ [6(zl,a,x,y),+(zl,a,x,y)] that has only zero or positive values.
Other more advanced methods could also be incorporated into this step by modification
of the multi-scale filter in the Mexican hat contourlet transform using similar methods to
those reported in Hall & Murison (1993), Penev & Dechevsky (1997) or Wand, Marron &
Ruppert (1991).
It must also be ensured that the probability density function estimate f̂ [6(zl,a,x,y),+(zl,a,x,y)]

integrates to one. That is,

∫ +∞

−∞

∫ +∞

−∞
f̂ [6(zl,a,x,y),+(zl,a,x,y)] d6(zl,a,x,y) d+(zl,a,x,y) = 1.
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Since the Mexican hat contourlet transform does not necessarily obey Parseval’s iden-
tity (the sum of the squares of the initial data is not the sum of the squares of the co-
efficient magnitudes), estimating the square root of the probability density function does
not guarantee that the probability density function estimate integrates to one as it would
with orthogonal wavelet methods (pages 229-230, Vidakovic 1999). A practical solution
to this problem was to use the Mexican hat contourlet transform to obtain the estimate
f̂ [6(zl,a,x,y),+(zl,a,x,y)] and then to use the relation

∫ ∞

−∞

∫ +∞

−∞
f̂ [6(zl,a,x,y),+(zl,a,x,y)]d6(zl,a,x,y) d+(zl,a,x,y) ≈

2M1∑

u=1

2M2∑

v=1

F̃g
Nadj (u, v)

to set f̂ [6(zl,a,x,y),+(zl,a,x,y)]d6(zl,a,x,y) d+(zl,a,x,y) ≈ 1. This was achieved by calcu-
lating scaling the F̃g

Nadj grid by using the entry in this grid with the largest magnitude

(denoted C = max[F̃!
g

Nadj
(u, v)], u ε 1, . . . , 2M1 , v ε 1, . . . , 2M2) to produce the re-

scaled probability density function estimate F̃!
g

Nadj
(u, v) = F̃g

Nadj (u, v)/C.

(viii) Apply the Mexican hat contourlet transform to the Fg
Nadj matrix using a total of J scales.

The lowest scale, j = 1 corresponds to the ‘smooth’ band of coefficients C1,k1,k2 , whilst
the detail bands at scales (2, . . . , J) are directional filtered versions of the coefficients
produced by the analysis of the Fg

Nadj matrix with the Mexican hat wavelet.

(ix) For each coefficient dJ",lJ" ,k1,k2 from the detail coefficient matrix DJ",lJ" ,k1,k2 for
J! ε 2, . . . , J , calculate the relevant scale-dependent threshold λJ" ε C and apply the
relevant thresholding policy (which will be discussed in Section 8.2.8) to produce the at-
tenuated coefficient d̃J",lJ" ,k1,k2 . Repeating this process for all detail bands J! ε (2, . . . , J)

produces a set of ‘smoothed’ coefficients S = {CJ,k1,k2 ,DJ,lJ ,k1,k2 , . . . ,D2,l2,k1,k2}.

(x) From the set of smoothed coefficients S, the inverse Mexican hat contourlet transform is
applied by reversing the order of filter operations (as compared to the order in the original
decomposition of the Mexican hat contourlet transform) and up-sampling by two at every
increase in scale to produce the smoothed digital probability density function estimate

+

√
F̃g

Nadj . This result is then squared to produce the estimate F̃g
Nadj of the probability

density function for the group g
Nadj relevant for the ith filter, on the ath scale at location

(x, y).

(xi) The results are stored and the probability density function estimation process is repeated
for all of the gn groups, the an scales, across all locations (x, y) and associated filters from
the library L.
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8.2.8 A Thresholding Policy for Mexican Hat Contourlet Transform
Coefficients

8.2.8.1 Overview

This section develops the methodology to both estimate a threshold and implement a thresholding
policy for coefficients of the Mexican hat contourlet transform. Recall the SAXS image analysis
methodology developed to date:

Chapter 6

(i) A data set of SAXS images of normal, benign and malignant breast tissue samples was
obtained.

Chapter 7

(ii) The adaptive image transform (equation 7.1) of each SAXS image was performed using the
filter functions in the library L (Section 7.3) using the filter function selection algorithm
(Section 7.4).

Section 8.2.1

(iii) Use each adaptive image transform coefficient z j
l,a,x,y (that was retained in the super-array

of coefficientsD! after application of the filter function selection algorithm) independently,
the posterior probability of the jth sample in the data set belonging to each group (normal,
benign or malignant) was required. This probability was specified in equation (8.2), which
required the estimation of pgn" (z

j
l,a,x,y = z) the value of the probability density function of

the coefficients z j
l,a,x,y that belong to the group with index gn" at magnitude z ε C.
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Section 8.2.2

(iv) A probability density function was required to describe the distribution of each coefficient
zl,a,x,y in the super-arrayD! for each group in the data set. This requirement imposed that a
large number of probability density functions be estimated and stored in computer memory
as a component of the breast cancer diagnosis model. The XOR probability density func-
tion estimation model was specified in equation (8.3) to reduce the storage requirements
for all of the probability density functions.

Section 8.2.3

(v) The bivariate Gaussian probability density function was advocated where possible, to de-
scribe the probability density function of each coefficient zl,a,x,y given group. Where this
was not possible, non-parametric probability density functions were required.

Section 8.2.4

(vi) In order to produce succinct non-parametric estimates of the probability density functions
for the coefficients z j

l,a,x,y given group, the Mexican hat contourlet transform was devised.

Section 8.2.5

(vii) To arrange the data provided by the adaptive image transform coefficients zl,a,x,y into a
format amenable to the Mexican hat contourlet transform, two-dimensional histograms
fraw [6(zl,a,x,y),+(zl,a,x,y)] were created. These two-dimensional histograms were on a
grid indexed by the real 6(zl,a,x,y) and imaginary +(zl,a,x,y) components of the coefficients
zl,a,x,y respectively. The heights of the two-dimensional histogram corresponded to the
frequencies of the the real and imaginary components of the adaptive image transform
coefficient magnitudes.

(viii) The two-dimensional histograms of frequencies of real and imaginary components of adap-
tive image transform coefficients were modeled in equation (8.6) as being the sum of a
smooth f̃ [6(zl,a,x,y),+(zl,a,x,y)] and stochastic ε[6(zl,a,x,y),+(zl,a,x,y)] component. The
smooth component f̃ [6(zl,a,x,y),+(zl,a,x,y)] was to be retained as the estimate of the prob-
ability density function f̂ [6(zl,a,x,y),+(zl,a,x,y)] ≡ pgn" (zl,a,x,y) and the stochastic com-
ponent ε[6(zl,a,x,y),+(zl,a,x,y)] discarded.
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(ix) Equations (8.8) and (8.9) explained how the two-dimensional histogram
fraw [6(zl,a,x,y),+(zl,a,x,y)] could be represented and then modified by taking the Mexican
hat contourlet transform and altering the magnitude of the transform coefficients.

Section 8.2.6

(x) A discrete digital representation of the two-dimensional histogram was presented in equa-
tion (8.6). This representation modelled each entry in the E matrix (the discrete digi-
tal representation of ε[6(zl,a,x,y),+(zl,a,x,y)]) as samples drawn from a stochastic process
N (0, σ2

r), σ2
r ∼ U(0, 1) in which the variance parameter σ2

r changes randomly with each
draw.

Section 8.2.7

(xi) Described how to implement the Mexican hat contourlet transform smoother in practice.
This smoother requires a thresholding (or weighting) policy as well as a threshold (or
weight) in order to modify the Mexican hat contourlet transform coefficient magnitude.

The objective of this section is to develop the methodology to both estimate a threshold and
to implement a thresholding policy on the coefficients of the Mexican hat transform of the dis-
crete two-dimensional histogram grid Fg

Nadj . Once these objectives have been achieved, it will
be possible to perform probability density function estimation using the Mexican hat contourlet
transform.

The next two subsections, Section 8.2.8.2-8.2.8.3, demonstrate through simulation how the
Mexican hat contourlet can be used to derive a probability density function with a succinct set of
coefficients.

Section 8.2.8.2 simulates noise to measure the magnitudes of Mexican hat contourlet trans-
form coefficients for pure noise whereas Section 8.2.8.3 calculates the magnitudes of Mexi-
can hat contourlet transform coefficients from simulated bivariate probability density functions.
Knowledge of the coefficient magnitudes of coefficients from: (a) bivariate probability density
functions and (b) noise provides a thresholding scheme that will select informative coefficients
to make the probability density function estimate.
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These experiments compare the coefficients of simulated random matrices (where the magni-
tude of each entry in the random matrix was drawn from a N (0, σ2

r), σ2
r ∼ U(0, 1) distribution)

to the coefficients of the Mexican hat contourlet transform of bivariate probability density func-
tions. In other words, artificial bivariate data is produced to compare the magnitude of the Mex-
ican hat contourlet transform coefficients of smooth components F̂ to stochastic components E

(refer to equation 8.10). The simulated random matrices are artificial data that represent specific
examples of the stochastic component grid E and the bivariate probability density functions are
specific examples of the smooth component grid F̂. The results of these simulation studies in-
dicate that distinct differences exist in the maximum absolute magnitude |dj,lj ,k1,k2| for Mexican
hat contourlet transform coefficients that are associated with both types of data.

Section 8.2.8.4 exploits the observed differences between Mexican hat contourlet transform
coefficients produced by random data and those produced by bivariate probability density func-
tions to develop a coefficient thresholding policy.

The thresholding policy uses a generalised extreme value distribution to model the abso-
lute magnitude of the Mexican hat contourlet transform coefficients (Von Mises 1954). The
parameters of the generalised extreme value distribution p(z, µ, σ, ξ) are estimated using the
absolute values |dj,lj ,k1,k2| of the Mexican hat contourlet transform coefficients of the simu-
lated random matrices. This parametric probability density function can be used to calculate
the probability (Prob(max |d noise

j,lj ,k1,k2
| < |d hist

j,lj ,k1,k2
|)) that the absolute value of a coefficient

|d hist
j,lj ,k1,k2

| from the Mexican hat contourlet transform of a two-dimensional histogram is less
than or equal to the absolute value of the largest magnitude coefficient max |d noise

j,lj ,k1,k2
| from the

Mexican hat contourlet transform of a random matrix produced by heteroskedastic noise as spec-
ified by the stochastic model in Section 8.2.6. This probability is incorporated into a ‘weight’
wj,lj ,k1,k2 = Prob(max |d noise

j,lj ,k1,k2
| < |d hist

j,lj ,k1,k2
|) that is calculated for every scale, direction and

location index of the Mexican hat contourlet transform. Each coefficient dj,lj ,k1,k2 has its own
unique weight. Furthermore, these weights can then be used for smoothing the two-dimensional
histogram grid F (the discrete analog of f raw [6(z j

l,a,x,y),+(z j
l,a,x,y)]) by multiplying the coeffi-

cients dj,lj ,k1,k2 produced by the Mexican hat contourlet transform of the grid F with the weights
wj,lj ,k1,k2 . This smoothing method is in fact a special type of thresholding policy that modifies
the coefficient magnitude dj,lj ,k1,k2 according to a function (that is based on p(z, µ, σ, ξ) rather
than a thresholding policy such as that used by Do & Vertelli (2003)) that sets coefficients below
a certain fixed magnitude to zero.



8.2. STATISTICAL MODELING 225

8.2.8.2 Observations on the Maximum Absolute Magnitude of Coefficients of the
Mexican Hat Contourlet Transform of Random Matrices

In order to identify signal from noise using the coefficients of the Mexican hat contourlet trans-
form, we need to understand how the coefficients respond to signals (or features) in the two-
dimensional histograms. The Mexican hat contourlet transform is designed to capture clusters
of data in the two-dimensional histograms. It achieves this by the use of scaling ψ1,k1,k2(x, y)

and detail ρj,lj ,k1,k2(x, y) functions that examine the two-dimensional histograms over a range of
scales, directions and orientations. Large magnitude coefficients are produced when the scaling
or detail functions capture many non-zero entries in the two-dimensional histogram or when the
inner product between the scaling or detail functions and the two-dimensional histogram is large.

The two-dimensional histogram may exhibit non-zero entries that cluster close together (in
location and magnitude of the frequencies) or that are aligned in a particular direction. These re-
lationships between entries in the two-dimensional histogram will produce correlations between
the coefficients of its Mexican hat contourlet transform. As such the Mexican hat contourlet
transform coefficients of the two-dimensional histogram will have larger magnitude and stronger
correlations when the scaling φ1,k1,k2(x, y) and detail ρj,lj ,k1,k2(x, y) functions closely match the
scale, orientation and location of the underlying structure in the two-dimensional histogram.

In contrast, random data such as that specified by the E grid and the heteroskedastic noise
model of Section 8.2.6 can not in general be expected to produce clusters of observations and
hence large magnitude coefficients or correlations. Numerical experiments on simulated ran-
dom data matrices (which are meant to emulate the E grid) are used to demonstrate that the
corresponding Mexican hat contourlet transform coefficients are of relatively low-magnitude.
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Matrices of random data (denoted Ns,i, i = 1, . . . 10000) were generated in order to perform
simulation studies. The dimensions of each of the Ns,i matrices was 256 by 256 entries. The
magnitude each entry Ns,i(u, v) (u = 1, . . . , 256, v = 1, . . . , 256) was obtained by indepen-
dently sampling a N (0, σ2

r), σ2
r ∼ U(0, 1) distribution and assigning the sampled value as the

magnitude of random data matrix Ns,i(u, v) at the location (u, v). The variance parameter σ2
r

is re-sampled from a U(0, 1) distribution using the Mersenne Twister algorithm (Matsumoto &
Nishimura 1998) for each shift in the location index (u, v). As indicated by the index i, a total
of 10,000 such random matrices were generated and stored as the ‘simulated noise’ data set. An
example from this data set is displayed in Figure 8.6(a), note the lack of any readily identifiable
visual features in the matrix.

a) b)
1 2 3 4 5

1.0

1.5

2.0

Level

M
a

x
(d

j)

Figure 8.6: Simulation studies using the heteroskedastic noise model and the Mexican hat con-
tourlet transform: (a) an example of simulated heteroskedastic noise (samples drawn from a
N (0, σ2

r) distibution where σi,j ∼ U(0, 1), drawn randomly for each of the u = 1, . . . , 256 and
v = 1, . . . , 256 locations. The matrix is presented using a grey scale color map where darker
shades correspond to lower coefficient magnitudes and (b) boxplots of maxima of the absolute
values (Max(|dj|)) of Mexican contourlet transform coefficients of heteroskestic noise across all
direction bands for scales j = 1, . . . , 5.
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The Mexican hat contourlet transform (Section 8.2.4) was applied to each of the ten thou-
sand Ns,i matrices of random data. A total of J = 5 scales was used in the transform with
2j, j = 1, 2, 3, 4, 5 direction bands per scale. That is scale j = 1 has l1 = 21 = 2 directions
bands whilst scale j = 5 has l5 = 25 = 32 direction bands. Therefore, this particular version
of the Mexican hat contourlet transform is designed to double the number of direction bands for
every increase in scale. At the finest scale, many (thirty two) different directions are analysed for
‘features’ in the matrices of random data.

The result of applying the Mexican hat contourlet transform (with the parameters J = 5, lj =

2j to each matrix Ns,i of random data is the set of coefficients {C1,i,D1,1,i,D1,2,i, . . . ,D5,32,i}
where the index i indicates which out of the ten thousand matrices that the transform was per-
formed on. After applying the Mexican hat contourlet transform (with parameters J = 5, lj = 5)
to all ten thousand random data matrices super-arrays of coefficients are produced.

These super-arrays are denoted {C1,D1,1,D1,2, . . . ,D5,32} and are formed by stacking each
of the ten thousand matrices {C1,i,D1,1,i,D1,2,i, . . . ,D5,32,i} on top of each other along a depth
dimension. Each of the super-arrays {C1,D1,1,D1,2, . . . ,D5,32} has three dimensions, the first
corresponding to the row position (according to index k1 = 1, . . . , K1), the second correspond-
ing to column position (according to index k2 = 1, . . . , K2) and the third corresponding to
image number (according to index i = 1, . . . , 10000). These super-arrays encode the analysis
of the Mexican hat contourlet transform for each matrix of random data, across each scale, di-
rection and location.

In order to enable further comparisons, the magnitudes of the entries in the super-arrays are
modified by taking the absolute value. Across the depth index i (corresponding to matrix num-
ber) for each of the modified super-arrays {C!

1,D
!
1,1,D

!
1,2, . . . ,D

!
5,32} the maximum value is

found and recorded at index (a, b) in a new matrix M. The row index a of matrix M has sixty
three values that refer to a particular scale-direction super-array. For instance, the index a = 1

corresponds to the C1 super-array, whilst index a = 63 corresponds to the D5,32 super-array.
The column index b of the matrix M has ten-thousand values and corresponds to the matrix of
random data from which the coefficients were originally sourced.
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Thus, the matrix M is of the form,

M =





max(C!
1,1) max(C!

1,2) . . . max(C!
1,10000)

max(D!
1,1,1) max(D!

1,1,2) . . . max(D!
1,1,10000)

...
...

...
...

max(D!
5,32,1) max(D!

5,32,2) . . . max(D!
5,32,10000)




(8.11)

The data are further reduced for graphical and numerical summary using another matrix M!.
This matrix has five rows (which refer to scale j) and ten thousand columns (that refer to the ith
matrix of random data). The entry in the jth row and ith column of the M! matrix is formed
by taking the maximum of all of the entries from the M matrix that are relevant to the detail
coefficients at jth scale of the Mexican hat contourlet transform for the ith matrix of random
data. For instance, M!(1, i) = max[M(2, i),M(3, i)] = max[max(D!

1,1,i), max(D!
1,2,1)]. Five

boxplots are plotted in Figure 8.6(b), each was found by extracting the values for a specific
row of the M! matrix for all ten thousand columns. These boxplots report on the distribution
of the maximum absolute value of the coefficients at the jth scale (across all directions) for
the Mexican hat contourlet transform of matrices of random data. Observe that the boxplots are
ordered according to increasing scale parameter j = 1, 2, 3, 4, 5 and that in general the maximum
absolute value of coefficient magnitude tends to increase with scale. Furthermore, the boxplots
suggest that the absolute value of any coefficient in the Mexican hat contourlet transform of
matrices of random data whose entries were formed by sampling N (0, σ2

r), σ2
r ∼ U(0, 1)

distributions is very unlikely to be above a magnitude of three. The ranges of these maximum
absolute coefficient magnitudes are reported in first column of Table 8.1 on page 228, they will
be compared to the ranges of the maximum absolute coefficient magnitudes from the Mexican
hat contourlet transforms of sampled bivariate probability density functions in Section 8.2.8.3.

The sampled bivariate probability density functions will be generated by creating a discrete
grid S of locations (s, t) ε R2

+, s = 1, . . . , S, t = 1, . . . , T , calculating the values of a pre-
assigned probability density function (denoted f(x, y)) for each of the grid locations (x = s, y =

t). The result f(x = s, y = t) is assigned to entry S(s, t) in the discrete grid. This is repeated
for all s = 1, . . . , S, t = 1, . . . , T locations in the grid.
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Comparison of the coefficients from the Mexican hat contourlet transform of random matri-
ces to the coefficients from the Mexican hat contourlet transform of matrices of sampled bivariate
probability density functions will be very informative and indicate substantial differences in the
magnitude of the coefficients corresponding to these two different types of data. These differ-
ences will motivate a method in Section 8.2.8.4 that smooths the two-dimensional histograms
of Section 8.2.5 using the Mexican hat contourlet transform by modifying the magnitude of the
Mexican hat contourlet transform coefficients.

max(|dj|)
Scale Random Density

1 [0.60, 1.68] [0.50, 20.92]
2 [0.73,1.67] [2.72, 54.37]
3 [0.77,1.69] [7.11,81.16]
4 [0.92,1.67] [12.62,115.66]
5 [1.23,2.37] [20.71,165.14]

Table 8.1: Maximum absolute magnitude |dj| of the Mexican hat contourlet transform coeffi-
cients (for J = 5 scales) across direction and location for both simulated random and sampled
bivariate probability density function data. Values reported to two decimal places.
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8.2.8.3 Observations on the Maximum Absolute Magnitude of the Coefficients from the
Mexican Contourlet Transform of Bivariate Density Functions

This section compares the range of the absolute values of the coefficients (across scales) of the
Mexican hat contourlet transform of simulated random data (Section 8.2.8.2) to the range of the
absolute values of the coefficients (across scales) of the Mexican hat contourlet transform of
matrices that were sampled from bivariate probability density functions. The results will demon-
strate that range of the Mexican hat contourlet transform coefficients of the simulated random
data and the range of the Mexican hat contourlet transform coefficients produced by the ma-
trices of bivariate probability density functions does not overlap at the higher (j = 2, . . . , 5)

scales. From these results it will be hypothesised that the Mexican hat contourlet transform
coefficients of the simulated random data at scales (j = 2, . . . , 5) is of a substantially lower
magnitude than the Mexican hat contourlet transform coefficients produced by the matrices of a
wide range of bivariate probability density functions. This hypothesis will assist in developing a
probability density function estimation method based upon the Mexican hat contourlet tranform
in Section 8.2.8.4. This probability density function estimation method weights the Mexican
hat contourlet transform coefficients of a two-dimensional histogram according to their proba-
bility of being produced by ‘noise’ (random data) which is in turn estimated using a separate
probability density function model of the absolute value of the Mexican hat contourlet transform
coefficients.

The focus of this section is on those probability density functions that do not resemble bivari-
ate Gaussian probability density functions. Such probability density functions are termed ‘non-
Gaussian’. Probability density functions that are non-Gaussian exhibit features such as multiple
local maxima or a mixture of different frequency components. The XOR estimation model of
Section 8.2.2 would (in most cases) indicate that a non-parametric representation (which is based
upon the Mexican hat contourlet transform) be used to describe those probability density func-
tions (of the adaptive image transform coefficients) which are non-Gaussian.

In order to compare the Mexican hat contourlet transform coefficients produced by random
data to those of Mexican hat contourlet transform coefficients produced from samples of known
probability density functions, we must first prepare a database of probability density function
standards to which the Mexican hat contourlet transform can be applied. The Marron and Wand
(1992) family of probability density functions was selected as the database of probability density
functions standards. The family of probability density functions created by Marron and Wand
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(1992) consists of fourteen different non-Gaussian probability density functions, as well as the
standard Gaussian probability density function. All of the non-Gaussian functions in the Marron
and Wand (1992) family of probability density functions are constructed as a linear combination
of Gaussian probability density functions. Marron and Wand (1992) demonstrated that a wide
range of probability density functions could be represented as a linear combination of such Gaus-
sian probability density functions.

The probability density functions that were specified in table 1, page 720 of Marron and
Wand (1992) were one-dimensional. We extended these probability density functions to two-
dimensions to allow the Mexican hat contourlet transform to applied to them.

The specific probability density functions included in the database of probability density
functions standards were:

(i) Standard Bivariate Gaussian: p1(x, y) = N (0, 0, 1, 1, 0).
In other words a bivariate Gaussian probability density function with µx = 0, µy = 0,
σ2

x = 1, σ2
y = 1, ρx,y = 0 were ρx,y is the correlation coefficient of the probability density

function.

(ii) Skewed Unimodal:
p2(x, y) = 1

5N (0, 0, 1, 1, 0) + 1
5N (1

2 ,
1
2 , (

2
3)

2, (2
3)

2, 0) + 3
5N (13

12 ,
13
12 , (

5
9)

2, (5
9)

2, 0).

(iii) Strongly Skewed:
p3(x, y) =

∑7
l=0

1
8N (3((2

3

l
)− 1), 3((2

3

l
)− 1), (2

3)
2l, (2

3)
2l, 0).

(iv) Kurtotic Unimodal:
p4(x, y) = 2

3N (0, 0, 1, 1, 0) + 1
3N (0, 0, ( 1

10)
2, ( 1

10)
2, 0).

(v) Outlier:
p5(x, y) = 1

10N (0, 0, 1, 1, 0) + 9
10N (0, 0, ( 1

10)
2, ( 1

10)
2, 0).

(vi) Bimodal:
p6(x, y) = 1

2N (−1,−1, (2
3)

2, (2
3)

2, 0) + 1
2N (1, 1, (2

3)
2, (2

3)
2, 0).

(vii) Separated Bimodal:
p7(x, y) = 1

2N (−3
2 ,−

3
2 , (

1
2)

2, (1
2)

2, 0) + 1
2N (3

2 ,
3
2 , (

1
2)

2, (1
2)

2, 0).

(viii) Skewed Bimodal:
p8(x, y) = 3

4N (0, 0, 1, 1, 0) + 1
4N (3

2 ,
3
2 , (

1
3)

2, (1
3)

2, 0).
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(ix) Trimodal:
p9(x, y) = 9

20N (−6
5 ,−

6
5 , (

3
5)

2, (3
5)

2, 0)+ 9
20N (6

5 ,
6
5 , (

3
5)

2, (3
5),

2 , 0)+ 1
10N (0, 0, (1

4)
2, (1

4)
2, 0).

(x) Claw:
p10(x, y) = 1

2N (0, 0, 1, 1, 0) +
∑4

l=0
1
10N ( l

2 − 1, l
2 − 1, (1

2)
2, (1

2)
2, 0).

(xi) Double Claw:
p11(x, y) = 49

100N (−1,−1, (2
3)

2, (2
3)

2, 0) + 49
100N (1, 1, (2

3)
2, (2

3)
2, 0)

+
∑6

l=0
1

350N ( (l−3)
2 , (l−3)

2 , ( 1
100)

2, ( 1
100)

2, 0).

(xii) Asymmetric Claw:
p12(x, y) = 1

2N (0, 0, 1, 1, 0) +
∑2

l=−2(
21−l

31 )N (l + 1
2 , l + 1

2 , (
2−l

10 )2, (2−l

10 )2, 0).

(xiii) Asymmetric Double Claw:
p13(x, y) =

∑1
l=0

46
100N (2l−1, 2l−1, (2

3)
2, (2

3)
2, 0)+

∑3
l=1

1
300N (− l

2 ,−
l
2 , (

1
100)

2, ( 1
100)

2, 0)

+
∑3

l=1
7

300N ( l
2 ,

l
2 , (

7
100)

2, ( 7
100)

2, 0).

(xiv) Smooth Comb:
p14(x, y) =

∑5
l=0(

25−l

63 )N (
[65−96( 1

2 )l]

21 ,
[65−96( 1

2 )l]

21 ,
( 32
63 )2

22l ,
( 32
63 )2

22l , 0).

(xv) Discrete Comb:
p15(x, y) =

∑2
l=0

2
7N ( (12l−15)

7 , (12l−15)
7 , (2

7)
2, (2

7)
2, 0) +

∑10
l=8

1
21N (2l

7 , 2l
7 , ( 1

21)
2, ( 1

21)
2, 0).

(adapted from table 1, page 720, Marron & Wand 1992).
Discrete representations of each of the above fifteen probability density functions were ob-

tained by creating a discrete grid of x = (1, . . . , Nx) and y = (1, . . . , Ny) values. At each
location (x!, y!) in this grid the value of pr(x!, y!) of the rth out of the r = 1, . . . , 15) probabil-
ity density functions in the modified Marron & Wand (1992) database was calculated. The result
was a set of fifteen matrices Pr (r = 1, . . . , 15) that provided a discrete matrix representation
of the probability density functions in the modified Marron and Wand (1992) database that were
amenable to input into the Mexican hat contourlet transform. Examples of the separated bimodal
P7 and the trimodal P9 probability density functions are displayed in Figures 8.7(a) and (b) re-
spectively. Note that the bivariate Gaussian probability density function p1(x, y) was included
in the study in order to simulate a situation in which the XOR estimation model erroneously
specifies a non-parametric model be fit to a bivariate Gaussian probability density function.
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a) b)

Figure 8.7: Examples of functions in the Marron & Wand (1992) database:
(a) the separated bimodal and (b) trimodal probability density functions.

The Mexican hat contourlet transform was applied to each of the fifteen Pr matrices that
represent the probability density functions in the modified Marron & Wand (1992) database.
The maximum of the absolute values of the coefficients for each scale j ε J across all direc-
tions of each Mexican hat contourlet transform was recorded. The result is a vector mr =

[max(|C|1, r, max |D|1r
, . . . , max |D|J,r)] for the coefficients corresponding to Mexican hat con-

tourlet transform of the Prth matrix. These vectors are themselves stored in another matrix Mp,
which is defined as,

Mp =





max(|C1,1|) max(|D1,1|) . . . max(|DJ,1|)
max(|C1,2|) max(|D1,2|) . . . max(|DJ,2|)

...
...

...
...

max(|C1,15|) max(|D1,15|) . . . max(|DJ,15|)




. (8.12)

The entries of the Mp matrix are reported in Table 8.2 but with specific reference to each prob-
ability density function in the modified Marron & Wand (1992) database. From inspection of
Table 8.2 it is evident that the maximum absolute values of coefficient magnitudes vary greatly
both between scales for the same density and across a scale between densities. Of central impor-
tance is that in general, the maximum absolute magnitude of the Mexican hat contourlet trans-
form of the probability density function data appears to be of larger than the maximum absolute
magnitude of the Mexican hat contourlet transform of random noise. The second column of Ta-
ble 8.1 provides the range of these values for each scale in the Mexican hat contourlet transform.
Observe that in general the maximum absolute magnitude of Mexican hat contourlet transform
coefficients for probability density functions is much greater than the corresponding maximum
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Pdf Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
p1(x, y) 0.50 2.85 9.10 20.64 41.01
p2(x, y) 1.02 5.74 17.42 36.03 60.66
p3(x, y) 0.94 4.20 9.56 17.32 29.00
p4(x, y) 20.92 54.37 81.16 115.66 165.14
p5(x, y) 20.64 52.74 76.09 103.96 142.21
p6(x, y) 0.57 3.21 9.97 21.50 41.40
p7(x, y) 1.02 5.66 17.00 34.37 64.08
p8(x, y) 1.06 5.91 17.60 35.37 58.75
p9(x, y) 0.88 4.34 10.84 22.45 42.49
p10(x, y) 6.43 18.87 28.09 50.69 68.34
p11(x, y) 8.40 12.97 28.38 59.87 112.92
p12(x, y) 8.07 14.11 33.16 63.20 106.44
p13(x, y) 9.65 15.21 29.13 59.81 112.64
p14(x, y) 0.58 2.85 8.59 17.47 29.13
p15(x, y) 0.58 2.72 7.11 12.62 20.71

Table 8.2: Maximum of the absolute values of coefficient magnitude for the Mexican hat con-
tourlet transform of each probability density function in the modified Marron & Wand (1992)
database.

absolute magnitude of Mexican hat contourlet transform coefficients for random noise. Further-
more the ranges of the maximum absolute magnitude of the coefficients for the noise and density
data does not overlap for scales j = 2 to 5. These results suggest substantial differences be-
tween the magnitudes of coefficients of the Mexican hat contourlet transform of random data
and the magnitudes of coefficients of the Mexican hat contourlet transform of probability density
functions. A Mexican hat coefficient weighting or thresholding strategy will be formulated in
Section 8.2.8.4 based upon these observed differences.
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8.2.8.4 A Thresholding Policy for Mexican Hat Contourlet Transform Coefficients based
on the Generalised Extreme Value Distribution

A thresholding policy for the coefficients of the Mexican hat contourlet transform of the two-
dimensional histogram, denoted by the set {dhist

j,lj ,k1,k2
}, is performed by coefficient weighting.

The weights are derived by comparing the magnitude of |dhist
j,lj ,k1,k2

| with a distribution of coeffi-
cients obtained from noise, |dnoise

j,lj ,k1,k2
|.

Where a coefficient |dhist
j,lj ,k1,k2

| is unlikely to have arisen from noise, it is given a large weight
and vice-versa. The distribution derived from the coefficients |dnoise

j,lj ,k1,k2
| was taken to be a gener-

alised extreme value distribution P (|dhist
j,lj ,k1,k2

|, µ,σ, ξ) for reasons explained below.
The weight wj,lj ,k1,k2 for each coefficient |dhist

j,lj ,k1,k2
| is the probability that a value less than

|dhist
j,lj ,k1,k2

| could arise by a noise process. An example of the weighting function that is used to
calculate such weights is displayed in Figure 8.8.
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Figure 8.8: An example of a coefficient weighting function based upon the generalised extreme
value distribution P (|dj,lj ,k1,k2|hist, 20, 0.01, 3). Note how the lower part of the function (for
|d|hist < 20 resembles a step function, whilst the upper part |d|hist > 20 resembles a smooth
curve. This coefficient weighting function can be considered a combination of a ‘hard’ (set all
coefficients below a certain magnitude to zero) and a ‘soft’ (down-weight smaller coefficient
magnitudes) thresholding functions.
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The weighted coefficients are then,

d!
j,lj ,k1,k2

= wj,lj ,k1,k2 × dj,lj ,k1,k2 (8.13)

where wj,lj ,k1,k2 = ProbP̂ (|d noise
j,lj ,k1,k2

| < |d hist
j,lj ,k1,k2

|)
The weights allocated to the coefficients |dhist

j,lj ,k1,k2
| are derived from a probability distribu-

tion function of the noise which is determined by simulation. Where |dhist
j,lj ,k1,k2

| are coefficients
arising from informative features, they are larger than those which emanate from noise and so
coefficients will occur in the extreme right tail of the distribution function. If a distribution func-
tion was estimated using all of the coefficients pertaining to noise then the tail of the distribution
function will be sparsely modelled because large coefficients arising from noise will be extremely
rare.

An alternative method for determining the weights wj,lj ,k1,k2 needs to be found. We con-
sider that a more suitable probability density function from which to calculate the weights is
P̂ (max |d noise

j,lj ,k1,k2
|). This is generated with bootstrap methodology by simulating {|dnoise

j,lj ,k1,k2
|}

many times and saving the maximum of each simulation (Efron & Tibshirani 1993). These max-
ima are summarised as a generalised extreme value distribution.

Fisher & Tippett (1928), Gnedenko (1943) and Gumbel (1958) provided the key statistical
foundations of extreme value theory. Extreme value theory concerns the asymptotic behaviour of
the distribution of the maximum values of sequences as the number of entries in each sequence
approaches infinity. The theory of extreme values can be applied in two-dimensional histogram
smoothing to find, Prob bP (|max dnoise

j,lj ,k1,k2
| < |dhist

j,lj ,k1,k2
|).

Von Mises (1954) and Jenkinson (1955) described the generalised extreme value probability
distribution function P (z, µ, σ, ξ). This probability distribution function is defined as,

P (z, µ, σ, ξ) = exp
{
− [1 + (

z − µ

σ
)× ξ]−

1
ξ
}

(8.14)

for a random variable z ε R, a location parameter µ ε R, scale parameter σ ε R+, shape parameter
ξ ε R but with the constraint [z : 1 + ξ(z − µ)/σ > 0] (equation 1.4, page 4, Kotz & Nadarajah
2000).
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The simulations that are used to find the maximum of the Mexican hat contourlet transform
of noise proceeds in the following manner:

i) A total of n random matrices (n > 100) are generated using the methods of Section 8.2.8.2.

ii) Each random matrix is analysed using the Mexican hat contourlet transform.

iii) The maximum absolute coefficient magnitude for each scale j and direction lj in the coef-
ficient matrix Dj,lj is found.

iv) These maximum values are recorded in a vector mj,lj in which the ith out of the n entries
encodes the maximum absolute coefficient magnitude for the matrix Dj,lj of the Mexican
hat contourlet transform of the ith matrix of random data.

v) The maximum absolute values of all the coefficients at each scale j = 1, . . . , J for each
of the n transforms is then recorded. That is, for scale j we create the vector

mj = [max(maxD(1)
1,1, . . . , maxD(1)

1,2j), . . . , [max(maxD(n)
1,1 , . . . , maxD(n)

1,2j)].

(8.15)

The problem for estimating P̂ (max |d noise
j,lj ,k1,k2

|) is about the same as that for estimating P̂ (|d noise
j,lj ,k1,k2

|).
There are insufficient numbers of maximum values of coefficients, max |d noise

j,lj ,k1,k2
|, that are of

comparable magnitude to many of the coefficients |d hist
j,lj ,k1,k2

| that will be encountered in the
smoothing of two-dimensional histograms. This problem will still occur even when the number
of coefficients in the sequence from which max |d noise

j,lj ,k1,k2
| is found is very large (n → ∞), as

very large magnitudes of |d noise
j,lj ,k1,k2

| are rare and extreme events.
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The generalised extreme value probability distribution function P (z, µ, σ, ξ) however, can be
used to describe the probability that the maximum value in a large sequence of coefficients will
not be greater than a certain fixed value. It can be used to overcome the probability distribution
function estimation problem and be used to find the coefficient weights as,
Prob bP (|max dnoise

j,lj ,k1,k2
| < |dhist

j,lj ,k1,k2
| ≈ P̂ (z = |dhist

j,lj ,k1,k2
|, µ̂, σ̂, ξ̂).

A generalised extreme value distribution function is fit for every scale of the Mexican hat
contourlet transform to produce a family of coefficient weighting functions
[P̂ (z, µ̂1, σ̂1, ξ̂1), P̂ (z, µ̂2, σ̂2, ξ̂2), . . . , P̂ (z, µ̂J , σ̂J , ξ̂J)]. In each instance, the parameters (µj, σj, ξj)

for j = 1, . . . , J of each generalised extreme value probability distribution function P (z, µj, σj, ξj)

were estimated using algorithm AS 215 (Hosking 1985). This algorithm uses iterative methods
(a modified version of Newton-Raphson iteration) to produce maximum likelihood estimates
(µ̂j, σ̂j, ξ̂j) of the parameters (µj, σj, ξj) in conjunction with a data set (in this case the mj vec-
tor) which is assumed to consist of samples all drawn from the same generalised extreme value
distribution function P (z, µj, σj, ξj).

The estimates [P̂ (z, µ̂1, σ̂1, ξ̂1), P̂ (z, µ̂2, σ̂2, ξ̂2, . . . , P̂ (z, µ̂J , σ̂J , ξ̂J))] encode the information
needed to obtain the weights wj,lj ,k1,k2 that are used to obtain the modified Mexican hat contourlet
transform coefficients d ∗ hist

j,lj ,k1,k2
, which in turn allows estimation of the smooth probability density

function, F̃g
Nadj .
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Modification of the coefficients of the Mexican hat contourlet transform of the two dimen-
sional histogram Fg

Nadj is achieved as follows:

i) Obtain the absolute values of the reference coefficients dhist
j,lj ,k1,k2

of the Mexican hat con-
tourlet transform of the two-dimensional histogram, Fg

Nadj that is of interest. In other

words calculate, |dhist
j,lj ,k1,k2

|.

ii) For the reference coefficient dhist
j,lj ,k1,k2

of the Mexican hat contourlet transform of the two-
dimensional histogram Fg

Nadj , calculate Prob(max |dnoise
j,lj ,k1,k2

| ≤ |dhist
j,lj ,k1,k2

|) using the

generalised extreme value probability distribution function estimate P̂ (z, µ̂j, σ̂j, ξ̂j) that
has the same scale parameter index (j), as the reference coefficient dhist

j,lj ,k1,k2
.

iii) Modify the coefficient dhist
j,lj ,k1,k2

to be d ∗,hist
j,lj ,k1,k2

= Prob(max |dnoise
j,lj ,k1,k2

| ≤ |dhist
j,lj ,k1,k2

|) ×
dhist

j,lj ,k1,k2
.

iv) Do steps (i)-(iii) for all coefficients dhist
j,lj ,k1,k2

in the Mexican hat contourlet transform of
the two-dimensional histogram Fg

Nadj , to obtain the set of modified coefficient matrices
(D!

1,1,D
!
1,2, . . . ,D

!
J,2J ).

The smooth probability density function estimate F̃g
Nadj (of the real and imaginary components

of the adaptive image transform coefficients for fixed filter, scale, location and group), is then
obtained by applying the inverse Mexican hat contourlet transform to the set of modified co-
efficient matrices (C smooth

1 ,D!
1,1,D

!
1,2,D

!
2,1, . . . ,D

!
J,2J ) where the approximation coefficients

C smooth
1 are the same as those of C hist

1 in the Mexican hat contourlet transform of the two-
dimensional histogram, Fg

Nadj . In this manner, smooth probability density function estimates,

F̃g1 , F̃g2 , . . . , F̃gn (in this case F̃gnorm , F̃g ben , F̃gmal) are obtained for all groups using the
Mexican hat contourlet transform.

The smooth probability density function estimation process is repeated many times to obtain
probability density estimates for each group corresponding to each filter, scale and location of the
adaptive image transform coefficients that were retained by the filter function selection algorithm
in Section 7.4.
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8.2.9 Producing Probability Arrays for each SAXS Image

The methodology of Sections 8.2.1 to 8.2.8.4 can be combined into a cohesive framework to esti-
mate the posterior probability of the tissue sample belonging to the normal, benign or malignant
groups using the information provided by each adaptive image transform coefficient (at fixed
filter, scale and location) independently. The probability density functions, pgnorm(zl,a,x,y),

pgben(zl,a,x,y), pgmal(zl,a,x,y) for the normal, benign and malignant groups were estimated using
the adaptive image transform coefficients zl,a,x,y at fixed filter (l), scale (a) and location (x, y)

indices for the SAXS images of a training data set. These probability density functions were
estimated either parametrically (using a bivariate Gaussian distribution with maximum likeli-
hood estimators) or non-parametrically (using the Mexican hat contourlet transform of the two-
dimensional histogram smoother) based upon the outcome of separate Shapiro-Wilk tests on the
real 6(zl,a,x,y) and the imaginary +(zl,a,x,y) of the adaptive image transform coefficients of sam-
ples within each group. Probability density function estimates were obtained for the three groups
for each filter, scale and location index of the adaptive image transform. The probability density
functions of those filter, scale and location indices that were retained post the filter function se-
lection algorithm (Section 7.4) were stored in computer memory as a component of the SAXS
image diagnostic model.

Probability estimates ( ˆProbn(z j
l,a,x,y), ˆProbb(z

j
l,a,x,y), ˆProbm(z j

l,a,x,y)) were then obtained for
fixed coefficient indices (l, a, x, y) for the jth (j = 1, . . . , Nval) SAXS image in the validation

data set by using the probability density function estimates, p̂gnorm(zl,a,x,y), p̂gben(zl,a,x,y),

p̂gmal(zl,a,x,y) in Bayes” rule of equation (8.2). This process is repeated, one at a time, for all
coefficient indices (l, a, x, y) of the adaptive image transform (post filter function selection) of
the SAXS image.

The probability estimates ( ˆProbn(z j
l,a,x,y), ˆProbb(z

j
l,a,x,y), ˆProbm(z j

l,a,x,y)) are stored in three
arrays Pj,norm,Pj,ben and Pj,mal that has the same dimensions as the adaptive image transform
coefficient array D! (post application of the filter function selection algorithm). Thus the entry
in the (l, a, x, y) = (1, 3, 4, 5) in the P2,norm array corresponds to the probability ˆProbn(z1,2,3,4,5)

for the normal group of the second SAXS image in the validation data set given the first filter,
third scale and the location (x, y) = (4, 5). The above process is repeated for all j = 1, . . . , Nval

SAXS images in the validation data set with three probability arrays Pj,norm,Pj,ben and Pj,mal

being created for each SAXS image.
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8.2.10 Summary of Probability Density Function Estimation Using the
Mexican Hat Contourlet Transform

The objective of this section was to estimate the posterior probability that a particular tissue
sample belongs to a certain group (either normal, benign or malignant) based upon the magni-
tude of only one adaptive image transform coefficient z j

l,a,x,y with fixed filter, scale and location
(l, a, x, y) indices. These posterior probabilities are estimated for all coefficients of the adaptive
image transform for all groups in an independent manner. The end result is three (one each for
the normal, benign and malignant groups) arrays of posterior probability estimates that have the
same dimension as the coefficient array of the adaptive image transform of the SAXS image un-
der investigation, post the filter function selection algorithm of Section 7.4.

Recapping, the methodology of this section was centered around the application of Bayes”
rule in equation (8.2). Implementation of Bayes” rule required the estimation of three proba-
bility density functions, pgnorm(zl,a,x,y), pgben(zl,a,x,y), pgmal(zl,a,x,y) for the normal, benign and
malignant tissue groups for the magnitude of the coefficients zl,a,x,y of the adaptive image trans-
form at fixed indices (l, a, x, y). The result is that a potentially very large number of probability
density functions need to be both estimated and stored. In order to reduce the computational and
storage requirements of the model, bivariate Gaussian probability density functions were used
to model the distribution of coefficient magnitude at those coefficient filter, scale and location
indices for which the amorphous scatter feature of the SAXS image was captured. The proba-
bility density functions that describe the magnitude of the coefficient at the remaining indices of
the adaptive image transform (post filter-function selection) were estimated non-parametrically
using the Mexican hat contourlet transform. A raw two-dimensional histogram was constructed
using a grid based upon the magnitudes of the real and imaginary components of the adaptive
image transform coefficients in the training SAXS image data set at fixed group, filter, scale
and location. The coefficients of the Mexican hat contourlet transform of this two-dimensional
histogram were then modified by multiplying their magnitude with the probability that their ab-
solute magnitude was less than or equal to the absolute magnitude of the coefficients of the
Mexican hat contourlet transform of random heteroskedastic noise matrices. These probabilities
were determined at each of the J scales of the Mexican hat contourlet transforms using a gener-
alised extreme value distribution fit using the absolute magnitude of coefficients of the Mexican
hat contourlet transform of simulated random heteroskedastic noise matrices. Once the coeffi-
cients of the Mexican hat contourlet transform of the two-dimensional histogram were modified,
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they served as non-parametric estimates p̂g
Nadj (zl,a,x,y) of the probability density function of the

group g
Nadj (either normal, benign or malignant) at filter, scale and location index (l, a, x, y).

This process was repeated for all groups and for all filter, scales and location indices of the adap-
tive image transform for which a bivariate Gaussian probability density function did not suffice.
The select probability density function estimates (for all groups and all filter, scale and loca-
tion indices that remained post filter function selection) were stored in computer memory. The
posterior probability of each group could then be estimated for each coefficient in the adaptive
image transform (post filter function selection) of each SAXS image in the validation data set
using the relevant stored probability density function estimates in conjunction with Bayes” rule.
For each SAXS image, these posterior probability estimates are stored in arrays Pj,norm,Pj,ben

and Pj,mal that are the same size as the original adaptive image transform (post filter function
selection) coefficient arrays.

Posterior probability estimates can be obtained for each group at each filter, scale and loca-
tion index of the coefficients of the adaptive image transform of a SAXS image. This potentially
large number of probability estimates allows the extraction of the slightest piece of evidence that
the tissue sample under investigation is malignant. Furthermore, it is possible to identify the
scale and location of the intensity magnitude feature in the original SAXS image that indicates
malignancy. The results of such an analysis might assist in furthering the scientific understanding
of how the structure of collagen is altered in malignant breast tissue conditions.

If the SAXS imaging technology is eventually deployed in a histopathology laboratory, then
the posterior probability arrays output by the methodology of this section can be inspected by a
pathologist using a graphical user-interface to assist with the assessment of the tissue. Despite
the wealth of information that can be gleaned by inspecting the posterior probability arrays for
each image, there might be a desire by the pathologist to have a simplified overall probability that
the tissue is normal, benign or malignant. An overall probability summary may also be useful in
semi-automated screening applications of the SAXS imaging device. A tissue sample could be
imaged using the SAXS camera and analysed using software based upon the methodology of this
section. Tissue samples could be prioritised for inspection by a pathologist and the SAXS imag-
ing system could therefore potentially reduce the time until diagnosis of the most urgent cases.
The methodology that is used to estimate this overall probability of the sample being normal,
benign or malignant breast is the subject of the next section.
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8.3 Overall Probability Estimates Using Coefficient Informa-
tion Across Scales

8.3.1 Overview

The objective of this section is to estimate the overall probability of a SAXS image being pro-
duced by either normal, benign or malignant breast tissue using the posterior probability arrays
produced in Section 8.2. This section is divided into six components. This sub-section, Sec-
tion 8.3.1 begins with a broad overview of the methodology that is developed.

Section 8.3.2 reviews the structure of the arrays Pj,norm,Pj,ben and Pj,mal (for all j =

1, . . . , Nval SAXS images in the validation data set) which are separately averaged to produce
the naive triplet of probabilities [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal].

Section 8.3.3 describes how all Nval naive probabilities for each of the three groups is used to
construct the raw histograms [hn( ˆProbnorm), hb( ˆProbben), hm( ˆProbmal)] and Section 8.3.4 details
how to smooth these histograms using a Walsh wavelet packet smoother in order to estimate the
probability density functions [p̂( ˆProbnorm), p̂( ˆProbben), p̂( ˆProbmal)].

Section 8.3.5 discusses how these probability density function estimates [p̂( ˆProbn), p̂( ˆProbb),

p̂( ˆProbm)] are refined using an adjustment SAXS image data set. Finally, Section 8.3.6 provides
an overall summary of the methodology.

Recall that parametric or non-parametric probability density functions pgnorm(zl,a,x,y),

pgben(zl,a,x,y), pgmal(zl,a,x,y) were estimated in Section 8.2 using a training data set, which were
then used in Bayes” rule to estimate the posterior probabilities [ ˆProbn(z j

l,a,x,y), ˆProbb(z
j
l,a,x,y),

ˆProbm(z j
l,a,x,y)] of group membership for each adaptive image transform coefficient zl,a,x,y for all

the samples in a validation data set. These probabilities were then stored in probability arrays
Pj,norm,Pj,ben and Pj,mal. It is desirable to reduce these vast arrays of posterior probabilities
Pj,norm,Pj,ben and Pj,mal into a simple overall probability [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal] for
the group (or tissue type) which had been determined a priori.
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Several approaches to produce these overall probability estimates are possible. One could
consider each array as a sampled function and apply the techniques of functional data analysis.
Unfortunately, models of functional data of such high-dimension at present do not exist or at best
in their early stages of development. A hierarchical or similar regression model could also be
developed, but at least two challenges are encountered:

(i) a model to describe the general structure of the ragged arrays Pj,norm,Pj,ben and Pj,mal

must be found.

(ii) a vast number of regression parameters might need to be estimated with limited data. Even
if a model could be specified, it might be very difficult to compute the parameters of the
model and obtain sufficient samples in practice to estimate them with sufficient accuracy.

A third approach which was adopted in this thesis is to obtain naive probability estimates by
averaging of the probability arrays Pj,norm,Pj,ben and Pj,mal and then to calibrate these naive
probabilities using samples with known group labels from an independent data set. On first in-
spection, the naive probability estimates seemed too simplistic to be useful but it was found in
practice that they could be used to develop more refined probability estimates. The key idea was
to develop a transformation function that maps these naive probability estimates to their “cor-
rect” values which take into account the inherent correlations in the data. This straightforward
approach may well be used as a baseline in the future to compare the accuracy of more sophisti-
cated models.

The technique is to produce probability density function estimates of the naive posterior
probabilities of tissue group (calculated for each SAXS image in the validation data set). These
probability density function estimates are to be optimal in classifying, by Bayes” rule, the groups
of another independent data set called the adjustment data set. When satisfied with these proba-
bility density function estimates, they are then used to classify test data. The probability density
function estimates are calculated using the Walsh wavelet packet which is specifically designed
for data on the [0, 1] domain.

For each SAXS image a naive probability is calculated as the simple average of all the indi-
vidual posterior probabilities from each filter, scale and location. We appreciate that this trans-
gresses fundamental statistical principles (e.g. they are not mutually exclusive) but these simple
averages will be ingredients in the initial probability density function estimates for the posterior
probability of group membership.
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ˆProbj,norm =
1

Z

∑

l ε L

∑

a ε A

∑

x ε X

∑

y ε Y

Pj,norm[l, a, x, y],

ˆProbj,ben =
1

Z

∑

l ε L

∑

a ε A

∑

x ε X

∑

y ε Y

Pj,ben[l, a, x, y],

ˆProbj,mal =
1

Z

∑

l ε L

∑

a ε A

∑

x ε X

∑

y ε Y

Pj,mal[l, a, x, y]

(8.16)

where L denotes the set of filter function indices, A denotes the set of scale indices, X the set
of x-coordinates, Y the set of y-coordinates and Z = [n(L) × n(A) × n(X) × n(Y )] is the
total number of coefficient entries or equivalently the product of the cardinality (denoted n(·))
of the sets L, A,X, and Y that were retained in the adaptive image transform post application of
the filter function selection algorithm in Section (7.4).

This naive triplet [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal] of overall posterior probabilities of each
group for each of the j = 1, . . . , Nval images is adjusted to improve classification performance by
calculating yet another set of three univariate probability density functions [p( ˆProbn), p( ˆProbb),

p( ˆProbm)] that encode the distribution of the naive overall posterior probability estimates for each
group. Each of the three univariate probability density functions [p( ˆProbn), p( ˆProbb), p( ˆProbm)]

is estimated using a Walsh wavelet packet smoother.
The Walsh wavelet packet smoother is discussed in Sections 8.3.4 and 8.3.5. It is specifically

designed to estimate probability density functions from one-dimensional histogram data that is
defined only on the domain [0, 1]. Each of the three univariate probability density functions
[p( ˆProbn), p( ˆProbb), p( ˆProbm)] is estimated by applying the Walsh wavelet packet smoother to
three separate one-dimensional histograms.
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These one-dimensional histograms are created by considering the naive probabilities for each
group separately. For instance, for the j! = 1, . . . , Nval images in the validation set we create
the univariate histogram hn( ˆProbn) by considering only the naive probabilities ˆProbj", n. The
univariate histogram hn( ˆProbn) is created by assigning the number of times that ˆProbj", n occurs
in the validation data set to the position Probn = Probj", n. A similar process is used to create the
hb( ˆProbb) and hm( ˆProbm) histograms.

The domain of the histograms [hn( ˆProbn), hb( ˆProbb), hm( ˆProbm)] is the interval ([0, 1]) which
is then partitioned into 2M sub-intervals (for instance when M = 6, 64 sub-intervals are created).
A value of zero is initially assigned to each of these sub-intervals. A value of one is then added
for each observation (either ˆProbn, ˆProbb or Probm) that falls within a particular sub-interval. The
Walsh wavelet packet transform was then applied to each of these pre-processed raw histograms.

Section 8.3.5 describes how the Walsh wavelet packet transform coefficients are ordered in
terms of decreasing energy (squares of coefficients) and how only a proportion (say 25%) of
the largest energy coefficients and the rest set to zero. The section goes on the explain how
back-transformation yields smooth probability density function estimates and how to select the
proportion of coefficients to retain (in each group) in order to achieve the most accurate classifi-
cation on an independent adjustment SAXS image data set.

Once the probability density functions [p( ˆProbn), p( ˆProbb), p( ˆProbm)] have been estimated,
they can be used in conjunction with Bayes” rule (equation 8.2) to estimate the overall probability
of group membership using the naive probabilities [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal].
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8.3.2 Creating the Naive Probability Matrix

The validation data set is used to create the probability arrays Pnorm,j, Pben,j and Pmal,j where
each entry Pnorm,j(l, a, x, y), Pben,j(l, a, x, y) and Pmal,j(l, a, x, y) corresponds to the proba-
bility estimates ˆProbnorm(z j

l,a,x,y), ˆProbben(z
j
l,a,x,y), and ˆProbmal(z

j
l,a,x,y) of the normal, benign

and malignant tissue groups respectively. Each array Pnorm,j, Pben,j, Pmal,j encodes the proba-
bility estimates for each three groups for all filters, scales and locations that were retained in the
adaptive image transform post filter function selection. Three such arrays are produced for each
SAXS image in the validation data set, the end result is a potentially large data set of arrays of
probability estimates. This probability data set has the form,

Pval =





Pnorm,1 Pben,1 Pmal,1

Pnorm,2 Pben,2 Pmal,2
... . . . ...

Pnorm,Nval Pben,Nval
Pmal,Nval




. (8.17)

There is a need to reduce the size of the Pval array and provide an overall probability estimate
for each of the three groups given the jth SAXS image. Recall that equation (8.16) specified how
to obtain the naive probability estimates [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal] by simple averaging.
The naive probabilities are stored in a Nval rows by three columns matrix, NPval of the form,

NPval =





ˆProb1,norm ˆProb1,ben ˆProb1,mal
ˆProb2,norm ˆProb2,ben ˆProb2,mal

... . . . ...
ˆProbNval,norm ˆProbNval,ben ˆProbNval,mal




. (8.18)

The entries (naive probability estimates) inside the NPval matrix will be used to estimate another
set of probability density functions that are capable of an overall classification of group on future
test data.
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8.3.3 Creating the Raw Histograms

The NPval matrix is used to construct three raw histograms hn( ˆProbnorm), hb( ˆProbben) and
hm( ˆProbmal). These raw histograms will be smoothed to produce the probability density func-
tions estimates p̂( ˆProbnorm), p̂( ˆProbben) and p̂( ˆProbmal). The raw histogram hn( ˆProbnorm) is
constructed using all of the ˆProbj,norm (j = 1, . . . , Nval) entries along the first column of the
NPval matrix. Similarly, the raw histograms hb( ˆProbben) and hm( ˆProbmal) are constructed us-
ing the entries along the second and third columns of the NPval matrix respectively.

Each of the raw histograms hn( ˆProbnorm), hb( ˆProbben) and hm( ˆProbmal) are constructed by
partitioning the interval [0, 1] into 2M segments. The power M is selected such that the number
2M is the closest power of two possible to the number of samples Nval for the group gn" whose
histogram is being estimated.

For instance, if the normal group in the validation data set had 60 samples then the power
M would be selected to be six, as 26 = 64. The interval [0, 1] would then be partitioned into
64 segments and a value of zero assigned to each of these segments. For the raw hn( ˆProbnorm)

histogram a value of ‘1‘ is assigned to the segment that contains the NPval(1, 1) magnitude.
This process is repeated for all of the remaining j = (2, . . . , Nval), NPval(j, 1) entries with
a magnitude of ‘1‘ added for each segment that the entry falls. The other raw histograms
hb( ˆProbben) and hm( ˆProbmal) are constructed in a similar manner. The raw histograms hn( ˆProbnorm),

hb( ˆProbben) and hm( ˆProbmal) are now ready for smoothing.
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8.3.4 Transformation Of The Raw Histograms Using Walsh Wavelet
Packets

The probability density function estimates p̂( ˆProbnorm), p̂( ˆProbben) and p̂( ˆProbmal) are found
by smoothing the raw histograms hn( ˆProbnorm), hb( ˆProbben) and hm( ˆProbmal). Smoothing
is achieved by modification of the magnitude of coefficients from the wavelet packet trans-
forms of the raw histograms, followed by back transformation. Because the raw histograms
hn( ˆProbnorm), hb( ˆProbben) and hm( ˆProbmal) have a domain on the interval [0, 1], there is a need
to use specific smoothing functions.

The Walsh wavelet packet, which is a wavelet packet transform that uses Walsh basis func-
tions, is based upon a family of analysis/smoothing functions that do not extend outside the
interval [0, 1]. The Walsh wavelet packet transform also allows for adaptive smoothing of raw
histograms. The Walsh basis is a family of functions derived from linear combinations of the
Haar scaling function φ(x) = 1 (0 ≤ x ≤ 1), 0 otherwise and the Haar wavelet function
ψ(x) = 1 (0 ≤ x < 1/2),−1 (1/2 < x < 1), 0 otherwise (page 133, Vidakovic 1999). The
initial level of the Walsh basis functions W0(x) = φ(x) and W1(x) = ψ(x) are simply the Haar
scaling and wavelet functions respectively. The Walsh basis functions, W2n(x) and W2n+1(x), at
higher levels (n ≥ 1) are defined recursively as,

W2n(x) = Wn(2x) + Wn(2x− 1)

W2n+1(x) = Wn(2x)−Wn(2x− 1), n ≥ 1

(8.19)

(page 133, Vidakovic 1999).
The index, n, in the Walsh basis function Wn(x) indicates the number of zeroes in the func-

tion. The greater the number of zeroes, the finer the detail the function Wn(x) can detect.
The wavelet packet transform was discussed in Section (5.2.4). Recall that it uses a library

of functions of the form,

Wj,n,k(x) = 2
j
2Wn(2jx− k) (8.20)

where parameters j ε Z, n ε N and k ε Z are used to represent a function f(x) ε L2(R) (equation
5.13, page 135, Vidakovic 1999). The parameter, j ε Z is the scale parameter, parameter n ε N is
the sequence parameter and parameter k ε Z is the translation parameter. The functionsWj,n,k(x)

must be an orthogonal basis of the space L2(R).
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When a subset P of the scale j ε Z and sequence parameters n ε N are selected such the dyadic

intervals (intervals with observations that can be indexed by parameters (j, n) ε P composed
from the sets j ε Z and n ε N), Ij,n = {[2jn, 2j(n + 1)], (j, n) ε P} form a disjoint and
countable covering of the interval [0,∞) (in this case [0, 1]), then the function f(x) ε L2(R) can
be represented as,

f(x) =
∑

(j,n) ε P

∑

k ε Z
wj,n,k Wj,n,k(x) (8.21)

(adapted from Theorem 5.3.3, page 138, Vidakovic 1999).
Now the Walsh wavelet packet transformation specifically uses the Walsh basis functions,

Wn(x) in place of general orthogonal basis functions Wn(x) in the wavelet packet transform of
equations (8.20) and (8.21). The raw histograms hn( ˆProbnorm), hb( ˆProbben) and hm( ˆProbmal)

are in practice represented by the discrete sequence of numbers (hn), (hb) and (hm). These se-
quences are within the space of square summable sequences l2(R) as

∑Mnorm
n=1 |hn|2 < ∞,

∑Mben
n=1 |hb|2 < ∞ and

∑Mmal
n=1 |hm|2 < ∞. The space L2(R) is the discrete counterpart to the

space L2(R). Therefore, discrete representations of the Walsh basis functions Wn(x) can be used
to obtain discrete representations of the probability density functions p̂( ˆProbnorm), p̂( ˆProbben) and
p̂( ˆProbmal).

It is convenient to describe the Walsh wavelet packet transforms of the raw histograms in
terms of crystals. Crystals are vectors, denoted wj,n = (wj,n,0, wj,n,1, . . . , wj,n,2j−1) that contain
all coefficients wj,n,k =< f(x), Wj,n,k(x) > where f(x) is either hn( ˆProbnorm), hb( ˆProbben) and
hm( ˆProbmal) whilst Wj,n,k(x) is given by equation (8.20) when Walsh basis functions Wn(2j−k)

are substituted for Wn(2jx − k). A particular crystal wj,n contains all the coefficients wj,n,k at
a fixed scale j and sequence parameter, n. The individual entries wj,n,k are called atoms (page
138, Vidakovic 1999). The crystals from the Walsh wavelet packet transform can be depicted
graphically as in Figure 8.9.
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Figure 8.9: Crystal organisation in a two-level Walsh wavelet packet transform.

Level 2 of the Walsh wavelet packet transform is denoted by the crystal w2,0 and corresponds
to the raw histogram data (either hn( ˆProbnorm), hb( ˆProbben) and hm( ˆProbmal)). The Walsh basis
functions w1,0,1, . . . ,w1,0,2M are applied to the crystal w2,0 to yield the crystal w1,0 after down-
sampling. Similarly the Walsh basis functions W1,1,1, . . . ,W1,1,2M are applied to the crystal w2,11.
The process continues throughout the tree depicted in Figure 8.9 with the Walsh basis functions
Wj,n,1, . . . ,Wj,n,2M are used to obtain the crystal wj,n.

The Walsh wavelet packet transform applies the full wavelet packet decomposition using
Walsh basis functions. In other words, all crystals are retained. In order to achieve adaptive
smoothing on the interval only certain atoms will be retained. All other atoms will be set to zero.
The Walsh wavelet packet transform is then back transformed to yield the smoothed estimate of
the probability density function. Selection of which atoms to retain and which to set to zero is
based upon classification performance of the smooth probability density function estimates on
an adjustment data set. The methodology of this selection process will be the subject of the next
section.
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8.3.5 Smoothing of the Raw Histograms Using the Walsh Wavelet Packet
Transform

The Walsh wavlet packet transform was used to analyse the raw histograms hn( ˆProbnorm), hb( ˆProbben)

and hm( ˆProbmal) with a range of different basis functions. These basis functions are useful for
extracting different features from the raw histograms, a feature is detected when a relatively large
magnitude coefficient is produced. In order to smooth the raw histograms hn( ˆProbnorm), hb( ˆProbben)

and hm( ˆProbmal) to produce the probability density function estimates p̂( ˆProbnorm), p̂( ˆProbben)

and p̂( ˆProbmal) the magnitude of the Walsh wavelet packet transform coefficients needs to be
modified. Retaining only the largest magnitude coefficients allows the key features that the
Walsh wavelet packet transform has detected in the raw histogram to be retained and for the re-
maining variation discarded when estimating the probability density functions.

The challenge for successful probability density function estimation is how to select which
coefficients to retain and which to omit. A percentile thresholding scheme is used to select Walsh
wavelet packet coefficients. The actual percentile used is determined in a step wise fashion.

First threshold the coefficients by selecting those whose energies are greater than the q quan-
tile of the sample. At the start, q is set to 0.5, 0.625 and 0.75. The inverse transform of the
retained Walsh coefficients gives three versions of probability density function estimates for each
set of naive probabilities ˆProbnorm, ˆProbben, ˆProbmal.

These probability density function estimates are now used in Bayes” rule to classify tissue
group in the adjustment data set and the three which perform best are kept and the others dis-
carded. An example of this process is depicted in Figure 8.10. The combinations scoring ‘1’
would be kept, indicating the appropriate level of thresholding which is denoted in Figure 8.10
as q!, q!! and q!!!.
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0.500 0.625 0.750
p̂norm 7 1 2 3
p̂ben 77 3 1 2
p̂mal 7 7 7 1 3 2

Figure 8.10: Determining the most accurate probability density function estimates using an ad-
justment data set. Three probability density function estimates are determined for each of the
three groups by retaining select quantiles of Walsh wavelet packet transform coefficients fol-
lowed by back-transformation. The classification performance is assessed on the adjustment
data set using the different combinations of probability density function estimates and Bayes”
rule. The probability density function estimates in each group that produce the most accurate
classification on the adjustment data set (as indicated by ‘1’) are retained and the other probabil-
ity density function estimates discarded.

We return to the naive estimates of posterior probabilities and repeat the process with three
new quantiles, centered around those retained in the previous step. The set of probability density
function estimates that are selected in this refinement process are retained for classification of
test data.

The explicit algorithm used in this thesis is as follows:

i) Obtain the raw histograms hn( ˆProbnorm), hb( ˆProbben) and hm( ˆProbmal).

ii) Apply the Walsh wavelet packet transform to each histogram.

iii) In each case, order the Walsh wavelet packet transform coefficients from greatest to small-
est energy.

iv) Select the qth quantile of largest energy coefficients, where parameter q is obtained from
the set Q = [0.250, 0.375, 0.500].

v) Set the remaining Walsh wavelet packet transform coefficients to zero.

vi) Back transform the modified Walsh wavelet packet coefficients for each quantile and each
group.

vii) Compare the classification accuracy using Bayes” rule for of all combinations of the prob-
ability density function estimates between groups.
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viii) Select the probability density function estimates that maximise Propq",n,

Propq"",b and Propq""",m.

ix) Refine estimates p̂q"( ˆProbnorm), p̂q""( ˆProbben) and p̂q"""( ˆProbmal). Repeat as from step ii)
but this time use the quantiles,

qnorm = {q! − 0.0625, q!, q! + 0.0625}

qben = {q!! − 0.0625, q!!, q!! + 0.0625}

qmal = {q!!! − 0.0625, q!!!, q!!! + 0.0625}.

(8.22)

Use steps (iv) and (v) again.

A larger number of entries could have been included in the first set Q in order to consider at
once a wide range of probability density function estimates. This could not be done in prac-
tice as the Walsh wavelet packet transform method of estimating probability density functions
requires a large number of samples when a large number of probability density function esti-
mates are to be compared simultaneously. If a greater number of probability density function
estimates were compared simultaneously without a substantial increase in sample size then com-
parisons between the probability density function estimates would be meaningless. This problem
is produced by the Propq",n, Propq"",b and Propq""",m statistics having a high variability when the
sample size is insufficient. Therefore, the number of comparisons was constrained to limit the
impact of this problem on the probability density function estimation process. In practice, it was
found that the Walsh wavelet packet transform had such few large magnitude coefficients that
the omission of smaller energies (below the 0.50th quantile) was of little relevance. Furthermore
it was also found in practice that is was not necessary to further refine the probability density
function estimates produced in step (ix) above .
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8.3.6 Summary and Conclusion to Estimating the Overall Posterior
Probability of each Group

This section outlined a method to produce three estimates of the overall probability that a tissue
sample belongs to either the normal, benign or malignant breast tissue groups based upon the
probability arrays produced in Section 8.2 using the coefficients of the adaptive image transform
of its SAXS image. The central theme was to construct univariate histograms hn( ˆProbnorm),

hb( ˆProbben) and hm( ˆProbmal) and to apply the Walsh wavelet packet transform in each case.
A proportion of the coefficients was retained and the remaining set to zero. Smoothed proba-
bility density function estimates were obtained following back transformation of the modified
Walsh wavelet packet transform coefficients. A number of different probability density function
estimates were trialled for each group and a subset of three (one for each group) was selected
based upon their classification accuracy on an independent adjustment SAXS image data set.
The model was then ready to be applied to actual test data.
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8.4 Summary & Conclusion to Statistical Modeling

A range of new statistical techniques have been introduced in this chapter in order to calculate
the scale-location and overall group probability estimates for the SAXS image data set. Notable
contributions include the XOR model, the Mexican hat contourlet transform, the bivariate prob-
ability density function estimation using the generalised extreme value distribution function and
similarly using the Walsh wavelet packet transform to perform adaptive univariate probability
density function estimation. A few comments are in order for each of these techniques.

The XOR model is designed for large-scale image analysis applications, it was proposed as
a potential solution when a very large number of probability density function estimates must be
calculated and stored in the computer memory. Kernel density estimates or other density esti-
mation procedures could have been applied but there are four reasons why we have used and
advocated the XOR model approach:

a) There is good reason to believe that many of the probability density functions (conditional
on group) of the adaptive image transform coefficients can be well-modeled by a bivariate
Gaussian distribution (at least for SAXS images). Storing the parameters of a bivariate
Gaussian distribution rather than that of a bivariate kernel estimate is very likely to require
far less computer memory. This saving in memory might result in a greater computational
efficiency for routine large scale applications of the final diagnostic model.

b) Any parametric probability density function can be used in the parametric component of
the XOR model. All that needs to be done is to replace the Shapiro-Wilk test with another
goodness of fit test that is suitable to assess the adequacy of the probability density function
that is proposed.

c) XOR model also allows non-parametric probability density function estimation using any
method. In particular, bivariate probability density function estimates can be found using
the Mexican hat contourlet transform. Raw histograms of adaptive image transform coeffi-
cient magnitudes are smoothed by modifying the Mexican hat contourlet transform coeffi-
cients using the statistical theory of extreme values. A large proportion of these smoothed
coefficients are zero which allows for sparse probability density function representations.
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d) This thesis is concerned as much about the development of new multi-scale statistical im-
age analysis as it is with the development of classification model of SAXS images. Proba-
bility estimates and function selection could have been achieved using standard statistical
methods (such as with kernel density estimates) but this would have negated the oppor-
tunity to explore both the XOR density estimation model and non-parametric smoothing
using the Mexican hat contourlet transform.

A disadvantage of the XOR model is that it often requires many applications of the Shapiro-Wilk
test combined with a correction to avoid an unnecessarily high false-discovery rate. Statistical
criterion that can decide between a parametric or non-parametric model thereby avoiding the
need for a large number of tests would be of great advantage in this setting.

The Mexican hat contourlet transform was developed to in order to combine a wavelet filter
with a directional filter. This allowed both the edges and their directions to be detected when
analysing bivariate data. The Mexican hat contourlet transform has the advantage over other
multi-scale and multi-directional bivariate data transforms such as the ordinary contourlet and
curvelet transforms in that it requires fewer coefficients to describe the same data. This has
the advantage of reducing the computational and storage requirements when analysing bivariate
data. Such a property is advantageous when large numbers of bivariate data must be transformed
and analysed, as in the case of the SAXS image analysis model presented in this chapter.

The Mexican hat contourlet transform allowed raw histogram data to be analysed using a
range of functions that varied in scale, orientation (direction) and location. The different scale
and direction matrices of the Mexican hat contourlet transform are similar to smoothing the orig-
inal bivariate data with different smoothing functions. Large magnitude coefficients were only
produced when there was a good match between the Mexican hat contourlet smoothing function
and the raw histogram data.

Computer simulation studies on the absolute magnitude of coefficients from the Mexican hat
contourlet transforms of both random data and probability density functions allowed coefficient
smoothing models to be developed based upon the generalised extreme value distribution. Coef-
ficient weights were determined from the generalised extreme value distributions. These weights
were multiplied with the original Mexican hat contourlet transform coefficient magnitude for raw
histograms produced using the adaptive image transform coefficients from the training SAXS im-
age data set. The modified coefficients were then back transformed using the inverse Mexican
hat contourlet transform to yield the smooth probability density function estimate.
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Because computer simulations were used in the estimation of the generalised extreme value
distributions, any type of model could have been proposed to produce the random data. That is,
using the Mexican hat contourlet transform combined with the generalised extreme value dis-
tribution functions allows smoothing to be performed under any type of noise model. Further
research into this technique would be useful to compare the bias and variance of the resulting
probability density function estimates with those produced by other probability density function
estimation techniques.

Finally, estimation of univariate probability density functions on the interval was achieved
using the Walsh wavelet packet transform. The support of the Walsh basis functions was on the
interval. This removed the problem of inaccurate probability density function estimates caused
by using a smoothing function that extends outside the domain of definition. Whilst use of the
wavelet packet transform allowed for an analysis of the raw histogram data with a range of differ-
ent functions. Such an approach allowed different features to be detected in the raw histograms
of naive probabilities. The use of a separate adjustment data set provided the opportunity to esti-
mate probability density functions (by retaining only a subset of Walsh wavelet packet transform
coefficients) that produced the best classification results.



Chapter 9

Application to Breast Cancer Diagnosis

This chapter concerns the application of the image analysis and statistical modeling methodology
that was presented in Chapters 7 and 8 to SAXS image data. The objective of this chapter is to
assess the utility of these techniques in the identification of breast cancer. Qualitative and quan-
titative results will be presented that allow for an appreciation of how the methods developed in
this thesis work in practice.

Section 9.1 presents the results that pertain to the image analysis methodology that was devel-
oped in Chapter 7. The coefficients zl,a,x,y of the adaptive image transform of SAXS images are
reviewed and coefficient matrices are compared for SAXS images that are associated with differ-
ent tissue pathologies. The probability of misclassification is calculated for each filter function
used in the adaptive image transform and used as a guide to assess classification model perfor-
mance.

Section 9.2 involves the application of the diagnostic models that were developed in Sec-
tion 8.2. The XOR model of Section 8.2.2 was implemented with bivariate Gaussian probability
density functions being fitted to describe the adaptive image transform coefficient zl,a,x,y coef-
ficient magnitude when appropriate and non-parametric probability density function estimates
used when they were not. The Mexican hat contourlet transform of Section 8.2.4 was used to
smooth the raw histograms fraw [6(zl,a,x,y),+(zl,a,x,y)] by modification of the transform coeffi-
cients using generalised extreme value distribution functions [P̂ (z, µ1, σ1, ξ1), P̂ (z, µ2, σ2, ξ2), . . . ,

P̂ (z, µJ , σJ , ξJ)] as per the methodology of Section 8.2.8.4.

259
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Section 9.3 concerns the implementation of the methodology developed in Section 8.3. The
naive probabilities [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal] were calculated and the raw histograms
[hn( ˆProbnorm), hb( ˆProbben), hm( ˆProbmal)] constructed using the methods of Sections 8.3.2 and
8.3.3. The coefficients of the Walsh wavelet packet transforms of these histograms was then
modified using the thresholding procedure discussed in Section 8.3.4. The inverse Walsh wavelet
packet transform was then applied to yield the probability density function estimates
[p̂( ˆProbn), p̂( ˆProbb), p̂( ˆProbm)]. Several probability density function estimates were calculated
and compared by retaining different numbers of Walsh wavelet packet coefficients in each case.
The three probability density function estimates that produced the best classification performance
on a separate adjustment data set were retained as per Section 8.3.5.

Section 9.4 applied the bivariate and univariate probability density function estimates devel-
oped in the previous two sections as a complete model on an independent test data set. This
allowed for an objective assessment of the diagnostic model in practice. Finally, Section 9.5
ends the chapter with a summary and conclusion.
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9.1 Application of the Adaptive Image Transform to SAXS
Images

9.1.1 SAXS Image Data Set

N B M
Training 50 50 50

Validation 50 49 50
Adjustment 50 50 50

Test 10 10 10

Table 9.1: Number of tissue samples in each of the normal (N), benign (B) and malignant (M)
tissue groups in each of the data sets used in model development and assessment.

As indicated in Chapter 8 model development requires that we partition the SAXS image
data set in four subsets, the training, validation, adjustment and test data sets. The training data
set is used to estimate the parametric or non-parametric bivariate probability density function es-
timates of the real and imaginary components of the adaptive image transform coefficient zl,a,x,y

magnitude. The validation data set is used to calculate the posterior probabilities of the tissue
sample belonging to the normal, benign or malignant tissue groups at each filter, scale and loca-
tion of the adaptive image transform. This data set is also used to calculate the naive probabilities
[ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal], the raw histograms [hn( ˆProbnorm), hb( ˆProbben), hm( ˆProbmal)]

and the probability density function estimates [p̂( ˆProbn), p̂( ˆProbb), p̂( ˆProbm)] using the Walsh
wavelet packet transform. The adjustment data set is used to select the best performing set of
univariate probability density function estimates. This is achieved by trialling different combi-
nations of probability density function estimates and using them to predict the group label of
observations (within the adjustment data set). The predicted group labels are compared with the
known group labels and the most accurate combination of univariate probability density func-
tions estimates are retained. The test data set is an independent set of SAXS images held apart
from the model development and is used to assess the entire model (consisting of the adaptive
image transform as well as the bivariate and univariate probability density function estimates).
A numerical summary of the number of normal (N) , benign (B) and malignant (M) breast tissue
samples in each data set is provided in Table 9.2.
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9.1.2 Adaptive Image Transformation of SAXS Images within the
Training Data Set

The adaptive transform of Section 7.2 was applied to the SAXS image training data set. The
filters in the library of the transform included the Mexican hat, Pet hat, Gabor, Gamma, Mellin,
Chebyshev, Zeta and Witch’s Hat functions. The adaptive image transform was applied to each
individual SAXS image using each function in the library at a range of scales (a = 1, 2, 3, . . . , 8).

Visible differences in the real and imaginary components of the coefficients zl,a,x,y were
evident between SAXS images from different tissue groups. In particular, the magnitude of
scattering ring features appeared different between the tissue groups. Figure 9.1 displays the
real 6(zl,j,a,x,y) and imaginary +(zl,j,a,x,y) components of the coefficients of the adaptive image
transform using the Witch’s Hat filter function at scale a = 2 for select SAXS images of normal,
benign and malignant breast tissue.

The main difference between the coefficient matrices appears to be the magnitude of those
coefficients that are associated with the meridional scattering rings. The set of coefficients as-
sociated with the normal breast tissue sample has a sharply defined set of rings in both the real
(6(zl,a,x,y))) and imaginary +(zl,a,x,y)) components. In contrast, the scattering ring features in
the adaptive image transform coefficients from the SAXS image belonging to the benign sample
do not appear as sharply defined. Note the apparent differences in the magnitude of the scatter-
ing rings and that the benign sample has a poorly defined 1st order meridional scattering ring
which is located in the centre of the coefficient matrix. These differences appear greatest when
comparing the imaginary coefficient matrices +(zl,a,x,y)) of the normal and benign samples.

Both components of the real and imaginary coefficients have distinct differences between the
normal and malignant sample. The meridional scattering rings in the real coefficient component
6(zl,a,x,y)) of the malignant sample appear to have a smaller magnitude than those in the normal
sample. The 1st order meridional scattering ring is also less well defined in the malignant sample
and there appears to be a greater amount of variation (appears as a rougher surface) in coefficient
magnitude in the regions of the coefficient matrix that are associated with amorphous scatter.
The imaginary component +(zl,a,x,y) of the malignant sample also supports these observations
with the 1st meridional order scattering ring again being poorly detected in contrast to that of the
normal sample.
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Figure 9.1: Witch’s Hat filter function - adaptive image transform coefficients at scale (a = 2)
for select SAXS images of normal, benign and malignant breast tissue.
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The real and imaginary components of the benign and malignant tissue samples also appear to
have distinct differences. The real component 6(zl,a,x,y) of the coefficients contains meridional
scattering ring features that appear to have a greater magnitude than those in the real component
of the coefficients of the malignant sample. A 1st order meridional scattering ring is visible in
the coefficients of the malignant sample but in the coefficients of the benign sample this feature
is very diffuse and barely visible. The real component of the coefficients of the malignant sample
also has greater variation than the real component of the coefficients of the benign sample in the
regions associated with amorphous scatter. The imaginary components +(zl,a,x,y) of the coeffi-
cients support the above observations but also have more pronounced differences in magnitude.
This apparent difference may act as an important discriminant between benign and malignant
samples.

The limitations of this qualitative inspection of the coefficient matrices must be kept in mind.
Only one example from each of the three tissue groups has been examined, furthermore, they
have been examined for only one scale a = 2 and for one filter function (the Witch’s Hat). The
apparent differences presented could have arose from random chance or have been deliberately
selected to present the case that the coefficients of the adaptive image transform pick out dif-
ferences in breast tissue groups related to the meridional scattering ring and amorphous scatter
features. To counter these difficulties the entire data set - all images, for all filters and scales
were examined using the same pixel palette scale. The differences presented in Figure 9.1 are
indicative of the general trend observed, sometimes the differences in the coefficient components
was clear-cut (and related to the scattering ring features) and in some cases it was not. In all the
inspection suggested that differences in the magnitude of the components of the adaptive image
transform coefficients might be able to distinguish between SAXS images produced by different
breast tissue pathologies. At this stage, there is no definitive evidence that the key differences
are related to the meridional scattering ring and amorphous features, but in some instances visual
inspection did suggest that this was the case.

Visual assessment and comparison of coefficient matrices is clearly too subjective and po-
tentially misleading given the large number of comparisons that need to be made. Furthermore,
subtle feature not readily distinguished by eye may be a key discriminant and complex interac-
tions that are not readily deciphered might need to be accounted for when determining tissue
group. The possibility that the adaptive image transform coefficients of the SAXS images can-
not distinguish between breast tissue groups cannot yet be discounted. It is clear that statistical
methodology (such as that developed in Chapter 8) needs to be implemented to obtain an objec-
tive assessment of this complicated data set.



9.1. APPLICATION OF THE ADAPTIVE IMAGE TRANSFORM 265

Figure 9.2: Bayes’ probability of misclassification across locations for the SAXS image dataset.
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Figure 9.2 displays the upper and lower bounds on the Bayes’ probability of misclassification
across all locations at scale a = 2 of the adaptive image transform for the SAXS image training
data set. In other words, the probability of misclassification displayed in Figure 9.2 is that of the
combination of filter functions retained post the filter function selection algorithm in Section 7.4.
Figure 9.2 displays the qualitative trends in the probability of misclassification (as calculated
from Section 7.4) across locations for scale a = 2. Clear differences exist in the probability of
misclassification varies across different locations in the SAXS images. Therefore selection of
distinct locations of coefficients as features carries the risk of selecting regions that are inher-
ently prone to greater classification error. Note that the equatorial scattering rings and the diffuse
scatter region between the first and third meridional scattering rings has the lowest probability
of error, suggesting that these regions although not easily identifiable by visual inspection of the
coefficient matrices are the regions of the SAXS image most likely to produce accurate classi-
fication. Also observe that the 3rd and 5th meridional scattering ring region have considerably
greater probability of error. This is of practical importance as the majority of SAXS image clas-
sification algorithms including those of Falzon et al (2006) have focused upon the extraction of
coefficient features from the 3rd and 5th meridional scattering peaks. The region of the SAXS
images that is potentially prone to the greatest probability of misclassification.
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To further understand the effect of filter function on classification performance, the bounds
on the probability of misclassification were examined a single filter function at a time rather than
as a combination of filter functions as done in Figure 9.2. Table 9.2 reports on the range of the
bounds of Bayes’ probability of misclassification across all locations for the scales (a = 2, 4 and
6) and all of the filter functions in the adaptive image transform library using the SAXS image
training data set. Reporting the bounds on the probability of misclassification for all filters, scales
and locations would be too confusing and distracting. Therefore, Table 9.2 is understood to be
a guide to the classification accuracy possible using the adaptive image transform coefficients of
different filter functions at different scales.

Classification accuracy appears to be dependent upon both the filter function used for the
analysis as well as the scale used in the transform. The Mexican hat wavelet and Witch’s Hat
filter functions appear to be very good choices for scale a = 2, both have a lower bound of 0.05
and upper bounds of 0.21 and 0.22 respectively. The results at the medium scale a = 4 suggests
using the Gabor, Gamma and Mexican Hat filters, whilst the Gabor functions appear superior for
scale a = 6 with error bounds of [0.05,0.21].

Scale

a = 2 a = 4 a = 6

Gabor [0.06,0.23] [0.06,0.23] [0.05,0.21]
Gamma [0.18, 0.72] [0.06,0.25] [0.18,0.74]
Mellin [0.18,0.72] [0.18,0.73] [0.18,0.73]

Mexican Hat [0.05,0.21] [0.06,0.26] [0.15,0.60]
Pet Hat [0.17,0.67] [0.18,0.72] [0.18,0.73]

Chebyshev [0.18,0.73] [0.16,0.64] [0.69,0.99]
Witch’s Hat [0.05,0.22] [0.18,0.72] [0.18,0.72]

Zeta [0.04,0.14] [0.14,0.57] [0.18,0.72]

Table 9.2: Bounds on probability of misclassification of the three tissue groups across scales (a
= 2, a = 4 and a = 8) for the different filter functions in the adaptive image transform library.
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Analysis of Table 9.2 supports the case that an adaptive image transform that uses a variety
of filter functions and analyses the SAXS image over multiple scales is a valuable method. For
instance, the Chebyshev filter function at scale a = 6, suggests poor classification performance
should be expected as the bounds on probability of misclassification are [0.69,0.99]. In contrast,
at the same scale the Gabor filter has a probability of misclassification of [0.05, 0.21]. Selecting
the Chebyshev filter function at this scale exclusively for the analysis of the SAXS images would
have lead to poor classifier. Choice of the appropriate filter function appears to be very important.
Note that filter function performance is also scale dependent. For instance the Zeta filter at scale
a = 2 has bound on the probability of misclassification of [0.04, 0.14], whilst at scale a = 6 this
bound is [0.18, 0.72].

Based upon these results data dependent selection of the filter functions to use in the multi-
scale analysis of SAXS images appears to be a wise strategy. By allowing a range of filter
functions with different characteristics into the library of the adaptive image transform we might
be able to capture a range of different, potentially useful diagnostic features. In the case of SAXS
images of breast tissue, correct filter selection for each scale and location of the adaptive image
transform can substantially alter the accuracy of the final model. Based upon the results presented
in Table 9.2 the most accurate classification model that can be expected from the adaptive image
transform coefficients is 96 %.
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9.2 SAXS Breast Tissue Classification Model

This section concerns the implementation of the statistical methodology developed in Section 8.2.
The XOR model is implemented and probability density functions of the adaptive image trans-
form coefficient magnitudes estimated parametrically and non-parametrically using the Mexican
hat contourlet transform. This is the first step in predicting tissue group from the adaptive image
transform coefficients of a SAXS image. The outcome at the end of this section is the estimation
of the probability of each tissue group for each filter, scale and location of the transform.

9.2.1 Implementation of the XOR model

Figure 9.3: The adaptive image transform coefficients (for the Witch’s Hat filter and the normal
group) across scales that were selected for non-parametric probability density function estimation
using the XOR model (displayed in white).

Scale
a = 2 a =4 a = 6

The first step in the analysis of the adaptive image transform coefficients of the SAXS image
training data set is to apply the XOR model of Section 8.2.2 in order to determine which bivariate
probability density functions of coefficient magnitude need to be determined non-parametrically.
Shapiro-Wilks tests were applied to all the adaptive image transform coefficients in each tissue
group for each filter, scale and location. Those coefficient filter, scale and locations that were
not well modelled using a bivariate Gaussian probability density function were selected for mod-
elling with a non-parametric probability density function estimator. The Mexican hat contourlet
transform was selected for performing this non-parametric probability density function estima-
tion.
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Figure 9.3 displays examples of the adaptive image transform coefficients selected for the
normal tissue group and the Witch’s Hat filter function across all locations at select scales
(a = 2, 4, 6). Coefficients that were selected for non-parametric probability density function
estimation are displayed in white, those that were not selected either because they were not re-
tained post filter-function selection (in Section 7.4) or because they were well modelled using a
bivariate Gaussian probability density function are displayed in black. Inspection of Figure 9.3
reveals that those coefficient locations (for at least the Witch’s Hat filter and the scales a = 2, 4, 6)
correspond to the same locations as the meridional and equatorial scattering ring features. This
result matches well with the case presented in Section 8.2.3 in which it was stated that coeffi-
cients associated with amorphous features are well modelled with bivariate Gaussian probability
density functions but those associated with scattering ring features are not. Also observe in Fig-
ure 9.3 that as the scale increases a greater ring of the equatorial scattering ring features appear
to be captured. Such a result supports the hypothesis that scattering features exist in the SAXS
images over a variety of scales and advocates the utility of multi-scale methods in the extraction
of useful information in such cases.

Scale Proportion
1 0.04
2 0.03
3 0.03
4 0.07
5 0.10
6 0.14
7 0.14
8 0.16

Table 9.3: Proportion of adaptive image transform coefficients (across groups, filters and loca-
tions) selected to be modelled using non-parametric probability density function estimates from
scales a = 1, . . . , 8. All proportions are reported to two decimal places.
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Table 9.2.1 reports on the total proportion of all adaptive image transform coefficients across
groups, filter, scales and locations that were selected for non-parametric probability density func-
tion estimation. It is apparent that a large proportion of coefficients can be adequately modelled
using the bivariate Gaussian probability density function. As the scale parameter increases the
greater this proportion becomes which could be a result of a greater presence of equatorial scat-
tering ring features at higher scales, an increase in the support and hence the region that the filter
function analyses as scale increases or a combination of both effects. The total proportion of
adaptive image transform coefficient indices across all groups, filters, scales and locations se-
lected for modelling using non-parametric probability density function estimation was 0.09 (to
two decimal places). Implementation of the XOR model greatly reduced the storage require-
ments of the SAXS image classification model, therefore achieving the objective for which it
was designed.



9.2. SAXS BREAST TISSUE CLASSIFICATION MODEL 271

9.2.2 Bivariate Probability Density Function Estimation
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Figure 9.4: Bivariate Gaussian probability density functions estimated for adaptive image trans-
form coefficients for the Pet hat filter, scale a = 4, location (x, y) = (264, 102) for the normal,
benign and malignant groups. This location is associated with amorphous scatter.

Parametric and non-parametric bivariate probability density functions were estimated for the
coefficients of the adaptive image transform. Bivariate Gaussian probability density functions
were fit to describe a large number of coefficient filter, scale and location indices. For instance,
the Pet hat filter at scale a = 4 and location (x, y) = (264, 102) corresponds to the amorphous
scattering feature in the SAXS images and whose coefficients are fit using a bivariate Gaussian
probability density function for each group. Figures 9.4 displays the bivariate Gaussian proba-
bility density function estimates for these adaptive image transform coefficients (Pet hat filter,
scale a = 4, location (x, y) = (264, 102)) for the normal, benign and malignant groups. All
probability density function estimates are all approximately centred on (x, y) = (0, 0) but differ
in their scale (variance) and orientation (covariance matrices). Inspection of the probability den-
sity function estimates suggests that in some cases adaptive image transform coefficients that are
associated with amorphous scatter are in some instances reasonable at separating tissue groups
and in some cases they are not. Relying on adaptive image transform coefficients associated with
amorphous scatter alone may not produce a reliable classification of tissue group.
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Figure 9.5: Raw histogram of adaptive image transform coefficients zl,a,x,y in the training data
set for the malignant group, the Witch’s Hat filter, scale a = 2, location (x, y) = (256, 145).

The Mexican hat contourlet transform was also used to estimate select probability density
functions non-parametrically. Recall that Section 8.2.4 introduced the Mexican hat contourlet
transform, whilst Section 8.2.5 through to Section 8.2.8 developed methodology to estimate prob-
ability density functions by the modification of coefficient magnitudes. Non-parametric proba-
bility density function estimation using the Mexican hat contourlet transform was performed on
approximately nine percent of adaptive image transform coefficients. The first step in this pro-
cess was to estimate the raw histograms of adaptive image transform coefficient magnitude. An
example raw histogram of adaptive image transform coefficients (for the malignant tissue group,
the Witch’s Hat filter, scale a = 2, location (x, y) = (256, 145)) is displayed in Figure 9.5. Take
note of the three clusters of observations. This scale-location is of particular interest because it
is associated with the location of the third-order meridional scattering ring in the original SAXS
image, a feature studied extensively in previous works such as Round (2006) and Sidhu et al

(2008).
Figure 9.6 displays select coefficient matrices of the corresponding Mexican hat contourlet

transform (scale j = 2, for l2 = 8 directions over all locations) of the raw histogram. Observe the
vast differences in coefficient magnitudes between different directions. For example, compare
the range of coefficient magnitudes in direction matrix l2 = 1 (range of approximately [−1, 1])
with those in direction matrix l2 = 5 (range of approximately [0, 100]). It would appear that
direction matrix l2 = 5 detects important structures in the raw histogram whilst the direction
matrix l2 = 1 appears to detect less structure.
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Figure 9.6: Mexican Hat contourlet transform coefficients (scale j = 2, l2 = 8 directions) of the
raw histogram displayed in Figure 9.5.
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The Mexican hat contourlet transform coefficients of the raw histogram were modified using
the generalised extreme value distribution functions, [P̂ (z, µ̂1, σ̂1, ξ̂1), P̂ (z, µ̂2, σ̂2, ξ̂2, . . . , P̂ (z, µ̂8, σ̂8, ξ̂8))]

that were estimated using the methodology of Section 8.2.8.4. Figures 9.7 display the estimates
of the generalised extreme value distribution functions for scales j = (2, 4, 6).
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Figure 9.7: Generalised extreme value distribution weighting functions
[P̂ (|dhist|, 0.4, 0.5, 0.7), P̂ (|dhist|, 0.2, 0.3, 1.3), P̂ (|dhist|, 0.2, 0.3, 1.5)]. These functions
are used to modify Mexican hat contourlet transform coefficient magnitude (at scales j = 2, 4, 6)
prior to back transformation to yield the probability density function estimate.

All of the generalised extreme value distribution smoothing functions in Figure 9.7 modify
the Mexican hat contourlet transform coefficient magnitudes by setting those below a certain
value to zero and modifying those above this value. The threshold that governs the magnitude
of the coefficients to set to zero is given by the µj parameter in each of the smoothing functions
P̂ (z, µj, σj, ξj). Therefore for scale j = 2 all Mexican hat contourlet transform coefficients
below |dhist| < 0.40 in magnitude are set to zero. Similarly, those below 0.2 for scale j = 4

and 0.2 for scale j = 6 are set to zero. The Mexican hat contourlet transform coefficients above
these magnitudes are modified according to a smooth trend. These smooth trends resemble step
functions that has had its corner smoothed. The greatest amount of coefficient modulation occurs
in the range 0.5 < |dhist| < 20 with approximately 10 to 20 percent reduction in magnitude
being typical.
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Figure 9.8: Probability Density Function Estimates (prior to normalisation) for the adaptive
image transform of SAXS images for the Witch’s Hat filter, scale a = 2, location (x, y) =
(256, 145) in the perspective view. The red dots indicate the location of random samples from
the validation data set.
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Figure 9.8 displays the non-parametric probability density function estimates of the adaptive
image transform coefficients using Witch’s Hat filter at scale a = 2, location (x, y) = (256, 145)

for the normal, benign and malignant groups. These probability density function estimates were
formed by constructing raw histograms of the adaptive image transform coefficients (using the
training data set), taking the Mexican hat contourlet transform of each raw histogram, modifying
the coefficient magnitude using the generalised extreme value function smoothing functions and
then back-transforming. In fact the probability density function estimate for the malignant group
used the raw histogram displayed in Figure 9.5.

Inspection of Figure 9.8 indicates some difference between these probability density func-
tions between groups. A key difference between the probability density function estimates of the
normal and malignant groups appears to be the greater number of modes (the peaks in the density
function) which might indicate sub-populations within the data from the malignant tissue group.
Note the overall difference in shape between the probability density function estimates between
the three different tissue groups. The probability density function of the benign tissue group ap-
pears to be far more diffuse and non-centralised than either of the probability density functions
associated with the normal or malignant tissue groups. The probability density function of the
normal tissue group is centered on [6(zl,a,x,y),+(zl,a,x,y] = (1.4,−0.2) as compared to that of
the malignant group which is centered at [6(zl,a,x,y),+(zl,a,x,y)] = (0.9,−0.6). The red dots
indicate the position of the coefficient magnitudes [6(zl,a,x,y),+(zl,a,x,y)] for a random sample of
data from the validation data set. The coefficient magnitudes all fall within the non-zero regions
of the probability density function estimate that corresponds to their group. This provides us
with confidence that the probability density function estimates are a reasonable representation of
adaptive image transform coefficient magnitude.
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Despite the adaptive image transform coefficients associated with the third-order meridional
scattering ring having a relatively high probability of misclassification, these coefficients still
might convey useful diagnostic information and allow separation of tissue group to some extent.
It must be kept in mind that Figure 9.8 displays probability density function estimates for one
of the many possible filters, scales and locations of the adaptive image transform. Nonetheless
this figure demonstrates the general trend observed when inspecting all of the probability density
function estimates, which is that a certain degree of separation of the normal, benign and malig-
nant tissue groups is possible using each adaptive image transform coefficient independently.
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Figure 9.9: Probability estimates across locations for SAXS images (viewed at scale a = 2) of
normal (N), benign (B) and malignant (M) breast tissue.
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The adaptive image transform was taken of SAXS images from the validation data set, the
real and imaginary components of each coefficient at each filter, scale and location were plugged
into the bivariate probability density function estimates (from the previous step using the training
data) for each group and Bayes” rule applied. For the jth SAXS image in the validation data set
three arrays of probability were produced corresponding to the Pj,norm,Pj,ben and Pj,mal arrays
in Section 8.2.9. Estimates of the posterior probability for each group are displayed for three
SAXS images in Figure 9.9, the scale is fixed at a = 2 and all locations are displayed. The
probability estimates for only one scale are displayed because the Pj,norm,Pj,ben and Pj,mal are
quite large and space does not permit displaying the full arrays for each SAXS image in the
validation data set.

The rows in Figure 9.9 correspond to the SAXS images, so that the symbol ‘N’ in the first
row indicates the sample known to have a normal pathology, the symbol ‘B’ in the second row
the benign pathology and the symbol ‘M’ in the third row the malignant pathology. The columns
correspond to the probability estimates, the first column corresponds to probability of being
normal tissue, the second column the probability of being benign tissue and the third column to
the probability of being malignant tissue. Therefore scanning across the top row of Figure 9.9
reveals the location dependent probabilities for the SAXS image of the normal tissue sample.

It seems very likely that the sample would overall be classified as being normal healthy
due to the large number of coefficients associated with a high probability of being normal. The
scale-location dependent probability estimates have also provided insight into the most promising
regions in the SAXS image for diagnosis. Observe that the greatest probabilities (of belonging
to normal tissue) are in the regions between the third and fifth meridional scattering rings. This
result supports the suspicions that it is the differences in the regions that are not readily visible
to the eye in that are crucial to accurate diagnosis. The adaptive image transform appears to be a
mathematical filter that is capable of detecting such differences.
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The second row of Figure 9.9 is associated with a SAXS image from a benign sample. The
amorphous scatter region again appears important but the specific regions are different from the
normal sample. Also note that a large proportion of the coefficients also return a high probability
of belonging to the benign group. There are some important exceptions, in particular compare
the probability benign estimate with that of probability malignant. The central disk region in
the SAXS image appears to be of importance, coefficients from this region have a very high
probability of being incorrectly assigned to the malignant group. This highlights the problems
associated with extracting a subset of coefficients for diagnosis. Incorrect selection will result in
unnecessary errors in classification.

The bottom row of Figure 9.9 reveals that a great proportion of the adaptive image transform
coefficients have a high probability of being assigned correctly to the malignant group. The
amorphous scatter regions of the SAXS image have highest probability whilst the central disk,
equatorial and meridional scattering rings regions has the lowest. In particular, the first-order
equatorial scattering rings have (in general) a greater probability of belonging to the benign
than the malignant groups. This result again highlights the importance of including all of the
information in the SAXS image, selecting only a few coefficients may produce a model that
correctly classifies one group at the expense of another.
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9.3 Estimating the Overall Posterior Probability of a SAXS
image belonging to each Group

The objective of this section was to estimate the overall posterior probabilities that SAXS im-
ages in an independent test data set belong to either the normal, benign or malignant groups.
To achieve this objective the methodology of Section 8.3 was be implemented. The arrays
Pj,norm,Pj,ben and Pj,mal from the validation data set were averaged according to equation (8.16)
to produce the naive triplet of probabilities [ ˆProbj,norm, ˆProbj,ben, ˆProbj,mal]. The naive proba-
bilities were used to construct the raw histograms [hn( ˆProbnorm), hb( ˆProbben), hm( ˆProbmal)], the
Walsh wavelet packet transform was performed on these raw histograms, the coefficient mag-
nitude modified and the inverse Walsh wavelet packet transform performed to yield the initial
probability density function estimates [p̂( ˆProbnorm), p̂( ˆProbben), p̂( ˆProbmal)]. A separate adjust-

ment SAXS image data set was then used refine these probability density function estimates to
ensure the best classification performance. This refinement process was done according to the
methodology specified in Section 8.3.5. The refined probability density function estimates were
then used to classify the SAXS images in the test data set via Bayes” rule.

9.3.1 Histograms of Naive Probabilities Conditional on True Group

Figures 9.10 displays the histogram estimates of the naive probabilities as well as their corre-
sponding smoothed probability density function estimates. Each of these histograms and proba-
bility density function estimates was estimated using samples that were of known pathology. For
instance, the ‘Prob N’ histogram was constructed using naive probabilities from samples in the
validation set known to be in the normal group. The ‘Prob B’ histogram was constructed from
samples known to be in the benign group and the ‘Prob M’ histogram from samples known to be
in the malignant group.
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These naive estimators of the probability that a sample belongs to each group were inap-
propriate because they were produced by averaging of the probability arrays Pj,norm,Pj,ben and
Pj,mal for the j = 1, . . . , Nval samples in the validation data set. This averaging assumes that the
probability estimates at each filter, scale and location of the adaptive image transform coefficients
are mutually exclusive. This need not be the case and indeed it seems unlikely as neighbouring
adaptive image transform coefficients would be expected to have a certain amount of correlation.
The Walsh wavelet packet transform was used to produce probability density function estimates
(which are displayed on the bottom row of Figure 9.10) by retaining only select crystals and
then back-transforming. A separate adjustment data set was used to calibrate these probability
density function estimates in a way that maximised the correct number of classifications in each
group. Considering all the naive probability estimates within a group and optimising the number
of correct predictions on a separate data set allows for the refinement of the probability estimate
that a sample belongs to a particular group.

Inspection of the probability density function estimates (along the bottom row of Figure 9.10)
reveals that the Walsh wavelet packet method produces estimates that reasonably (visually) match
well with the histograms. There are several spurious lobes such as the one on the interval
[0.0, 0.2] for the ‘Prob N’ probability density function estimate. One possibility is that the initial
naive probability estimates are too crude a starting point in some cases, but even in that scenario
the correction using an adjustment data set ensures that such artifacts are removed and therefore
do not mislead classification. Another possibility is that the lobes are the result of working with
a discrete data set. Walsh wavelet packet analysis functions belonging to a large scale might
have overlapped with only a part of the non-zero count region of the raw histogram of the naive
probability. The Walsh wavelet packet analysis functions would have then over-estimated the
size of the ‘jump’ in the raw histogram counts. The coefficients produced by these analysis func-
tions might have had a larger magnitude than those that would have been produced if there was a
greater amount of data in the sparse regions of the histogram. Subsequent removal of these coef-
ficients (by setting them to zero) using an adjustment data set might have optimised classification
but has also induced oscillations in the resulting probability density function estimate.
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This is because the spurious magnitude coefficients are more ‘significant’ to the analysis than
need be and their removal omits low scale components. These low-frequency components are
needed to cancel out the spurious oscillations of coefficient magnitude in the higher scales and
so their inadvertent removal can result in probability density function estimates with spurious
oscillations. This problem in the Walsh wavelet packet probability density function procedure
can be reduced in many cases by including more data. Despite the presence of ‘lobes’ these
probability density function estimates obtained were found to be sufficient for the application of
breast cancer diagnosis.
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Figure 9.10: Estimation of the univariate probability density functions
[p( ˆProbn), p( ˆProbb), p( ˆProbm)]. First row: histograms of the naive probabilities
[ ˆProbnorm, ˆProbben, ˆProbmal] (denoted Prob N, Prob B and Prob M), second row: uni-
variate probability density function estimates obtained using the Walsh wavelet packet basis and
an adjustment data set.
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9.4 Application of the Model to an Independent Test SAXS
Image Data Set

The methodology described in Chapters 7 and 8 was applied to an independent test data set. The
data is considered independent as the SAXS images involved were produced using tissue from a
separate set of subjects and hence none of these images were used in prior model development.
The adaptive image transform coefficients of the SAXS images in the test data set were found, the
individual filter, scale and location probabilities estimated, the naive probabilities calculated and
then adjusted using the probability density function estimates [p( ˆProbn), p( ˆProbb), p( ˆProbm)].
The probability that a sample (from the test data set) belongs to each group was calculated using
these probability density function estimates at fixed values of ‘Prob N, Prob B, Prob M’. The
sample is assigned to the group with the greatest magnitude of adjusted probability.

Note that the three adjusted probabilities that the sample belongs to each group need not sum
to one. This is perfectly acceptable and the model was designed to produce estimated in this
manner. Tissue samples from test data (those to be analysed in practice) are likely to contain
a mixture of tissue from each group. A tissue sample need not belong to an exclusive tissue
pathology. Each tissue sample is approximately ten milli-metres long and one milli-metre wide, it
is reasonable to expect that different parts of the sample may contain different tissue pathologies.
For instance, a situation that could arise when taking a biopsy that tissue is obtained that contains
normal tissue in the lower five milli-metres and malignant tissue in the upper five milli-metres
of the sample. Imaging with a SAXS camera would average out the signal from these two tissue
components, the adaptive image transform and the related methodology is designed to extract
both components of the signal from the SAXS image but when reporting the overall probability
it would be incorrect to use methodology that assumes that the sample contains exclusively one
pathology or the other. The probability estimation method by design takes this issue into account
and therefore the adjusted probabilities need not sum to one.
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Table 9.4 reports on the result of applying the SAXS image classification model that was
developed in this thesis to an independent test data set. Classification was performed by assigning
the sample to the group with the largest magnitude adjusted probability. The full set of probability
estimates for the samples in this table are reported appendix A. The classification results were
encouraging with only four out of thirty samples (of malignant pathology) being incorrectly
classified as normal. The total accuracy was 86.7 ± 3.3%, with the accuracy conditional that
the samples were truly malignant being 60.0 ±10%. The accuracy of the model in correctly
classifying malignant tissue samples was of concern and was investigated. The four samples
that were incorrectly classified as being of normal pathology had a high proportion of normal
healthy tissue present. This resulted in high levels of overall probability for both normal as
well as malignant tissue. The high proportion of normal tissue in samples labeled as malignant
may explain the reason for these classification errors and if all of the probability estimates are
inspected rather than using hard classification then these borderline cases can be identified.

Table 9.4: Assessment of the SAXS Image Classification Model using an
Independent Test Data Set.

Classification
N B M

True
N 10 0 0
B 0 10 0
M 4 0 6

It must be stressed that ‘hard’ classification, assignment of a sample to a particular pathology
is erroneous in this application. Table 9.4 is a guide to compare classification results of the
model developed in this thesis to those of other researchers. Making informed decisions by
inspecting the probability arrays such as those produced in Section 9.2 and examining all three
of the overall probabilities such as those produced in this section is a sensible approach to the
problem. If a sample has a high overall probability of being normal as well as a high overall
probability (such as in the case of the samples that were incorrectly classified in the test data
set) than a practitioner can inspect these probabilities and make a judgement out the need for the
sample to undergo further scrutiny using other techniques. This approach appears to be a fair and
sensible application of the SAXS image diagnostic model.
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As a final assessment of the model that was developed in this thesis we compared our re-
sults to those of quadratic discriminant analysis models. The coefficients at location (x, y) =

(245, 145) of the Mexican hat wavelet transform were extracted for the thirty SAXS images in
the test data set. Recall that a coefficient at this location is associated with third-order meridional
scattering ring of the SAXS image. Therefore, the quadratic discriminant analysis models that
were fitted could be considered to be a classical analysis that used coefficients detected by visual
inspection from a fixed, off-the-shelf transform. Such models have been the focus of previous
SAXS image analysis models such as those of Falzon et al (2006).

Tables 9.5 and 9.6 display the confusion matrices (assessed by leave-one out cross-validation)
for the quadratic discriminant analysis models fit using Mexican hat wavelet transform coef-
ficients. Table 9.5 displays the results for the coefficients extracted from scale a = 2, lo-
cation (x, y) = (245, 145), whilst Table 9.6 displays the results for scale a = 4, location
(x, y) = (245, 145).

Table 9.5: Classification of SAXS data using the
Mexican Hat Wavelet Transform Coefficients at
Scale a = 2, Location (x, y) = (245, 145).

Classification
N B M

True
N 8 0 2
B 2 6 2
M 5 4 1

Table 9.6: Classification of SAXS data using the
Mexican Hat Wavelet Transform Coefficients at
Scale a = 4, Location (x, y) = (245, 145).

Classification
N B M

True
N 8 0 2
B 3 4 3
M 4 4 2

Inspection of Tables 9.5 and 9.6 reveals that both quadratic discriminant analysis models per-
form poorly. The first classification model (at scale a = 2) has a total accuracy of 50.0 ± 3.3 %,
note in particular that only one sample of malignant pathology is correctly classified. The sec-
ond classification model (at scale a = 4) has a total accuracy of 46.6 ± 3.3 %, with only two
samples of malignant pathology corrected classified. These models perform poorly compared to
the adaptive image transform model developed in this thesis whose results are displayed in Ta-
ble 9.4. The comparison of the results of these models reinforces the success of the methodology
developed in this thesis.
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9.5 Summary & Conclusions to Application of the Model

This chapter has involved the application of the models and methods developed in Chapters 7
and 8 to four SAXS image data sets. Good separation of the data was achieved in a manner
that allowed insight into the actual differences between SAXS images produced by samples of
different tissue pathology. Final model assessment using an independent test data set produced
good results, but also highlighted the need to use all aspects of the model to make an informed
decision regarding the state of the tissue.



Chapter 10

Summary, Conclusions and Future
Directions

10.1 Summary

The central topic of this thesis has been the development of an improved diagnostic model of
breast cancer using small-angle x-ray scattering images. In order to meet this objective a range of
new image analysis and statistical modeling techniques were developed. Specific image analysis
tools created include the adaptive image transform (Section 7.2), the Gamma, Mellin, Chebyshev,
Witch’s Hat and Zeta filter functions (Section 7.3) and a filter function selection algorithm based
upon the probability of misclassification (Section 7.4). The statistical tools devised to model
the adaptive transform coefficients of SAXS images included the XOR density estimation model
(Section 8.2.2), the Mexican hat contourlet transform (Section 8.2.4), non-parametric probability
density function estimation using extreme value theory (Section 8.2.8) and developing methods
to smooth data defined on the interval [0, 1] (Sections 8.3.3 and 8.3.5). These methods were
applied to four SAXS image data sets in Chapter 9 to produce an accurate classifier of breast
cancer.

287
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10.2 Conclusion

Recall that the objectives of this research project were:

a) To unite the capabilities of the adaptive transform in describing digital images and statisti-
cal inference within the framework of a mathematical model.

b) To develop a unified, comprehensive, objective and semi-automated method with which to
analyse SAXS images.

c) To apply both the transform and the associated model to the diagnosis of breast cancer
using SAXS images.

This thesis achieved its objectives:

i) A model was developed that used the coefficients of an adaptive transform of SAXS images
in a statistical model to classify tissue group.

ii) The model is unified, it starts with the original SAXS image and in a series of logical steps
produces three overall probabilities that the sample is one of three pathologies.

iii) The model is comprehensive in that it considers a large amount of SAXS image informa-
tion using a range of filter functions in order to search for any evidence (however) slight
that the sample belongs to a particular tissue group.

iv) The model is objective in the sense that the classification of group is based upon the prob-
ability estimates for which the methodology is explicitly defined. There is subjectivity in
the interpretation of the results, in particular whether a sample needs further assessment
but this is post implementation of the model.

v) The model is almost fully automated, aside from pre-processing the SAXS images just
need to be supplied to produce the probability estimates.

vi) The adaptive image transform and the associated statistical model was applied to SAXS
images of breast tissue.
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A number of desirable outcomes were the result of achieving these objectives:

a) A range of filter functions were developed to analyse SAXS images.

b) An adaptive image transform was developed that allows a variety of filter functions to be
used to analyse the same SAXS image, unlike the discrete wavelet transform which uses a
fixed wavelet analysis function.

c) The XOR model was developed as a method with which to store a large number of prob-
ability density functions in a manner that still retains the statistical properties of salient
image features.

d) The Mexican hat contourlet transform was developed in conjunction with coefficient thresh-
olding using the generalised extreme value distribution functions to estimate bivariate
probability density functions.

e) Coefficient thresholding methodology using the Mexican hat contourlet transform/generalised
extreme value distribution functions can be developed for any type of stochastic process
that can be simulated. It need not be confined to the heteroskedastic noise N (0, σ2

r), σ2
r ∼

U(0, 1) used in this thesis.

f) The Walsh wavelet packet transform can be used to estimate probability density functions
defined on the interval [0, 1] in such a way that optimises classification performance.

g) A general purpose transform and statistical methodology was developed that can be used
in a range of other SAXS image classification scenarios. The methodology of Chapters 7
and 8 just need to be reapplied to the new data set.
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A number of limitations exist in the model that has been developed:

i) Estimation of the probabilities at each filter, scale and location was heavily reliant on the
accurate estimation of the relevant probability density functions for each tissue group.
Poor estimates of the probability density functions could result in poor estimates of the
filter, scale and location probability.

ii) A large number of Shapiro-Wilk tests need to be performed in the XOR model step, de-
spite corrections ‘false discoveries’ can still result leading to the estimation of the proba-
bility density function non-parametrically. This increases the computational burden of the
model.

iii) Estimation of the univariate probability density functions using the Walsh wavelet packet
transform produced ‘lobe’ artifacts.

Despite these limitations the overall results of the classification model when applied to an
independent test data set were encouraging with twenty six out of thirty samples correctly iden-
tified. The ability to visualise the probability of each tissue group across filters, scales and
locations was of great utility. It provided insight and understanding into those regions of the
SAXS image most useful for identifying a particular tissue pathology. Furthermore it produced
evidence that selecting a small subset of transform coefficients for diagnosis can give mislead-
ing results and incorrect classification. The XOR probability density function estimation model
combined allowed for more compact representations of the probability density function estimates
whose storage could have otherwise been prohibitive. Calculation of the probability of error at
each filter, scale and location of the adaptive image transform revealed that the choice of filter
function was critical to extracting the information in the SAXS image indicative of tissue type.
It also revealed that the regions of the coefficient matrices associated with the third and fifth
meridional scattering rings had a higher probability of error than other regions. This was a very
important discovery as previous research such as that of Falzon et al (2006) focused on discrete
wavelet transform coefficients associated with these scattering features.
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10.3 Future Directions

This thesis is applied in nature with the main task being to produce an accurate classifier of
breast tissue pathology using SAXS images. Image analysis and statistical methodology had
to be developed in order to meet the challenges encountered and the results presented in this
thesis present several avenues of further investigation. These avenues can be divided into several
categories: image analysis, statistical and applied physics.

10.3.1 Image Analysis

Further applications of the adaptive image transform to other image data sets might prove useful.
Applications such as the detection of micro-calcifications (which may indicate of breast cancer)
in digital mammograms and the detection of objects in satellite imagery data are some of the
possibilities. In each instance the filter functions can be custom-designed to detect the objects of
interest.

Developing a general class of filter functions to apply to any image is also another possibil-
ity. This general class of functions would be designed to capture all of the image characteristics
in such a way that it would be known that each filter captures a particular characteristic. For
instance, filter function one in the library would be known to analyse the image for spatial fre-
quency, filter function two would be known to analyse the image for transient events such as
edges and so on. Whether such a general class of filter functions exists is (to the best of our
knowledge) unknown and would need to be proved. Furthermore finding such a general class of
filter functions could be challenging in practice.

The Mexican hat contourlet transform could also be applied to the analysis of images. It
might be useful in the removal of image noise. The majority of image noise removal algorithms
(based on the wavelet and contourlet transforms) assumes additive Gaussian noise. That is the
stochastic component of the image model is sampled from aN (0, σ2) distribution. This assump-
tion is too restrictive in practice with a range of other models for the stochastic component being
plausible. The joint Mexican hat contourlet transform/generalised extreme value distribution
coefficient thresholding methodology can be modified to suit the problem at hand, which is an
advantage over current image noise removal procedures.
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10.3.2 Statistics

Non-parametric bivariate probability density function estimation based upon the Mexican hat
contourlet transform deserves a thorough theoretical investigation to fully understand the sta-
tistical properties of the estimate. Comparisons of the efficiency of the estimator with those of
other methods (such as kernels or mixtures of Gaussians) would be of interest and guide us to the
suitability of the technique for general purpose bivariate probability density function estimation.

Creation of a non parametric density estimator that combines a range of basis functions might
also be useful for complicated probability density functions. Such an estimator might be useful
when the density function to be estimated contains both isolated peaks and broad, smooth trends
at certain orientations (smooth curves). A two-dimensional wavelet transform would likely cap-
ture the peaks efficiently but not the smooth curves, whilst the Mexican hat contourlet transform
would capture the smooth curves well but would average out the isolated peaks. A combined
estimator would allow each transform to capture particular features in the probability density
function and thereby offer a more competitive density estimation method.

Methods that allow functional data analysis of arrays of large dimension need to be devel-
oped. Such methods would have allowed us to estimate the overall probabilities that a sample
belongs to each group direct from the probability arrays of filters, scales and locations. Models
developed using the philosophy of functional data analysis might offer an opportunity to over-
come the problem of having many predictors (individual filter, scale and location probabilities)
with relatively few observations (SAXS images). The functional data analysis approach would
negate the need to estimate the naive probabilities, thereby avoiding a loss of (potentially com-
plex) spatial relationships amongst the filter, scale and location probabilities which might provide
superior classification performance. Further exploration and development of statistical methods
to perform functional data analysis on arrays of large dimension could offer further improvement
in SAXS image diagnostic models.

Multiple statistical testing was used in the XOR model in order to determine between a non-
parametric and parametric fit for each coefficient. The problems associated with multiple sta-
tistical testing were reduced by using corrections based upon the false discovery rate technique.
Nonetheless, developing the theory and methods specifically for image analysis applications
where correlations amongst false discoveries are likely is of interest and may yield superior re-
sults.
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10.3.3 Applied Physics

Finally, there are many practical applications of the model in biophysical settings. The model
could be applied to the analysis of SAXS images produced by other cancers or it could be refined
to provide a more detailed breast cancer diagnosis such as predicting the exact pathology or stage
of the disease. Physical scientists could use the results of the filter, scale and location probabili-
ties to develop a deeper understanding of the differences in the structure of normal, benign and
malignant breast tissue. Imaging cancer samples at synchrotron facilities might be a costly and
impractical solution and there may well be a need to extend the model to allow analysis of SAXS
images produced by cheaper and more compact x-ray sources.

The methodology of cancer diagnosis using SAXS imaging is continually being refined and
further model development must be maintained to keep up with and guide future advances. The
SAXS breast cancer diagnosis project has offered challenges to and motivated several advances
in the field of statistical image analysis. At the same time the results of statistical image anal-
ysis have fed back into the physical sciences, allowing greater understanding of complex and
demanding problems. We hope this thesis has served not only to develop a diagnostic algorithm
but also to demonstrate a harmonious union between the physical and statistical sciences.



294 CHAPTER 10. SUMMARY, CONCLUSIONS, FUTURE DIRECTIONS



Appendices

295



296

Appendix A: Probability Estimates of the Test Data Set

Pn Pb Pm

N 0.46 0.25 0.29
N 0.49 0.18 0.33
N 0.43 0.17 0.39
N 0.43 0.29 0.29
N 0.40 0.31 0.29
N 0.46 0.26 0.27
N 0.50 0.25 0.26
N 0.49 0.25 0.26
N 0.49 0.25 0.26
N 0.50 0.25 0.26
B 0.22 0.43 0.26
B 0.27 0.53 0.25
B 0.24 0.48 0.24
B 0.23 0.54 0.22
B 0.32 0.43 0.26
B 0.20 0.43 0.37
B 0.21 0.43 0.37
B 0.21 0.43 0.37
B 0.19 0.42 0.39
B 0.19 0.42 0.39
M 0.47 0.22 0.52
M 0.26 0.22 0.52
M 0.25 0.29 0.46
M 0.21 0.35 0.44
M 0.27 0.30 0.43
M 0.21 0.35 0.44
M 0.45 0.19 0.34 7
M 0.36 0.32 0.32 7
M 0.37 0.27 0.36 7
M 0.40 0.29 0.32 7

Posterior probability estimates of the model on independent test data (rounded to two decimal
places). First column: true class, Second column: Pn probability estimate of sample being
normal healthy tissue, Third column: Pb probability estimate of sample being benign tissue and
fourth column: Pm probability estimate of being sample malignant pathology. The symbol ‘7’
indicates that the sample was incorrectly classified using ‘hard’ group assignment.
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form’. In Combes J-M, Grossmann A & Tchamitchian P (eds) Wavelets: Time-Frequency

Methods and Phase Space, 1989, Inverse Problems and Theoretical Imaging, pages 298-
304, Springer-Verlag, Berlin, Germany.

[132] , Ebashi S, Koch M & Rubenstein E (eds) 1996 Handbook on Synchrotron Radiation,
Elsevier, Academic Press, Amsterdam, The Netherlands.

[133] Efron B & Tibshirani RJ 1993 An Introduction to the Bootstrap, Chapman & Hall, New
York, New York, USA.

[134] Ehrhardt J, Schmidt-Richberg A & Handels H 2008 ‘Simultaneous segmentation and
motion estimation in 4D-CT-data using a variational approach’, Proceedings SPIE,
6914(3):6914-6937.

[135] Einstein AJ, Wu H-S & Gil J 1998 ‘Self-Affinity and lacunarity of chromatin texture in
benign and malignant breast epithelial cell nuclei’, Physical Review Letters, 80:397-400.

[136] Elshemey WM, Elsayed AA & El-Lakkani A 1999 ‘Characteristics of low-angle x-ray
scattering from some biological samples’, Physics in Medicine and Biology, 44: 2907-
2915.

[137] Elshemey WM, Desouky OS, Mohammed MS, Elsayed AA & El-houseini ME 2003
‘Characterization of cirrhosis and heptocellular carcinoma using low-angle x-ray scatter-
ing signatures of serum’, Physics in Medicine and Biology , 48: N239-N246.

[138] Engelberg S 2008 ‘Edge detection using Fourier coefficients’, American Mathematical

Monthly, 115(6):499-513.
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[154] Fernández M, Keyriläinen J, Karjalainen-Lindsberg M-L, Fiedler S, Suortti P 2004 ‘Hu-
man breast tissue characterisation with small-angle x-ray scattering’, Spectroscopy, 18:
167-176
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[375] Poletti ME, Gonçalves OD & Mazzaro I 2002b ‘Coherent and incoherent scattering of
17.44 and 6.93 keV x-ray photons scattered from biological and biological-equivalent
samples: characterisation of tissue’, X-ray Spectrometry, 31(1): 57-61.

[376] Portilla J & Simoncelli EP 2000 ‘A parametric texture model based on joint statistics of
complex wavelet coefficients’, International Journal of Computer Vision, 40(1):49-71.

[377] Portilla J, Strela V, Wainwright MJ & Simoncelli EP 2003 ‘Image denoising using scale
mixtures of gaussians in the wavelet domain’, IEEE Transactions on Image Processing,
12(11): 1338-1351.

[378] Prasad L & Iyengar SS 1997 Wavelet Analysis with Applications to Image Processing,
CRC Press, Boca Raton, Florida, USA.

[379] Pucci-Minafra I, Luparello C, Andriolo M & Basirico L 1993 ‘A new form of tumour
and fetal collagen that binds laminin’, Biochemistry, 32(29):7421-7427.

[380] Rangayyan RM 2005 Biomedical Image Analysis, CRC Press, Boca Raton, Florida,
USA.



330 REFERENCES

[381] Rao CR 1948 The utilization of multiple measurements in problems of biological classi-
fication (with discussion)’, Journal of the Royal Statistical Society Series B, 10:159-203.

[382] Reid C 2006 A Multi-Modality Imaging Study of the Supra-molecular Structural Changes

of Collagen Induced by Breast Cancer, Honours thesis, Department of Physics & Elec-
tronics, University of New England, NSW, Australia.

[383] Rezza FM 1961 An Introduction to Information Theory, McGraw-Hill, New York, New
York, USA.

[384] Rezaee MR, van der Zwert PMJ, Lelieveldt BPF, van der Greest RJ & Reiber JHC 2000
‘A multiresolution image segmentation technique based on pyramidal segmentation and
fuzzy clustering’, IEEE Transactions on Image Processing, 9(7):1238-1248.

[385] Ripley BD 1996 Pattern Recognition and Neural Networks, Cambridge University Press,
New York, New York, USA.

[386] Rogers K, Wilkinson S, Round A, Hall C 2006 ‘Cancer diagnosis using SAXS imaging’,
Powder Diffraction, 21: 169.

[387] Rosales-Silva A, Ponmaryov VI & Gallegos-Funes FJ 2007 ‘Fuzzy vector directional
filters for multichannel image denoising’, Lecture Notes in Computer Science, 4756:124-
133.

[388] Rosenblatt M 1956 ‘Remarks on some nonparametric estimates of a density function’,
The Annals of Mathematical Statistics, 27(3):832-837.

[389] Rossi F & Villa N 2006 ‘Support vector machine for functional data classification’, Neu-

rocomputing, 69(7-9):730-742.

[390] Round AR, Wilkinson SJ, Hall CJ, Rogers KD, Glatter O, Wess T & Ellis IO 2005 ‘A
preliminary study of breast cancer diagnosis using laboratory based small angle x-ray
scattering’, Physics in Medicine and Biology, 50: 4159-4168.

[391] Round AR 2006 ‘Ultra-structural analysis of breast tissue’, Doctoral Thesis, Postgrad-
uate Medical School, Department of Materials and Medical Sciences, Cranfield Univer-
sity, Cranfield, UK.



REFERENCES 331

[392] Royle GJ & Speller RD 1991 ‘Low-angle X-ray scattering for bone analysis’, Physics in

Medicine and Biology, 36: 383-389.

[393] Royle, GJ, Farquharson, M, Speller, R, Kidane, G, 1999 ‘Applications of X-ray diffrac-
tion analysis in crystalline and amorphous body tissues’, Radiation Physics and Chem-

istry, 56: 247-258.

[394] Royston JP 1982 ‘An extension of Shapiro and Wilk’s W test for normality to large sam-
ples’, Journal of the Royal Statistical Society Series C, 31(2):115-124.

[395] Royston P 1992 ‘Approximating the Shapiro-Wilk W-test for non-normality’, Statistics

& Computing, 2(3):117-119.

[396] Ruanaidh O, Dowling JJK & Boland FM 1996 ‘Watermarking digital images for copy-
right protection’, IEEE Proceedings Vision, Image and Signal Processsing, 143(4): 250-
256.

[397] Rudin LI, Osher S & Fatemi E 1992 ‘Nonlinear total variation based noise removal al-
gorithms’, Physica D, 60:259-268.

[398] Rudin LI & Osher S 1994 ‘Total variation based image restoration with free local con-
straints’, Proceedings ICIP-94. IEEE International Conference on Image Processing,
1:31-35.

[399] Rue H & Held L 2005 Gaussian Markov Random Fields: Theory and Applications,
Chapman & Hall/CRC, Boca Raton, Florida, USA.

[400] Rumelhart DE & McClelland JL (eds) 1986 Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition. Volume 1. Foundations, The MIT Press, Cam-
bridge, Massachusetts, USA.

[401] Ruppert D, Wand M & Carroll RJ 2003 Semiparametric Regression, Cambridge Univer-
sity Press, New York, New York, USA.

[402] Russ JC 1992 The Image Processing Handbook, Boca Raton, Florida, USA.

[403] Russo F 1998 ‘Edge detection in noisy images using fuzzy reasoning’, IEEE Instrumen-

tation and Measurement Technology Conference, 1998. IMTC/98 Conference Proceed-

ings, 1:369-372.



332 REFERENCES

[404] Ryan EA & Farquharson MJ 2004 ‘Angular dispersive x-ray scattering from breast tissue
using synchrotron radiation’, Radiation Physics and Chemistry, 71(3-4): 971-972.

[405] Ryan EA & Farquharson MJ 2007 ‘Breast tissue classification using x-ray scattering
measurements and multivariate data analysis’, Physics in Medicine and Biology, 52:
6679-6696.

[406] Samson C, Blanc-Feraud L, Aubert G & Zerubia J 2000 ‘A variational model for im-
age classification and restoration’, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(5):460-472.

[407] Sapiro G 2001 Geometric Partial Differential Equations in Image Analysis, Cambridge
University Press, New York, New York, USA.

[408] Scarff R 1981 Histological Typing of Breast Tumours, (2nd edn), World Health Organi-
sation, Geneva, Switzerland.

[409] Schertzer D & Lovejoy S 1985 ‘Generalised scale invariance in turbulent phenomena’,
Physics & Chemistry in Hydrology Journal, 6(623): 1233-1250.

[410] Schlomka J-P, Schneider SM & Harding GL 2000 ‘Novel concept for coherent scatter
x-ray computed tomography in medical applications’, Proceedings of the SPIE, 4142:
218-224.

[411] Schulte S, Morilla S, Gregori V & Kerre EE 2007 ‘A new fuzzy color correlated impulse
noise reduction method’, IEEE Transactions on Image Processing, 16(10):2565-2575.

[412] Schwartz SC 1967 ‘Estimation of probability density by an orthogonal series’, The An-

nals of Mathematical Statistics, 38(4):1261-1265.

[413] Scott DW 1979 ‘On optimal and data-based histograms’, Biometrika, 66(3):605-610.

[414] Scott DW 1992 Multivariate Density Estimation: Theory, Practice, and Visualization,
John Wiley & Sons, New York, New York, USA.

[415] Serra J 1982 Image Analysis and Mathematical Morphology, Academic Press, London,
United Kingdom.



REFERENCES 333

[416] Shannon CE 1948 ‘A mathematical theory of communication’, The Bell System Technical

Journal, 27(623-656):379-423.

[417] Shannon CE 1949 ‘Communications in the presence of noise’, Proceedings of the the

IRE, 37: 10-21.

[418] Shapiro SS & Wilk MB 1965 ‘An analysis of variance test for normality (complete sam-
ples)’, Biometrika, 52(3-4):591-611.

[419] Sheather SJ & Jones MC 1991 ‘A reliable data-based bandwidth selection method for
kernel density estimation’, Journal of the Royal Statistical Society Series B,53(3):683-
690.

[420] Shen D & Ip HHS 1999 ‘Discriminative wavelet shape descriptors for recognition of 2D
patterns’, Pattern Recognition, 32(2):151-166.

[421] Sheng Y & Shen L 1994 ‘Orthogonal Fourier-Mellin moments for invariant pattern
recognition’, 11(6):1748-1757.

[422] Sherlock BG, Monro DM & Millard K 1994 ‘Fingerprint enhancement by directional
Fourier filtering’, IEEE Proceedings, Vision, Image & Signal Processing, 141(2):87-94.

[423] Sidhu S, Siu KKW, Falzon G, Nazaretian S, Hart SA, Fox JG, Susil BJ & Lewis RA
2008 ‘X-ray scattering for classifying tissue types with breast disease’, Medical Physics,
35(10): 4660-4670.

[424] Silverman BW 1986 Density Estimation for Statistics and Data Analysis, Chapman &
Hall/CRC, New York, New York, USA.

[425] Simoncelli EP & Freeman WT 1995 ‘The steerable pyramid: a flexible architecture for
multi-scale derivative computation’, International Conference on Image Processing, 3:
444-447.

[426] Simoncelli EP 1999 ‘Modeling the joint statistics of images in the wavelet domain’,
Proceedings of the SPIE (44th Annual Meeting), 3813: 188-195.

[427] Simonoff J 1996 Smoothing Methods in Statistics, Springer, New York, New York, USA.



334 REFERENCES

[428] Sinha D, Sinha P, Dougherty ER & Batman S 1997 ‘Design and analysis of fuzzy
morphological algorithms for image processing’, IEEE Transactions on Fuzzy Systems,
5(4):570-584.

[429] Siu KKW, Butler SM, Beveridge T, Gillam JE, Hall CJ, Kaye AH, Lewis RA, Mannan K,
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