
Chapter 4

A Review of Image Processing and Analysis
Techniques

This chapter surveys the range of image processing and analysis techniques that are available
in the literature to study SAXS patterns. These techniques involve the disciplines of physics,
statistics, mathematics and computing science. A great number of such techniques exist and
entire journals (such as the IEEE Transactions on Image Processing) are dedicated to this task.

Only the major, more well-established models and techniques will be reviewed. Section
4.1 relates the ideal physical model of the SAXS pattern to the actual observed digital image
data. Section 4.2 examines the Fourier, scale-space, fractal, random field, Bayes’ian, partial
differential equation models, variational, mathematical morphology and shape analysis methods
of image analysis. The final section, Section 4.3 reviews the available techniques and identifies
useful concepts in the development of diagnostic models of SAXS patterns.
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4.1 The Sampling Theorem & SAXS Patterns

The theory of this section demonstrates that the data is in the form of a digital image rather than
a ‘SAXS pattern’ and that this image can reconstruct the pattern up to a finite resolution. The
term ‘SAXS pattern’ is used in a very general sense in this thesis and in this section the nature of
the data to be analysed is clarified. The data collected is in fact not a SAXS pattern but a digital
image of a SAXS pattern that is projected onto the surface of a detector. A SAXS pattern is a
dynamic electro-magentic field that exists in physical space and time and a detector was used to
capture a representation of this pattern in a digital format. Previous authors such as Butler et al

(2003) and Erickson (2005) have applied image analysis techniques under the assumption that
the data are in the format of a digital image. The implications of this issue must be addressed in
order to better understand the nature of the data that we wish to model.

Recall, in equation ( 2.1) that the SAXS pattern refers to a physical quantity,

I(h) = F!(h)F(h) (4.1)

that is continuous and that exists in a physical 4-dimensional space (3 space, 1 time). We define
a gray-scale digital image as a matrix I(x, y) indexed by location parameters (x, y), 1 ≤ x ≤
Xmax ; 1 ≤ y ≤ Ymax and having an intensity z = I(x, y), z ε R. Digital detectors were used
in the data collection process to capture the physical SAXS pattern as a digital image (Lewis et al

1997a, 1997b). The pattern is recorded using the detector over a period of time, T , to reduce the
impact of detector noise on the final image and to allow sufficient signal to be recorded. During
this interval, the structure of the tissue and hence the form of the SAXS pattern is assumed not
to change form significantly. Henceforth the data (digital image) captured by the detector in
this process will be referred to as the ‘SAXS image’ and the actual electro-magnetic field that
exists in physical space as the ‘SAXS pattern’. The sampling theorem provides insight into the
subtle differences between the ‘SAXS image’ and the ‘SAXS pattern’ and how these differences
influence the subsequent analysis.
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4.1.1 The Sampling Theorem

Shannon (1949) introduced the sampling theorem in the context of information theory, but as
noted by Jerri (1977) significant contributions or alternative theorems were made by Nyquist
(1928), ET Whittaker (1915), JM Whittaker (1929; 1935), Ferrar (1927) and Kotel’nikov (1933).
The sampling theorem

(
for a one-dimensional continuous time signal f(t)

)
states that:

“If a function f(t) contains no frequencies higher than W cps it is completely determined by

giving its ordinates at a series of points spaced (1/2W )s apart” where “cps” stands for counts
per second (Theorem I-A-1, Jerri 1977) and the sampling rate, 2W , is called the Nyquist rate

(page 82, Mix & Olejniczak 2003; Nyquist 1928).
In this thesis, interest lies in a multivariate generalisation of the sampling theorem which

is useful for image analysis. For a function f(t1, t2) of two real variables, (t1, t2) whose two-
dimensional Fourier integral F(y1, y2) exists that is identically zero outside a two-dimensional
rectangle and is symmetrical about the origin, the sampling theorem can be specified as ,

F(y1, y2) = 0, |yk| > |ωk|, k = (1, 2) then,

f(t1, t2) =
∑∞

m1=−∞
∑∞

m2=−∞ f(πm1
ω1

, πm2
ω2

) sin(ω1t1−m1π)
ω1t1−m1π

sin(ω2t2−m2π)
ω2t2−m2π

(4.2)

where |ωk| is 2π times the frequency of the signal (adapted from Theorem IV-A-1, Jerri 1977;
Rezza 1961).

The sampling theorem suggests that the digital SAXS image can be used to reconstruct a
continuous function that describes the SAXS pattern, provided the detector elements are spaced
sufficiently close (in physical space) to adequately sample the pattern. In practice the detector
elements can be placed finitely close together, so the imaging system and hence the reconstruc-
tion has a finite resolution. The sampling theorem applies to band-limited images (a finite range
of spatial frequencies), but in general, SAXS patterns are not band-limited. One solution to this
problem is to interpret the function f(t1, t2) as a perfect representation of the intensity of the
SAXS pattern in the region of physical space that is captured by the detector. This function is
band-limited

(
F(y1, y2) = 0, |y1, y2| > |ω1, ω2|

)
outside a certain range of spatial frequencies.

Therefore the observed SAXS image corresponds to a sampled version of the band-limited func-
tion f(t1, t2) that is a resolution-limited representation of the actual SAXS pattern. Throughout
this thesis, this concept must be kept in the back of the readers mind when the term ‘SAXS
image’ is used. Brillouin (1963) interpreted x-ray diffraction patterns to the periodic physical
structure of the specimen (the electron density distribution, ρ(r)) and the observed image I(x, y)

using the sampling theorem. This interpretation focuses on the determination of the physical
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structure, ρ(r) of the specimen and is not as directly concerned with the statistical analysis of
the data in terms of an image. For this reason the Brillouins’ interpretation of x-ray diffraction
patterns and hence SAXS images in terms of the sampling theorem is not considered in further
depth in this thesis.

4.2 A Survey of Image Models That Are Available for SAXS
Image Analysis

SAXS images of breast tissue structure have been extensively analysed in terms of parameters
that describe a physical model of collagen and have also been analysed using image processing
techniques (Lewis et al 2000; Round 2006; Sidhu et al 2008; Butler et al 2003; Erickson 2005;
Falzon et al 2006). The advent of rapid micro-processors has allowed the regular implementa-
tion of a diverse range of these techniques and a wide variety of approaches are available that
researchers may use to rigorously analyse SAXS images.

Major image analysis techniques include:

a) Fourier analysis

b) Wavelets & scale/space models

c) Fractal analysis

d) Random fields

e) Bayes’ian statistical models

f) Partial differential equation models

g) Variational methods

h) Shape analysis

i) Mathematical morphology

j) Fuzzy analysis
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The focus of this review is to briefly introduce, examine and discuss the benefits and dis-
advantages of each technique as applied to SAXS images. This review is not a comprehensive
examination of every single area of image analysis, nor should it be, it is a guide to those con-
cepts in image processing/analysis (which is not restricted to SAXS images and encompassing
other types of images) that the author has considered in depth in the construction of the SAXS di-
agnostic model. The reader must be aware that the purpose of this section is limited to surveying
and selecting those modeling approaches worthy of further investigation.
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4.2.1 Fourier Analysis

a) b)

Figure 4.1: Pattern recognition of latex spheres in scanning electron microscope images using the
Fourier transform: (a) A reference image R(x, y) that describes the latex spheres (b) successful
identification of latex spheres (marked red) on the surface of a scanning electron microscope
query image Q(x, y) (from Figure 6.67 Russ 1992).

Fourier analysis of a digital image is performed using the discrete Fourier transform:

F (k, l) =
1

N1N2

(N2−1)∑

y=0

(N1−1)∑

x=0

I(x, y) exp
[
− i2π(

ky

N1
+

lx

N2
)
]

(4.3)

for a digital image I(x, y) of size N1 x N2 pixels indexed by location parameters (x, y) where
x = 0, . . . , N1 − 1 and y = 0, . . . , N2 − 1. The discrete Fourier transform F (k, l) is indexed by
parameters (k, l) where k = 0, . . . , N1− 1 and l = 0, . . . , N2− 1 that describe spatial frequency
in cycles/pixel (equation 2.42, page 100, Rangayyan 2005).
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The discrete Fourier transform has been used for a wide range of image processing and anal-
ysis tasks including:

i) Automatic alignment (registration) of pairs of images (DeCastro & Morandi 1987; Chen
et al 1994; Stone et al 2001).

ii) Image filtering (Sherlock et al 1994; Gonzalez & Woods 2007).

iii) Deblurring (deconvolution) and restoration of images (Javidi 1990; Cunningham & An-
thony 1993; Bertero & Boccaci 1998).

iv) Edge detection (Nixon & Aguado 2002; Rangayyan 2005; Engelberg 2008).

v) Fractal dimension measurement (Feder 1988; Vicsek 1989; Family & Vicsek 1991).

vi) Pattern recognition and template matching (Gardenier, McCallum & Bates 1986; Sheng &
Shen 1994; Fonga 1996; Javidi & Horner 1998).

Of these many applications, pattern recognition is of particular interest for the diagnosis
of breast cancer. One method that achieves pattern recognition is performed by comparing a
reference image R(x, y) with a query image Q(x, y) in terms of image correlation:

γR(x,y),Q(x,y)(α, β) =
N2−1∑

y=0

N1−1∑

x=0

R(x, y)Q(x + α, y + β) (4.4)

for shift parameters (α, β) : α ε R, β ε R (adapted from equation 2.72, page 118, Rangayyan
2005). Image correlation can be rapidly calculated in the Fourier domain using the convolution
theorem (equation 2.70, page 118 and equation 2.73, page 118 Rangayyan 2005; equation 10.13,
page 447, Boas 2006).

Russ (1992) describes the application of the cross-correlation technique on scanning elec-
tron microscope images of nucleophore filters with latex spheres. In this example, automated
processing of large numbers of scanning electron microscope images was desired as was the ac-
curate counting of the large number of latex spheres on the filter surface. An average of ten latex
spheres was used to produce the reference image (R(x, y) in equation 4.4) as displayed in Fig-
ure 4.2.1(a) which was correlated with the query scanning electron microscope image Q(x, y)

using Fourier techniques. The cross-correlation technique was able to successfully detect the
presence and location of the latex particles on the surface of the nucleophore filter as seen in
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the results presented in Figure 4.2.1(b). Cross-correlation could also be used to recognise SAXS
images of normal, benign and malignant breast tissue. Reference images must be specified for
each tissue group using a training data set with future (query) images classified according to the
group with the greatest correlation.

Correlation statistic based pattern recognition is limited because it does not provide explicit
probability estimates of the query image belonging to each group. A correlation statistic alone
does not take into account the variability of the sample measurements about a typical value and
there is a need to combine the cross-correlation approach with a statistical model. Furthermore,
a high correlation measurement does not necessarily equate to a query image belonging to a par-
ticular group. Methods based upon cross-correlation consider only the second-order statistical
properties of the intensity values in the image but higher-order relationships might convey im-
portant diagnostic information. Given these limitations a superior technique/model is sought in
this thesis.
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4.2.2 Wavelet Analysis & other scale/space methods

There are two main varieties of wavelet transform, the continuous wavelet transformation and the
discrete wavelet transformation. The continuous wavelet transformation of an image, I(x, y) ε L2(R2)

of finite energy is:

CWT (I(x, y)|ψ(b1,b2,θ,a))(x, y) = C −1/2
ψ < ψb1,b2,θ,a(x, y), I(x, y) > (4.5)

where Cψ is a normalisation constant that is less then infinity, ψb1,b2,θ,a(x, y) is the analysing
wavelet function, b1 and b2 are translation parameters, θ ε [0, 2π) is the rotation angle and a ε R+

is the scale parameter (adapted from equation 3, page 569, Arnéodo, Decoster & Roux 2000).
In contrast, the discrete wavelet transform is defined as,

I(x, y) =

Nj0,2∑

k2=0

Nj0,1∑

k1=0

cj0,k1,j0 ,k2,j0
φj0,k1,j0 ,k2,j0

(x, y)

+
3∑

i=1

J∑

j ≥ j0

N2,j∑

k2,j=0

N1,j∑

k1,j=0

d i
j,k1,j ,k2,j

ψ i
j,k1,j ,k2,j

(x, y) (4.6)

where φj0,k1,j0 ,k2,j0
(x, y) is a low-pass filter known as the scaling function and the functions

ψ i
j,k1,j ,k2,j

(x, y) are high-pass filters known as the wavelet functions. The index, i indicates the
particular type of wavelet function (i = 1: vertical, i = 2: horizontal and i = 3: diagonal),
parameter j denotes scale with parameter j0 indicating the lowest-resolution scale and parameter
J the highest resolution so that j ε (j0, . . . , J) with j ε N. Shifts in the both the scaling and
wavelet functions are described by translation parameters kj = (k1,j, k2,j). The approximation

coefficients cj0,k1,j0 ,k2,j0
=< I(x, y), φj0,k1,j0 ,k2,j0

(x, y) > describe the match between the im-
age and the scaling function and the detail coefficients d i

j,k1,j ,k2,j
=< I(x, y), ψi

j,k1,j ,k2,j
(x, y) >

describe the match between the wavelet functions and the image (adapted from page 157, Vi-
dakovic 1999).

Key components in both transforms are the scale parameters (a and j for the continuous
and discrete wavelet transformations respectively) which allow the examination of the image at
different scales/resolutions and the location parameters ((b1, b2) and kj respectively) that allow
a local examination of the image. The analysis is performed with the wavelet basis function
ψ(x, y), which has the important property of integrating to zero:

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y) dx dy = 0. (4.7)
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Integration to zero implies that wavelet function ψ(x, y) oscillates about a reference axis, hence
the name ‘wavelet’ (adapted from equation 7, page 570 Arnéodo, Decoster & Roux 2000).

Examples of wavelet functions include the isotropic Mexican hat wavelet,

ψ(x, y) = −∇{exp [−1

2
(x2 + y2)]} (4.8)

(equation 3.6, page 99, Antoine et al 2004; Antoine et al 1993) and the directional Morlet
wavelet,

ψ̂(Kx, Ky) =
√

ε exp−1

2
[εK2

x + (Ky −K0)
2] (4.9)

where (Kx, Ky) are the frequency indices, K0 is a reference frequency and ε ≥ 1 is an
anisotropy parameter describing the shape of the wavelet function ψ̂(Kx, Ky) in frequency space
(equation 3.9, page 16, Antoine & Murenzi 1996). Other notable wavelet functions include
the Haar (Haar 1910), the Daubechies compactly supported family of wavelet basis functions
(Daubechies 1992) and the biorthogonal wavelet bases (Cohen, Daubechies & Feauveau 1992)
among many others.

Both the continuous and discrete wavelet transforms have had numerous applications in im-
age processing and analysis, including:

a) compression (DeVore, Jawerth & Lucier 1992; Lewis & Knowles 1992; Antoni et al 1992).

b) deconvolution (Kalifa, Mallat & Rouge 1998; 2003; Stark & Bijaoui 1994; Neelamani,
Choi & Baraniuk 2004).

c) edge detection (Mallat & Hwang 1992; Mallat & Zhang 1992; Zhang & Bao 2002).

d) object recognition (Oren et al 1997; Boles & Boashash 1998).

e) removal of noise (Kingsbury 1999; Michak et al 1999; Chang, Yu & Vertelli 2000; Portilla
et al 2003).

f) watermarking: embedding information in the image (Kundur & Hatzinakos 1998; Rua-
naidh, Dowling & Boland 1996; Dugad, Ratakonda & Ahuja 1998).

The wavelet transform has previously been used by Erickson (2005) and Falzon et al (2006)
to analyse SAXS images of breast tissue. Despite the limitations of these studies (which were
identified in Chapter 3), the wavelet transform allowed the examination of the SAXS images
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across scales and provided accurate identification of tissue pathology. The precedent has been
set by these two studies and the wavelet technique is clearly a versatile approach to the problem.

Multi-scale modeling of the SAXS images matches well with the hierarchical structure of the
collagen that produced the features in these images. The research of Candes & Donoho (2003) re-
vealed that both the continuous and discrete wavelet transforms do not provide the most efficient
representation of images with geometric structures (such as scattering rings in SAXS images).
A parsimonious approach to image transformation that captures the image data with relatively
few coefficients of larger magnitude might be very useful in the estimation of a statistical model
when there is limited data. Better model estimation combined with fewer parameters might be
achieved with second-generation transforms such as curvelets (Starck, Candes & Donoho 2002;
Candes & Donoho 2003; Candes et al 2006), contourlets (Do & Vertelii 2002; 2003; 2006) and
the steerable pyramid (Simoncelli & Freeman 1995; Portilla & Simoncelli 2000) which could
translate into better classification results.
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4.2.3 Fractal Analysis

a) b) c)

d) e) f)

Figure 4.2: Deterministic and Quasi-fractals: The Mandelbrot set, z → z2 + c, z ε C, c ε R is an
example of a deterministic fractal which characteristic shapes that are repeated when zooming
into the centres of the images from (a) low to (b)-(c) increasingly finer scales. The head of
a cauliflower has a quasi-fractal structure and appears self-similar across scales (d)-(f) (from
colour plates 4-6, Branner 1988; Figure 2.1 Peitgen et al 1992).

The term ‘fractal’ is used to describe irregular structure in sets that are not well described
by Euclidean geometry. Mandelbrot (2006) defines a fractal as“a set for which the Hausdorff

Besicovitch dimension strictly exceeds the topological dimension” (page 15, Mandelbrot 2006).
The topological and the Hausdorff Besicovitch dimensions measure different characteristics of
the sets and a detailed treatment of the topic can be found on page 198, Barnsley et al (1993).
Key characteristics of fractals include:

(i) an infinite length

(ii) self-similar behaviour across scales. That is, N the number of points of the set at scale, a,
obeys the power-law, N = ad, d ε R+.

(Mandelbrot 1982).
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A number of fractals or fractal-like objects have been described in the literature or found
in nature. Deterministic fractals are those fractals that are fully specified by a mathematical
relationship and include for instance the Mandelbrot set, z → z2 + c, z ε C, c ε R, whose char-
acteristic shape repeats across scales (Mandelbrot 1982; Branner 1988). The Mandelbrot set is
displayed in a series of successive magnifications in Figure 4.2(a)-(c) over the region centered
on c ≈ −0.124422584 + 0.839099345+. Quasi-fractals are often found in nature such as in the
structure of a cauliflower head. As seen in Figure 4.2(d)-(f) the form of the cauliflower head
appears similar across different scales of magnification. Finally, sets exist that are self-similar in
their statistical properties across scales.

Fractal research has increased substantially since Mandelbrot’s (1982) work and a range of
fractal techniques and concepts exist:

a) fractal analysis of binary images or shapes extracted from the images.

b) analysis of gray-scale images.

c) multi-fractal analysis.

d) lacunarity analysis.

e) fractal analysis that considers the image as a surface.

Each of the above techniques will now be considered in further detail.

4.2.4 Fractal analysis of binary images

Shapes can be extracted as outlines from objects within images or gray-scale images made into
binary images by thresholding (by setting to zero those intensities below a certain magnitude
and setting those remaining to one). The set of non-zero points that remains in the binary image
(or outline) can be analysed using fractal techniques. In practice the Hausdorff-Besicovitch
dimension is replaced by other fractal dimension estimators such as the ‘box-counting’ dimension
(Mandelbrot 1982; Voss 1991). This dimension is defined as,

D = lim
m→∞

{ ln(Nm(A))

ln(2m)

}
(4.10)

for a subset A ε Rn using a Euclidean metric and a covering of Rn of closed square boxes of
side length (1/2n), where Nm(A) is the number of ‘non-empty’ boxes of side length (1/2m)

(Theorem 1.2, page 175, Barnsley 1988; Sullivan & Hunt 1988; Hunt 1990).
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The box-counting technique in action is displayed in Figures 4.3(a)-(d) where a grid of square
boxes is used to calculate the box-counting dimension of an image of a histopathology slide of
a tumour (Cross 1997). The slope of the regression of ln(Nm(A)) againist ln(2m) is used to
estimate D. Hall & Wood (1983) showed that the estimation of D has unacceptably high bias
which is undesirable for those diagnostic applications where differences in the box-counting
dimension are small. The binary fractal image analysis techniques require the thresholding of
a gray-scale image, for the classification of SAXS images this operation results in a loss of
information which is deemed unacceptable.

a)
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where d is the slope of the graph of log {N (!)} against
log 1/!. Such a log–log graph for a colorectal carcinoma
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points lying on a straight line and the gradient of this is
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methodology has been used in several applications in
pathology which are described later.

The perimeter-stepping (divider) dimension has a
similar principle to the box-counting dimension but
instead of boxes of varying sizes, steps of different sizes
are used to measure the boundary length of an object.
This is the method which Mandelbrot used to measure
the fractal dimension of the coastline of Britain.2 It has
been used in some biological studies,11 but it is less easy
to implement since it usually requires the whole object
under consideration to be contained within a single field
of view. The pixel dilation method can be seen as a

variant of the perimeter-stepping method, but it is easier
to implement on image analysis systems.12,13 An import-
ant caution when using computerized image analysis
systems is to avoid the use of processing techniques
such as binary noise reduction, since these will cause
an artefactual reduction in the measured fractal
dimension.15
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sequencing of DNA in many organisms, including
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the identification of functional and ‘non-functional’
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linear letter encoded form, e.g., ACAGCCG, etc.,
are not amenable to visual analysis by unaided
human observers. Many statistical methods have been

Fig. 2—Diagrammatic representation of measuring the box-counting fractal dimension. A digitized image of a tumour (a) is thresholded and
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approaches, or is equal to, the resolution of the image at
the right side of the graph, there is some curvature of the
point distribution and there is scattering of the points at
the largest box sizes on the left side of the graph.
Between the extremes of the range, there is a segment of
points lying on a straight line and the gradient of this is
taken to be the box-counting fractal dimension. This
methodology has been used in several applications in
pathology which are described later.

The perimeter-stepping (divider) dimension has a
similar principle to the box-counting dimension but
instead of boxes of varying sizes, steps of different sizes
are used to measure the boundary length of an object.
This is the method which Mandelbrot used to measure
the fractal dimension of the coastline of Britain.2 It has
been used in some biological studies,11 but it is less easy
to implement since it usually requires the whole object
under consideration to be contained within a single field
of view. The pixel dilation method can be seen as a

variant of the perimeter-stepping method, but it is easier
to implement on image analysis systems.12,13 An import-
ant caution when using computerized image analysis
systems is to avoid the use of processing techniques
such as binary noise reduction, since these will cause
an artefactual reduction in the measured fractal
dimension.15

APPLICATIONS OF FRACTAL GEOMETRY IN
PATHOLOGY

Molecular biology
The concepts of fractal geometry have found several

applications in molecular biology. One of the biggest
problems that has arisen with the advent of total
sequencing of DNA in many organisms, including
Homo sapiens, is the analysis of such data, especially
the identification of functional and ‘non-functional’
sequences and division of the former into introns and
exons. The nucleotide sequences, when presented in a
linear letter encoded form, e.g., ACAGCCG, etc.,
are not amenable to visual analysis by unaided
human observers. Many statistical methods have been

Fig. 2—Diagrammatic representation of measuring the box-counting fractal dimension. A digitized image of a tumour (a) is thresholded and
converted to a single pixel outline (b). Boxes of different side lengths are applied to the outline (c and d) and the number of outline-containing squares
is counted for each different size

3FRACTALS IN PATHOLOGY

! 1997 by John Wiley & Sons, Ltd. J. Pathol. 182: 1–8 (1997)

Figure 4.3: Calculating the box-counting dimension of an image of a histopathology slide: (a)
the binary image of a histopathology slide of a tumour, (b) is converted to a single pixel outline
using edge detection methods, (c) and (d) is partitioned using grids of different box side lengths
(1/2m) and the number of squares containing the outline Nm(A) is counted in each case. The
box-counting dimension is found by the slope of the regression of ln(Nm(A)) againist ln(2m)
for a large number of different box sizes m (Figure 2, Cross 1997).
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4.2.5 Gray scale fractal image analysis

The fractal box-counting technique has been extended to incorporate the analysis of gray-scale
images (Lundahl et al 1985). The intensity is treated as a third-dimension and the object is
analysed as a surface. The surface area A(2m) for a box of side length (1/2m) is calculated as,

A(2m) =
N2∑

y=1

N1∑

x=1

(2m)2 +
N2∑

y=1

N1∑

x=1

(2m)2(|I2m(x, y)− I2m(x, y + 1)|

− |I2m(x, y)− I2m(x + 1, y)|) (4.11)

where I2m(x, y) denotes the analysis of the intensity image with boxes of side length (1/2m)

centered at position (x, y) (equation 8, page 390, Yaffe et al 2000). Regression of ln(A(2m)

against ln(2m) for a range of box sizes, m, allows the estimation of the box-counting dimension,
D of the gray-scale image. This method appears to be far more suitable than the binary fractal
image analysis method for the analysis of SAXS images. Nonetheless, the gray-scale fractal
image analysis methods are themselves limited in that they calculate only one characteristic
dimension when in fact a range of scaling relationships may exist in the image.

4.2.6 Multi-fractal image analysis

The box-counting algorithm makes no provision for the number of points located inside each box
(Theiler 1990). To account for this problem, a weighting algorithm was introduced along with
the generalised dimensions, Dq that describe the scaling of the of the ‘bulk’ of a set (the fractal)
with respect to scale (box size) (Theiler 1990).

The generalised dimensions are defined as,

Dq =
1

q − 1
lim
ε→0

log
∑N

i=1 pq
i

log ε
(4.12)

where pi is the probability for a randomly chosen point on the fractal is in the ball Bi, this proba-
bility is estimated by counting the number of points in the ith box and by dividing by the number
of points in total. The radius of the ball is given by ε > 0 and the moment index is q ε R
(equation 24, page 1060, Theiler 1990).

Plots of Dq against q reveal the nature of the fractal, with those fractals that have a response
that varies with the moment index q referred to as multi-fractals. The generalised dimensions, Dq

of multi-fractals generally decrease with increasing q. The most negative value of Dq correspond
with the least-dense points on the fractal and the most positive values of Dq with the most dense
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a) b)

c) d)

Figure 4.4: Multi-fractal analysis of binary images of the vascular structure of the human retina:
(a) image of a normal healthy retina, (b) image of a retina from a patient with background diabetic
retinopathy (c) the D(q) curve which indicates the multi-fractal structure of these images and (d)
the f(α) curve has a shift to lower values and a decreased range for pathological cases (marked
with a full shade symbol) as compared to normal healthy cases (marked with an open symbol)
(Figures 1,2,4 Stošić & Stošić 2006).

set of points (Theiler 1990). The generalised dimensions capture a range of fractal behaviour, in
particular D0 corresponds to the box-counting dimension (Theiler 1990). Multi-fractal behaviour
has been found in human heart-beat dynamics, foreign stock exchange, turbulent fluids, internet
traffic, cloud, rain and river flow data (Ivanov et al 1999; Ausloos & Ivanova 2002; Sreeni-
vasan 1991; Muzy, Bacry & Arnéodo 1991; Meneveau & Sreenivasan 2006; Tessier, Lovejoy &
Schertzer 1993; Tessier 1993; Lovejoy & Schertzer 1989; Tessier et al 1996).
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The multi-fractal spectrum f(α) can also be derived (Halsey et al 1986). The f(α) curve
describes the spectrum of scaling laws that hold for a fractal set and is a single point for a homo-
geneous fractal (Halsey et al 1986). Let τ = (q−1)Dq, by applying the Legendre transformation
to the variables (q, τ) it is possible to find (α, f(α)) as:

f(α) = min
q

{
qα− τ(q)

}
(4.13)

and,

τ(q) = min
α

{
qα− f(α)

}
(4.14)

(equation 31 & equation 32, page 1061, Theiler 1990). Together the generalised dimensions Dq

and the multi-fractal spectrum f(α) describe the characteristics of a fractal in great detail.
Multi-fractal analysis was applied to binary images of the vascular structure of the human

retinal vessel by Stošić & Stošić (2006). Figures 4.4(a) and (b) display binary images of the
retinal structure for normal and pathological (background diabetic retinopathy) tissue respec-
tively. The Dq curves in Figure 4.4(c) indicate the multi-fractal nature of the images and the
f(α) curves of Figure 4.4(d) indicate considerable differences in the fractal characteristic of
those images belonging to normal healthy samples and those belonging to pathological samples.
The pathological samples produce images that have a f(α) curve that is shifted towards lower
values and have a decreased range as compared to images of normal healthy samples. Image
analysis using multi-fractal techniques appears to be a richer concept than the more standard
box-counting techniques of Sections 4.2.4 and 4.2.5 and might be useful in the analysis of SAXS
images to detect the existence of multiple scaling relationships in the intensity values.
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4.2.7 Analysis of a digital image as a rough surface

Fractal methods developed for the study of surfaces can also be applied to gray-scale images
of the form z = I(x, y). Of particular interest are self-affine fractal surfaces which are those
fractal surfaces that are invariant under affine transformations (Arnéodo et al 2000). An affine
transformation is an anisotropic rescaling of each dimension of the surface,

,x → λx , x, ,y → λy , y, ,z → λz , z, (4.15)

for λx, λy, λz ε R and horizontal distances ,x, ,y and vertical distance ,z (equation 27,
page 572, Arnéodo, Decoster & Roux 2000). Therefore any region of a self-affine surface can
be made to match any other smaller or larger region by anisotropic rescaling. Deterministic
and anisotropic versions of the self-affine fractal exist. In these cases the surface z = I(x, y)

is described by a single-valued self-affine function f(x, y) has the property that for any fixed
reference point (x0, y0 ε R2) all other locations (x, y) ε R2 in the neighbourhood there exists a
parameter H ε R called the Hurst exponent such that for any λ > 0 and α ε R,

f(x0 + λx, y0 + λα
y )− f(x0, y0) - λH [f(x0 + x, y0 + y)− f(x0, y0)] (4.16)

(equation 29, page 572, Arnéodo, Decoster & Roux 2000; Mandelbrot 1982; Feder 1988; Vicsek
1989; Family & Vicsek 1991). The magnitude of the parameter α indicates the spatial properties
of the scale invariance of surface. For instance, α = 1 indicates that the function has isotropic

scale invariance with respect to spatial parameters (x, y), whilst α .= 1 indicates anisotropic

scale invariance (Arnéodo et al 2000; Schertzer & Lovejoy 1985). The Hurst exponent, H ,
characterises the overall global ‘roughness’ of the surface, with higher magnitudes indicating
smoother surfaces with less intensity fluctuations.

The surface fractal technique appears to be useful in the analysis of SAXS images. These
images are gray-scale and can be described as a surface. Increased levels of amorphous scatter
has been reported in SAXS images of malignant breast tissue as compared to normal healthy
tissue (Fernández et al 2002; Round 2006). This increased level of scatter corresponds to an
increased level of random fluctuation in the intensity magnitude in particular regions of the image
(Fernández et al 2002). Self-affine surface fractals might well describe these regions of the SAXS
image and differences in the amorphous scatter levels might be able to be detected using the Hurst
exponent.
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4.2.8 Lacunarity analysis of an image

a)

422 A.G. Manousaki et al. / Computers in Biology and Medicine 36 (2006) 419–427

r. The sum M ∗Q(M, r) produces the mean probability distribution function. The sum of M2 ∗Q(M, r)
produces the variance probability distribution function. Lacunarity ! at scale r is therefore defined by the
mean-square deviation of the fluctuations of mass distribution probability, divided by its square mean.

!(r) =
∑

M M2 ∗ Q(M, r)

[∑M M ∗ Q(M, r)]2 .

For the statistical analysis, descriptive statistics, Kruskal–Wallis and Mann–Whitney tests were run using
SPSS for Windows, package 10.

3. Results

In all studied lesions, pseudoelevation revealed great geographical images: rough crests, canyons and
reefs in cases of melanomas and more unruffled, smooth landscapes in common melanocytic nevi (Figs.
3, 4). Dysplastic nevi with color variegation gave uneven geographical appearance (Fig. 5).

Table 1 shows the mean values and standard deviation of lacunarity and fractal dimension in the three
groups of the studied lesions: melanoma, dysplastic nevi and common melanocytic nevi. Depending on
fractal dimension alone, diagnosis between melanoma and nevi (dysplastic and common melanocytic nevi)
is apparently difficult since they are all surfaces of coarseness sharing almost equal fractal dimensions.

To determine whether or not the values of fractal dimension and lacunarity actually differ between
the three groups we used the Kruskal–Wallis test. As shown in Table 2, melanoma, dysplastic nevi and
common melanocytic nevi differ markedly as regards lacunarity but not as regards fractal dimension. To
examine which of the groups differ in terms of lacunarity, we used the Mann–Whitney test, comparing
melanoma to dysplastic and common melanocytic nevi and dysplastic to common melanocytic nevi
(Tables 3–5). Lacunarity proved to be different between melanoma and dysplastic (p = 0.008) and
common melanocytic nevi (p = 0.000), but not significantly different between dysplastic and common
melanocytic nevi (p = 0.359).

Fig. 3. Superficial spreading melanoma: clinical (a) and three-dimensional pseudoelevated image with superimposed terrain grid
to unmask its malignant characteristics through landscape irregularities (valleys represent areas of tumor regression) (b).
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Fig. 4. Common melanocytic nevus (a) and its unruffled three-dimensional pseudoelevated appearance, preserving the initial
color information (b).

Fig. 5. Dysplastic nevus, histologically confirmed, exhibiting irregularity in pigmentation (a). Three-dimensional image; uneven
landscape pattern (b).

Table 1
Mean values and standard deviation of lacunarity and fractal dimension in the three groups of the studied lesions

Melanoma (n = 23) Melanocytic nevi

Dysplastic (n = 44) Common (n = 65)

Lacunarity
Mean 0.42 0.25 0.19
SD 0.35 0.22 0.14

Fractal dimension
Mean 2.49 2.44 2.46
SD 0.10 0.11 0.07
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landscape pattern (b).

Table 1
Mean values and standard deviation of lacunarity and fractal dimension in the three groups of the studied lesions

Melanoma (n = 23) Melanocytic nevi

Dysplastic (n = 44) Common (n = 65)

Lacunarity
Mean 0.42 0.25 0.19
SD 0.35 0.22 0.14

Fractal dimension
Mean 2.49 2.44 2.46
SD 0.10 0.11 0.07

A.G. Manousaki et al. / Computers in Biology and Medicine 36 (2006) 419–427 423
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color information (b).
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landscape pattern (b).
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Figure 4.5: Surface fractal image analysis of skin cancer: (a) image of a melanoma, (b) three-
dimensional surface of the melanoma obtained from the digital image, (c) image of a dyplastic
nevus (d) three-dimensional surface of the dyplastic nevus obtained from the digital image (Fig-
ures 3 and 5, Manouski et al 2006).

The fractal dimensions characterise only a portion of the information that may be available
in an image. Fractal sets may have the same box-counting dimension, D but have a completely
different visual appearance. The lacunarity measurement is a descriptor that might be capable of
discerning a difference in such situations.

Denote P (n, ε) as the probability density function that n points from a set, ζ are contained
within a z-dimensional sphere of radius ε which is centered on an arbitrary point in ζ (for images
z = 2). The moments (about zero) of this probability density function are,

Mq =
N∑

n=1

nqP (n, ε) (4.17)

(equation 25, page 9 , Voss 1991) and the lacunarity as,

Λ(ε) =
< M2(ε) > − < M(ε) >2

< M(ε) >
(4.18)

(equation 28, page 28, Voss 1991).
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Lacunarity measures the ratio of the variance of the probability density function P (n, ε) to
the mean at scale ε and hence some of the statistical properties of the spatial arrangement of the
fractal. The study of lacunarity with varying scale, ε yields a curve Λ(ε) that conveys detailed
information on the spatial arrangement of the fractal.

The lacunarity curve can be used for pattern recognition tasks such as the case of Einstein,
Wu & Gil (1998) who used it to distinguish between benign and malignant breast epithelial
cells. Lacunarity and surface fractal image analysis was applied to images of melanoma (ma-
lignant) and dyplastic and common melanocytic nevi (pre-cursors of melanoma) by Manouski
et al (2006). Figures 4.5(a) and (b) display the image of a melanoma and the corresponding
digital surface which are far more rugged than those of the dyplastic nevus of Figures 4.5(c)
and (d). Identification of tissue pathology using the surface fractal dimension alone was difficult
(melanoma D = 2.49 ± 0.10 (n = 23), dyplastic nevi D = 2.44 ± 0.11 (n = 44) and common
melanocytic nevi D = 2.46±0.07 (n = 65). In contrast the measurement of lacunarity (at a fixed
scale) provided a greater level of separation of the average value (melanoma Λ = 0.42 ± 0.35,
dyplastic nevi Λ = 0.25 ± 0.22 and common melanocytic nevi Λ = 0.19 ± 0.14) as supported
by Mann-Whitney tests (Tables 1, 3 and 4, Manouski et al 2006).

The lacunarity analysis method can be applied to gray-scale images (such as SAXS images)
and it may reveal useful diagnostic information if any major differences in the spatial arrange-
ment of the images exist. The SAXS images of breast tissue all appear very similar when exam-
ined visually and the differences often only emerge when the intensity magnitudes are examined
in detail (Falzon et al 2006; Sidhu et al 2008). Therefore, it is unlikely that the lacunarity anal-
ysis will be useful in the diagnosis of breast cancer using SAXS images and the method will not
be pursued any further.
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4.2.9 Random field models

Random field models provide a stochastic statistical interpretation of a digital image. In this
review, we will be concerned with two major types of random field models: (i) the Gibbs random
field and (ii) the Markov random field. Both models capture important information about the
structure of the image.

4.2.10 Gibbs random fields

In a Gibbs random field the geometric structure and the magnitude of pixel interactions within a
digital image are specified by a Gibbs probability distribution (Farag et al 2005). In the discrete
form of the Gibbs random field, this probability is described by as a probability mass function of
the form:

p(x) =
1

Z
exp−

E(x)
β (4.19)

for the Gibbs random field (vector) x, an energy function E(x), a normalisation constant Z

known as the partition function and a scalar β > 0 known as the temperature (equation 9.1,
page 482, Farag et al 2005). The energy function is defined in terms of local interactions those
pixels in a clique, c ( which can be a single pixel or a set of pixels that are all neighbours to each
other) and a clique potential Vc(·) which is a function of the random variables (image intensity
for instance) of the members of the clique. The energy function is given by,

E(x) =
∑

i ε C

Vc(x) (4.20)

for the set C of all possible cliques (equation 28, page 366, Fieguth & Zhang 2005) and the
partition function by,

Z =
∑

x

exp[−βE(x)] (4.21)

(equation 29, page 366, Fieguth & Zhang 2005). Evaluation of Z is impractical for many image
processing tasks and parameter estimation is achieved using pseudo-likelihood techniques (Besag
1974).



72 CHAPTER 4. IMAGE ANALYSIS REVIEW

4.2.11 Markov random fields

Markov random fields have the property of decoupling image information into different regions
of the image. The image pixels can be associated with random fields belonging to the interior xI ,
exterior xE and the boundary xB (Fieguth & Zhang 2005). Decoupling the image into different
regions influences the posterior distributions of the random fields such that,

p(xI |xB,xE) = p(xI |xB), p(xE|xB,xI) = p(xE|xB) (4.22)

(equation 10, page 363, Fieguth & Zhang 2005). In practice this boundary is difficult to interpret
and the posterior probability distribution for a single element xi,j (sampled from the field x)
is conditioned on the values of the elements of the field that are contained in a surrounding
neighbourhood (Ni,j). That is, p(xi,j|xk,l, (k, l) ε Ni,j) is considered (equation 11, page 363,
Fieguth & Zhang 2005). A variety of neighbourhood structures can exist that partially specify
the complexity of the Markov random field model (see for instance example 6.12 and Figure 6.4
Davison 2003; or Figure 4, Fieguth & Zhang 2005). The random field can be estimated as a
linear sum of weighted elements wi,j,k,l in the neighbourhood Ni,j ,

x̂i,j =
∑

(k,l) ε Ni,j

wi,j,k,l xk,l (4.23)

(equation 14, page 364, Fieguth & Zhang 2005).
An important practical example of a Markov random field is the Gaussian Markov random

field which is useful when the random field is of high dimension. A Gaussian Markov random
field is a Markov random field whose elements can be described by a multivariate Gaussian
distribution (Rue & Held 2005; Fieguth & Zhang 2005). The linear Markov random field model
can be estimated as a linear sum of weighted elements wi,j,k,l in the neighbourhood Ni,j ,

x̂i,j =
∑

(k,l) ε Ni,j

wi,j,k,l xk,l (4.24)

(equation 14, page 364, Fieguth & Zhang 2005).
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A Markov random field model was developed and applied to digital mammograms of the
breast by Katartzis et al (2005) in order to estimate the thickness of skin. The thickness of
skin is an indicator of breast cancer, with retraction or thickening indicating abnormal changes.
These changes may be evident on mammograms before they can be detected clinically. The
radiographic properties of the skin region were modeled as a Gaussian Markov random field
(Katartzis et al 2005) and incorporated as a priori knowledge in a binary segmentation of the
image into a region of skin and no skin. Figure 4.6(a) displays the original digital image of the
mammogram and Figure 4.6(b) the resulting binary image of the segmentation model where the
dark region corresponds to the skin region. The results of the algorithm are assessed in Fig-
ure 4.6(c) as compared to manual measurement and indicate good overall agreement.

Random fields provide a model with stochastic structure with which to interpret an image.
These models incorporate local information, maximum likelihood of model estimates can be ob-
tained and statistical inference can be performed. Despite these attractive properties, the random
field models reviewed have inherent limitations in the modeling of SAXS images. The SAXS
images contain sharp intensity transitions (scattering rings) and long-range spatial dependencies
(repeated orders of the scattering rings) which may not be well modeled using linear random
field models (such as the Gaussian Markov random field model). Non-linear models based upon
Gaussian mixtures might be more appropriate and a fruitful avenue of research in the modeling
of SAXS images.
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a) b)

c)

Figure 4.6: Mammogram image segmentation using a Gaussian Markov random field model: (a)
original image (b) segmented result, dark regions indicates the region of the image corresponding
to skin (epithelial) tissue and (c) the skin thickness (µm) as a function of angle θ, as measured
from the centre of the image to the edge of the skin for the manual and automatic (random field)
techniques (Figure 8.10, Katartzis et al 2005).
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4.2.12 Bayes’ian statistical models

Figure 4.7: Analysis of white matter fibre tracts in a stack of magnetic resonance images (from
two different viewpoints) using Bayes’ian methods: (a) fibre tracking in the left and right Cingu-
lum bundles of the brain, the red and yellow fiber paths are associated with different initialisation
points in the original image, (b) the model probability estimate evolving along the fiber path for
3000 samples from the splenium of the Corpus callosum of the brain (Figure 8, Frieman et al
2006).

Bayes’ian models permit the use of prior knowledge about a problem and as such their im-
plementation is wide-spread throughout the image analysis literature. Bayes” theorem relates the
posterior probability of an event occurring to both the likelihood of the event occurring (under a
particular statistical model) and the prior probability that the event could occur.
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The theorem is stated in mathematical form as,

p(x|D) =
p(D|x)p(x)

p(D)
(4.25)

where,
p(x|D) is the posterior probability of the parameter x being a certain value having observed the
data D,
p(D|x) is the likelihood, the probability of the data D having the observed magnitude given the
parameter x under a certain statistical model,
p(x) is the prior probability of the parameter before observing any data and,
p(D) is the normalisation constant, the marginal probability of obtaining the data regardless of
other information (equation 6, page 718, Hanson 1993).

The prior information is characterised by a user-specified probability density that is often
obtained from the results of previous experiments or well-tried statistical methods. Common
prior distributions used in image analysis include:

p(x, y) = |∇I(x, y)|2 (4.26)

p(x, y) = |∇2I(x, y)|2 (4.27)

p(x, y) = exp
{
− β

n∑

m=1

ωm

K∑

c=1

φ[∇(m)
c (x, y)]

}
(4.28)

where β > 0 is a smoothing parameter, {ωn} ε R+ are positive weights, φ(·) is a potential
function that is often specified as φ(u) = |u|/(1 + |u|) for a dummy variable, u ε R, ∇ is the
discrete gradient operator, ∇2 the discrete Laplacian operator and, ∇(m)

c the general m-th order
discrete derivative for the gray-level clique, c (equation 26, page 725, Hanson 1993 & equation
2.1, page 303, Horn et al 2003). The choice of the prior model is often tailored to the problem at
hand and the prior models of equations (4.26-4.28) are designed with image edges in mind.

Once a statistical model has been specified, inference is often performed using the MAP
(maximum a posteriori) estimator,

x̂ = arg max p(x|D) (4.29)

(equation 11, page 719, Hanson 1993), which can be interpreted as the maximum likelihood
estimate (under the specified statistical model) weighted by the prior probability p(x).
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Bayes’ian concepts are incorporated into a wide variety of statistical models including pixel-
level descriptions of an image (random fields) to higher-level structured descriptions of an image
(Green 1995; Grenander & Miller 1994; Winkler 1995). Medical applications of Bayes’ian
methods appear in tomography (Hanson & Wecksung 1983; Green 1990; Mumcuoylu, Leahy &
Cherry 1994), radiography (Baydush et al 1997), echocardiography (Papademetris et al 2001),
functional magnetic resonance (Genovese 2000), single photon emission computed tomography
(Lee et al 1995) and ultrasound (Achim, Bezrianos & Tsakalides 2001).

The literature on Bayes’ian methods in image analysis is vast and many applications have
not been mentioned but a study of particular interest is that of Frieman et al (2006) who used
Bayes’ian models to locate and track white matter fibre bundles through stacks of (i = 1, . . . , n)

magnetic resonance images of the human brain (Frieman et al 2006). This research is important
for both surgical planning and the study of white matter degenerative diseases. The white matter
tracts were described by a vector path v = (v1,v2, . . . ,vn), which is a collection of vectors
in which each vector vi describes the position of the white matter fibre in the ith image. The
position of the current vector vi was assumed to depend only on the position of the previous
vector vi−1. The voxel intensity Ii(x, y, z) was assumed to consist of a smooth µi and a stochastic
εi component, so that Ii(x, y, z) = µi+εi. The smoothed component was specified using a model
(Table 1, Frieman et al 2006) related to the underlying physical properties of the tissue,

µi = µ0 exp (−αbi) exp (−βbi(g
T
i v)2) (4.30)

for a discrete gradient direction gi and experimental parameters bi (Table 1, Frieman et al 2006).
A linear model was fit to the log-transformed intensity, z = ln Ii(x, y, z) as,

zi = ln µi + ε!
i ε! ∼ N (0, σ2/µ2

i ) (4.31)

where θ = {µ0, σ2, α, β} are deemed nuisance parameters (page 968, Frieman et al 2006). The
likelihood for the observed data D = [z1, z2, . . . , zn] in a voxel was,

p(D|v, θ) = ΠN
j=1

µj√
2πσ2

exp
{−µ2

j

2σ2

}
(zj − ln µj)

2 (4.32)

(equation 11, page 968, Frieman et al 2006). Probability density functions were used to encode
prior knowledge about the regularity of the fiber path as p(vi|vi−1) and prior knowledge of the
nuisance parameters as p(θ). In this application, these prior functions were modeled as,

p(vi|vi−1) ∝
{

(vT
i vT

i−1)
γ, vT

i vi−1 ≥ 0

0, vT
i vi−1 < 0

(4.33)
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where γ ≥ 0 is a regularisation parameter influencing the smoothness of the path which was set
to γ = 1 (equation 12, page 968, Frieman et al 2006). The nuisance parameters in the model had
a prior that was a product of Dirac impulses,

p(θ) = δ(µ− µ̂0)δ(α− α̂)δ(β − β̂)δ(σ2 − σ̂2) (4.34)

(page 968, Frieman et al 2001). Specialised eigenvalue factorisation and random sampling from
a probability denisty function defined on a unit sphere were used to produce the model estimates
(Frieman et al 2001). Results of the model for fibre tracking of the left and right Cingulum bun-
dle are displayed in Figure 4.7(a), red fibers originate from the same initial point on the image
as do the yellow fiber paths. Figure 4.7(b) displays the probability evolving along different fiber
paths for 3000 fiber samples that were initiated in the splenium of the Corpus callosum. These
results demonstrate how the fibre tracts can be estimated from a sequence of images using the
model of Frieman et al (2006) and is one of many useful applications of Bayes’ian statistical
methods.

Models that incorporate Bayes’ian methods have a wide range of useful applications, espe-
cially when relevant prior information is available. Bayes’ian methods could readily be incorpo-
rated in SAXS image models as prior experimental and computer-generated SAXS images based
on the physical structure of collagen are readily available. The two main challenges that must be
met with Bayes’ian models are the accurate specification of a prior distribution and model esti-
mation. The high-dimensionality (number of pixels) of the SAXS images might make accurate
and efficient model estimation difficult but the value of incorporating prior information into the
diagnostic model makes the Bayes’ian approach worthy of further investigation.
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4.2.13 Partial differential equation models

Partial differential equations play an important role in image processing and analysis. Dynami-
cal, gradient, diffusion and equilibrium types of image processing problems can all be expressed
in the language of partial differential equations (Chan & Shen 2005). Specific image processing
tasks include denoising (Jain & Jain 1978; Chen, Vemuri & Wang 2000; You & Kaveh 2000;
Lysakes & Tai 2003; Weeratunga & Kamath 2003), edge detection (Nordstrom 1990; Catte et al

1992; Perona & Malik 1990; Alvarez, Lions & Morel 1992), image restoration (Tschumperle &
Deriche 2002; Welk et al 2002), segmentation (Pollak, Willsky & Krim 2000; Tsai et al 2001;
Weickert 2001; Sofou & Maragos 2003) and motion tracking (Kornprobst, Deriche & Aubert
1999; Paragios & Deriche 2000; Sapiro 2001; Mansouri 2002).

The diffusion family of equations are prominent for analysing image sequences. The diffu-
sion family of partial differential equations can be specified as,

∂

∂t
I(x, y, t) = ∇ ·

(
D(x, y, t)∇I(x, y, t)

)
(4.35)

where the t th image in the stack, I(x, y, t) = Kσ ∗ I(x, y, 0) is a convolution of the initial
image I(x, y, 0) and the Gaussian kernel Kσ with standard deviation parameter σ =

√
2t. The

diffusivity function D(x, y, t) is used to identify image edges, a standard form of this function
is D(|∇I(x, y, t)|) = 1

(
(1 + |∇I(x, y, t)|2)

)
, where ∇ is the gradient operator and ∇· is the

divergence operator (equations 3 and 4, page 202, Weeratunga & Kamath 2003; Chan & Shen
2005a). The diffusion family of equations is similar to a multi-scale analysis of the image using
Gaussian kernels of different sizes, σ. The diffusivity function D(x, y, t) varies with position in
the image to allow for non-linear effects and permits selective image edge enhancement. Other
prominent partial differential equations that are used in image analysis include the heat and the
Euler-Lagrange equations (Rudin, Osher & Fatemi 1992; Aubert & Vese 1997; Chan & Shen
2005a).

Yezzi Jr & Prince (2003) described an image analysis method based upon the solution of
Eulerian partial differential equations. The method was designed to compute the thickness of a
tissue boundary within a medical image or within a stack of medical images. A unique harmonic
function, u(x) was used to describe a select region, R ⊂ Rn, n = 2, 3 of the image or the image
stack.
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The harmonic function u(x) satisfied the conditions that:

,u(x) = 0 (4.36)

and,

u(∂0R) = 0 u(∂1R) = 1 (4.37)

(equation 1, pages 1334 , Yezzi Jr & Prince 2003). The normalised gradient T(x) was introduced
to perform interpolation in two regions ∂0R and ∂1R. It was defined as,

T(x) =
∇u(x)

||∇u(x)|| (4.38)

(equation 2, page 1334 , Yezzi Jr & Prince 2003). Two arc-length functions, L0(x) and L1(x)

were also defined such that they satisfy two first-order linear partial differential equations,

∇L0 ·T(x) = 1, with L0(∂0R) = 0

− ∇L1 ·T(x) = 1, with L1(∂1R) = 0
(4.39)

(equations 3 and 4, page 1334, Yezzi Jr & Prince 2003). The thickness, W (x) of the tissue region
of the image at point x ε R was then found using these arc-length functions,

W (x) = L0(x) + L1(x) (4.40)

(equation 5, page 1334, Yezzi Jr & Prince 2003).
Applications of this method to magnetic resonance images included measurement of myocar-

dial thickness in the heart, tibial cartilage thickness in the human knee and cortical thickness in
the brain (Yezzi Jr & Prince 2003). The measurement of cortical thickness in the brain using
magnetic resonance images is singled out as an important application of this model because thin-
ning of gray matter in the brain cortex might be associated with Alzheimer’s disease (Fischl &
Dale 2000). Figure 4.8 displays the results of the image model produced by Yezzi Jr & Prince
(2003) when applied to the analysis of magnetic resonance images of the human brain. The
model appears to be able to accurately extract the complex boundaries of the cortical surface of
the brain (as determined by the images) for a variety of projections. The model allows for de-
tailed reconstruction of a complex surface and provides researchers with detailed measurements
of the cortical surface without the need for invasive operation. Overall, this example serves to
demonstrate the capabilities of the partial differential equation approach.
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Partial differential equation image models might be very useful in the extraction of diagnostic
features in SAXS images. Alternatively, they might be very useful to transform SAXS images in
a manner that highlights important aspects of the images such as scattering rings. The diffusion
models that can analyse the image non-linearly across scales might be a useful method to study
any hierarchical structure that exists in the SAXS images. The partial differential equation image
methods and models appear to be most useful in image processing tasks and may require coupling
with another classification model in order to be capable of breast tissue diagnosis. Regardless
of these limitations, the opportunity to incorporate partial differential equation models into the
analysis of SAXS images might provide new modeling opportunities.

Original Thickness Surfaces

Figure 4.8: A partial differential equation image model was used to estimate the thickness of
the cortical surface of the human brain using magnetic resonance images: original slices are
displayed in the left column, the central column displays the gray matter thickness as calculated
using the image model, the color-bar indicates the thickness of the surface in milli-metres, the
upper and central objects in the right most column display the inner and outer three-dimensional
surfaces (respectively) that were calculated for a ‘stack’ of images and the lower object in this
column displays the thickness of the cortical surface as determined from the model (Figure 8,
Yezzi Jr & Prince 2003).
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4.2.14 Variational Methods
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358 S. Esedoglu and J. Shen

Noisy image to be inpainted Inpainting output u Inpainting output z

Figure 2. Inpainting based on the Γ -convergence approximation (2.5) and its associated elliptic
system (2.11). The annular inpainting domain is initially inpainted with a random guess for the
iterative strategy (2.12) or (2.13).

Image to be inpainted Inpainting domain (or mask) Inpainting output

Figure 3. Automatic text erasing by the inpainting model based on the Γ -convergence
approximation (2.5) and (2.11).

This coupled system can be solved easily by any efficient elliptic solver and an iterative

scheme such as the sequential strategy:

Lz(n−1)u(n) = (λD/γ)u
0 and Mu(n)z(n) = 1, (2.12)

and the parallel strategy:

Lz(n−1)u(n) = (λD/γ)u
0 and Mu(n−1)z(n) = 1. (2.13)

Compared with March’s approach for segmentation [34], this scheme is more stable and

converges faster.

We have included in this section two numerical examples based on model (2.5) and

its associated elliptic system (2.11). Figure 2 is a typical example in the inpainting

literature [7, 12], of which the inpainting domain has a complicated topology (e.g. non-

convex and not simply connected). The advantage of the numerical PDE approach,

as compared with the dynamic programming algorithm of Masnou & Morel [37], is its

capability of automatic filling regardless the shape and topology of the inpainting domain.

The second example in Figure 3 shows an application of the inpainting technique for

automatic text erasing.
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Figure 2. Inpainting based on the Γ -convergence approximation (2.5) and its associated elliptic
system (2.11). The annular inpainting domain is initially inpainted with a random guess for the
iterative strategy (2.12) or (2.13).
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Figure 3. Automatic text erasing by the inpainting model based on the Γ -convergence
approximation (2.5) and (2.11).
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scheme such as the sequential strategy:

Lz(n−1)u(n) = (λD/γ)u
0 and Mu(n)z(n) = 1, (2.12)

and the parallel strategy:

Lz(n−1)u(n) = (λD/γ)u
0 and Mu(n−1)z(n) = 1. (2.13)

Compared with March’s approach for segmentation [34], this scheme is more stable and

converges faster.

We have included in this section two numerical examples based on model (2.5) and

its associated elliptic system (2.11). Figure 2 is a typical example in the inpainting

literature [7, 12], of which the inpainting domain has a complicated topology (e.g. non-

convex and not simply connected). The advantage of the numerical PDE approach,

as compared with the dynamic programming algorithm of Masnou & Morel [37], is its

capability of automatic filling regardless the shape and topology of the inpainting domain.

The second example in Figure 3 shows an application of the inpainting technique for

automatic text erasing.
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Figure 2. Inpainting based on the Γ -convergence approximation (2.5) and its associated elliptic
system (2.11). The annular inpainting domain is initially inpainted with a random guess for the
iterative strategy (2.12) or (2.13).
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Figure 3. Automatic text erasing by the inpainting model based on the Γ -convergence
approximation (2.5) and (2.11).

This coupled system can be solved easily by any efficient elliptic solver and an iterative

scheme such as the sequential strategy:

Lz(n−1)u(n) = (λD/γ)u
0 and Mu(n)z(n) = 1, (2.12)

and the parallel strategy:

Lz(n−1)u(n) = (λD/γ)u
0 and Mu(n−1)z(n) = 1. (2.13)

Compared with March’s approach for segmentation [34], this scheme is more stable and

converges faster.

We have included in this section two numerical examples based on model (2.5) and

its associated elliptic system (2.11). Figure 2 is a typical example in the inpainting

literature [7, 12], of which the inpainting domain has a complicated topology (e.g. non-

convex and not simply connected). The advantage of the numerical PDE approach,

as compared with the dynamic programming algorithm of Masnou & Morel [37], is its

capability of automatic filling regardless the shape and topology of the inpainting domain.

The second example in Figure 3 shows an application of the inpainting technique for

automatic text erasing.

Figure 4.9: Variational methods in image inpainting: (a) the original image to be restored consists
of text overlaid on an image (b) the image mask that is to be removed (c) the result of the
application of the modified Mumford-Shah model of Esedoghe & Shen (2002) that estimates
the ‘missing’ information of the image inside the mask using variational methods (Figure 3,
Esedoghe & Shen 2005).

Variational methods minimise functionals (such as a mapping from a vector space to a field)
to solve image processing problems. Minimisation is based on an error functional which mea-
sures the deviations of the model from the observed data. Constraints that minimise of the resid-
uals or a pre-specify the smoothness of the solution allow for it to be found as an optimisation
problem. For instance if the error functional is of the form

ε(f) =

∫

ω

L(f , (fp)xW ,x) dxW (4.41)

where f = [f1, f2, . . . , fn]T is a vector of features with partial derivatives (fp)xW over spatial co-
ordinates x = (x, y) over the image domain ω ε RW (equation 17.8, page 468, Jähne 2005), then
minimisation of the error functional ε(f) provides the solution. The function in the integrand,
L(f , (fp)xW ,x) consists of two terms,

L(f , (fp)xW ,x) = S(f ,x) + R(f , (fp)xW ,x) (4.42)

where S(f ,x) measures the similarity between the observations and the model, and R(f , (fp)xW ,x)

is a regularisation penalty to ensure the constraints on the model are enforced. A commonly used
similarity function is the Ln-norm,

S(f ,x) = ||f(x)− g(x)||n (4.43)

where f(x) is the observed image and g(x) is the model estimate (equation 17.10, page 468,
Jähne 2005).
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Another useful similarity function that is used in restoration problem is:

S(f ,x) = ||h(x) ∗ f(x)− g(x)||n (4.44)

where h(x) is the convolution kernel or point-spread function of the image processing problem
(equation 17.12, page 468, Jähne 2005). The regularisation constraint is often of the form:

R(f , (fp)xW ,x) = α2|∇f |2 (4.45)

where α ε R is a weight or smoothness term (adapted from equation 17.19, page 470, Jähne
2005). The variational problem can now be expressed as,

min

∫

ω

S(f ,x) + R(f , (fp)xW ,x) dWx (4.46)

(equation 17.24, page 471, Jähne 2005).
Variational analysis methods have been used in a large number of image processing prob-

lems. Well-known models include the total-variation and Mumford-Shah free-boundary models
(Rudin, Osher & Fatemi 1992; Mumford & Shah 1989). Applications have included image seg-
mentation (Koepfler, Lopez & Morel 1994; Chambolle 1995; Morel & Solimini 1995; March
& Dozio 1997; Chan, Lom & Zhu 1998; Hewer, Kenny & Manjunath 1998; Blomgren et al

1999; Kimmel & Sochen 1999; Cremers 2002; Cremers et al 2003; Ayed 2006; Bertelli et al

2008), image restoration (Rudin & Osher 1994; Blomgen et al 1997; Teboul et al 1998; Chan,
Marquina & Mulet 2000; Samson et al 2000, Chan & Shen 2001a; 2001b; Brook, Kimmel &
Sochen 2003; Likas & Galatsanos 2004; Daubechies & Terchke 2005; Molina, Mateos & Kat-
saggelos 2006; Fundana, Overgaard & Heyden 2008), removal of noise (Aubert & Vese 1997;
Nikolova 2004), inpainting (Bertalimio et al 2000; Chan & Shen 2001; 2002; Esedoglu & Shan
2002; Perez, Gangnet & Blake 2003; Chan & Shen 2005), registration (Droske & Rumpf 2004;
Larry-Ruiz 2008), image matching (Amit 1994; Dupuis, Grenander & Miller 1998; Hermosillo
& Faugeras 2001; Hermosillo, Ched d’Hotel & Faugeras 2004), medicine (Yezzi, Zollei & Ka-
pur 2003; Faugeras et al 2004; Wang et al 2004; Ehrhardt, Schmidt-Richberg & Handels 2008;
Gooya et al 2008) and remote sensing (Alvarez et al 2008).
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Esedoglu & Shen (2002) applied variational methods to digital image inpainting, a restoration
problem that fills in missing information in the image. The Mumford-Shah model was adapted
to this task with the objective being to minimise an ‘energy’ functional of the form:

L[Î(x, y)|I◦(x, y),D] (4.47)

where Î(x, y) the estimate of the restored images, I◦(x, y) the uncorrupted part of the original
image and D the domain over which the image information is missing (the ‘mask’) (page 355,
Esedoghu & Shen 2005; Mumford & Shah 1989). Image intensity outside the mask is used to
estimate the image intensity inside the mask. The capabilities of this image processing model
are illustrated in Figures 4.9(a)-(c), the original ‘corrupted’ image that consists of a gray scale
image overlaid with text is displayed in Figure 4.9(a), the image mask that conceals key parts of
the image data is displayed in Figure 4.9(b) and the estimate Î(x, y) of the uncorrupted image
obtained using the model of Esedoghu & Shen (2005) in Figure 4.9(c). Visual inspection of the
restoration suggests that impressive results can be obtained using variational methods for image
processing and this warrants more quantitative studies on a wider variety of images.

Variational methods are a very powerful tool for image processing tasks and they might be
very useful in the extraction of features or in the pre-processing of SAXS images. Potential
applications include the removal of detector noise from the images or the enhancement and de-
tection of scattering rings. Alternatively, the images might be able to be segmented into simpler
components such as the ‘scattering’ and ‘background’. Variational methods seem better suited
to feature extraction rather than classification.
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4.2.15 Mathematical Morphology

Figure 4.10: Examples of structuring elements used in morphological analysis of binary images.
The foreground (in black) corresponds to I(x, y) = 1 and the background (in white) corresponds
to I(x, y) = 0 with the circle denoting the origin of the structuring element (Peters II 2008).

Mathematical morphology is concerned with the geometric properties of shapes within im-
ages (Goutsias & Heijmans 2000). Matheron (1975) and Serra (1982) laid the foundations and
popularised the technique which consists of analysing the shapes of objects in the image using
small geometric objects (such as discs and squares) that are known as structuring elements. Ex-
amples of structuring elements used in the analysis of binary images are displayed in Figure 4.10.
The specific structuring element used is often selected for the application at hand and acts as a
moving window filter on the image.

Mathematical morphology was initially applied to binary images, but has since been extended
to gray-scale images. In the analysis of gray scale images both the image and the structuring el-
ement are treated as if they were solids in a three-dimensional space with the third-dimension
describing the intensity of the pixel values. The gray scale mathematical morphology techniques
are of particular interest as they are directly applicable to SAXS images. Gray scale morphology
consists of several basic operations which include erosion, dilation, opening and closing (Serra
1982), each of these operations is displayed in Figure 4.11.

For a finite number of gray levels in the image I(x) and structuring element Z(x), the dilation
operation is defined as,

[I
•
⊕ Z](x) =

∨

s ε dom(Z)

(
I(x− h)

•
+ Z(s)

)
(4.48)
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Figure 4.11: Examples of the basic operations of erosion, dilation, opening and closing on a gray
scale image (Peters II 2008).

and the erosion operator as,

[I
•
2 Z](x) =

∧

s ε dom(Z)

(
I(x + s)

•
− Z(s)

)
(4.49)

where the domain of the structuring element Z(x ≥ 0) is denoted dom(z) with values in Z,
∨
H is the surpremum and

∧
H is the infimum of the subset H of the complete lattice L (a non-

empty set furnished with a partial order relationship ‘≤’, so that every subset H of L has a least
upper bound called the supremum and a greatest lower bound called the infimum and, where the
operation t → t

•
+ v is defined for v ε Z on {0, 1, . . . , N} gray-levels as,






0
•
+ v = 0,

t
•
+ v = 0, if t > 0 and t + v ≤ 0

t
•
+ v = t + v if t > 0 and 0 ≤ t + v ≤ N

t
•
+ v = N if t > 0 and 0 ≤ t + v > N

and the operation t → t
•
− v on {0, 1, . . . , N} for v ε Z as,






t
•
− v = 0, if t < N and t− v ≤ 0,

t
•
− v = t− v, if t < N 0 ≤ t− v ≤ N,

t
•
− v = N, if t < N t− v > N,

N
•
− v = N.

(pages 15-16 Goutsias & Heijmans 2000).
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Opening is an operation that first erodes an image I(x) by the structuring element,
∪
Z(x),

followed by dilation by Z(x) on the result:

[I
•◦ Z](x) = [I

•
2

∪
Z]

•
⊕ Z(s) (4.50)

where the notation
∪
Z is the tranpose of the Z(x) which is a reflection of Z(x) with respect to

the origin, that is the set of points such that −Z(x) ε Z (adapted from eqn II-21, page 50, Serra
1982).

Closing is an operation that first dilates and then erodes the image,

[I
•• Z](x) = [I

•
⊕

∪
Z]2 Z(s) (4.51)

(adapted from eqn II-21, page 50, Serra 1982). The erosion operation appears to contract and
more sharply define the shape of an object in an image, whilst dilation seems to fill-out shapes
in the image. Opening often removes small objects and closing often fills small holes in the
foreground of the image.

Two other important gray scale morphological transforms are the ‘gradient’ and the ‘top-hat’
transform. The gradient transform is defined for digital images with a discrete number of gray
levels as,

grad[I(x)] =
1

2

[
(I

•
⊕ Z)(x)− (I

•
2 Z)(x)

]
(4.52)

(page 30, Heijmans 1995) while the open ‘top-hat’ transform is defined as,

I ◦̂Z(x) = I − (I
•◦ Z)(x) (4.53)

(equation 6.5, page 132, Dougherty & Lotufo 2003). Both transforms are useful in the detection
of image features such as peaks and valleys in image intensity of particular sizes.

Mathematical morphology has a wide range of useful image processing applications includ-
ing edge detection and feature generation. The research of Betal, Roberts & Whitehouse (1997)
is a useful case study of the mathematical morphology technique. Digital mammograms were
assessed using mathematical morphology techniques to detect micro-calcifications, an important
indicator of breast cancer. A region of a digital image of a breast mammogram is displayed in Fig-
ure 4.12(a) which consists of an overall gray scale background texture and white (high intensity)
speckles indicative of micro-calcifications. These micro-calcifications are in general difficult to
detect visually on the mammogram. The morphological gradient (equation 4.52) was applied
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to the image in Figure 4.12(a) to produce Figure 4.12(b). Regions associated with the micro-
calcifications appear to have been identified and the internal structure of the breast is evident.
Further processing using the open top-hat transform (equation 4.53) allowed the identification
of regions of interest that might correspond to micro-calcifications. Additional image process-
ing was then performed using the watershed transform to segment and extract features (Beucher
1994). A classification model with an accuracy of 86 % for the detection of micro-calcifications
was then developed using a nearest-neighbour algorithm (Betal, Roberts & Whitehouse 1996).
This example demonstrates a useful application of mathematical morphology in the medical im-
age processing field.

Figure 4.12: Mathematical morphology for microcalcification detection in digital mammograms:
(a) original region of digital mammogram with micro-calcifications (white) (b) the result of the
morphological gradient operator and (c) the identification of micro-calcifications (red) on the dig-
ital mammogram using the top-hat operator and (d) segmentation using the watershed algorithm
to extract diagnostic features (Figure 1, Betal, Roberts & Whitehouse 1996).

The gray scale mathematical morphology method of image analysis appears to useful for a
number of tasks, especially in the detection of features and edges. The main problem with the
mathematical morphology approach for our applications is that these methods are focused on the
geometric shape of objects within images. SAXS images do have geometric features (such as the
scattering rings) but they may also contain important diagnostic information in the amorphous
scattering intensity (Round 2006). The mathematical morphological operations might ignore this
useful diagnostic information and they also do not directly consider the hierarchical structure of
features in the image.
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4.2.16 Shape Analysis

A wide variety of approaches have been adopted to analyse the shape of objects extracted from
images. In this section, several of the key concepts and techniques in shape analysis are dis-
cussed. The notion of shape refers to that information that remains about an object after all
other information about scale, location and orientation has been removed (Small 1996; Dryden
& Mardia 1998). Methods for analysis include landmark/procrustes analysis (Bookstein 1991;
Small 1996; Dryden & Mardia 1998; Kendall et al 1999; Lele & Richtsmeir 2000), methods
involving mathematical morphology (Jang 1990; Iwanowski & Serra 2000; Tek & Kimia 1998;
Pizer et al 1998), deformable templates (Kass, Witkin & Terzopoulos 1988; Cootes et al 1995;
Jain, Zhong & Lakshmanan 1996; McInerneyy & Terzopoulos 1996; Jain et al 1998), contours
& Fourier descriptors (Morse 1968; Zahn & Roskies 1972; Freeman 1974; Persoon & Fu 1977;
Kuhl & Giardina 1982), and other general descriptors (da Fontoura Costa & Cesar Jr 2001). The
scale-space representation that is provided by wavelets in another interesting approach to the
problem (Antoine et al 1997; Shen & Ip 1999; Li & Li 2000; da Fontoura Costa & Cesar Jr
2001; Davatzikos, Tao & Shen 2003). Two of the most promising techniques for the analysis
of SAXS images (deformable templates and elliptical Fourier descriptors) will be reviewed in
greater depth.

4.2.16.1 Deformable Templates

Deformable templates are active contour models that are useful for segmenting, extracting and
tracking geometrical objects (shapes) in images. These models combine ‘low-level’ information
such as jumps in image pixel intensity with ‘high-level’ prior knowledge of the type of shapes
that one wishes to extract from the images. A popular, special type of deformable template is
that of a snake which is a parametric contour embedded in the image plane. The contour is
represented parametrically as v(s) =

[
x(s), y(s)

]T where s ε [0, 1] and (x, y) ε R2. The shape
of the contour is determined by the functional,

E [v(s)] = S[v(s)] + P [v(s)] (4.54)

(equation 1, page 3, McInerney & Terzopoulos 1988). The term S[v(s)] describes the ‘internal
deformation energy’,

S[v(s)] =

∫ 1

0

{w1(s)|
∂v(s)

∂s
|2 + w2(s)|

∂2v(s)

∂s2
|}ds (4.55)



90 CHAPTER 4. IMAGE ANALYSIS REVIEW

where w1(s) and w2(s) are weights controlling the ‘smoothness’ of the contour (equation 2, page
3, McInerney & Terzopoulos 1988) and,

P [v(s)] =

∫ 1

0

P [v(s)]ds (4.56)

is a external potential energy function driving the fit of the contour to the image data (equation 3,
page 3, McInerney & Terzopoulos 1988). The integrand, P (v[s)] is selected such that the snake
seeks out specific image features. An integrand of the form,

P (x, y) = −C|∇[Gσ ∗ I(x, y)]| (4.57)

is often used to design a snake that seeks out edges in the image where Gσ is a Gaussian kernel
that smooths the image to control the influence of minor edges and C ε R is a constant that con-
trols the magnitude of the potential (page 200, Yezzi Jr et al 1997). Once a contour is selected, the
potential function P (x, y) is put in parametric form, P [v(s)] for use in equation (4.56). Minimi-
sation of the energy functional E [v(s)] via repeated iterations to solutions of the Euler-Lagrange
equation (McInerney & Terzopoulous 1996).
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Yezzi Jr et al (1997) describe the application of a modified snake algorithm to medical image
data. The modified method allowed automated handling of splitting and merging contours. Fig-
ure 4.13(a) displays the results of this algorithm when applied to computed tomography data of
the bone. Two disconnected objects (that correspond to bone) are visible embedded in a tissue
matrix. An initial contour is set (solid line) by the user over the region of interest (as visible
in Figure 4.13(a) ). This contour rapidly splits and converges onto the outlines of the bones
(Figures 4.13(b)-(d)), finally settling on the outlines displayed in Figure 4.13(e). The example
displayed in Figure 4.13 demonstrates the utility of the snake algorithm in the extraction of the
shapes of objects of interest in medical images.

a) b)

c) d) e)

Figure 4.13: Extraction of key contours related to bone structure in a computed tomography
image using a snake algorithm: (a) original image and the initial contour (solid line), (b)-(d)
intermediate iterations of the algorithm, note how the contour is beginning to merge and (e) the
final contour, at the 67 iteration of the algorithm (Figure 6, Yezzi Jr et al 1997).
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4.2.16.2 Shape outline analysis

The analysis of shape outlines consists of detecting the outer (defining) edge of an object in an
image and converting it to a binary image. A parametric representation of the outline [x(t), y(t) :

t ε R] is used to describe the shape of the object.
Kuhl & Giardina (1982) described an elliptical Fourier transform that is useful for the analysis

of such parametric curves. The elliptical Fourier transform basis functions are a set of circles
and ellipses. A set of transform coefficients are used to provide a mathematical description of
the shape of the object outline. The parametric functions x(t) and y(t) are represented using the
elliptical Fourier transform as,

x(t) = A0 +
N∑

n=1

an cos(nt) +
N∑

n=1

bn sin(nt) (4.58)

(equation 2.42, page 39 , Lestrel 1997) and,

y(t) = C0 +
N∑

n=1

cn cos(nt) +
N∑

n=1

dn sin(nt) (4.59)

(equation 2.43, page 39, Lestrel 1997), for each harmonic number, n, out of a total of N har-
monics over the interval [0, 2π). The elliptical Fourier transform coefficients that encode the
description of the outline are given by,

an =
1

n2π

q∑

p=1

,xp

,tp
[cos(ntp)− cos(ntp−1)] (4.60)

bn =
1

n2π

q∑

p=1

,xp

,tp
[sin(ntp)− sin(ntp−1)] (4.61)

cn =
1

n2π

q∑

p=1

,yp

,tp
[cos(ntp)− cos(ntp−1)] (4.62)

dn =
1

n2π

q∑

p=1

,yp

,tp
[sin(ntp)− sin(ntp−1)] (4.63)

where the shape is represented by a series of straight-line segments from points tp to tp+1 over
the period 2π such that,tp = [,x2

p +,y2
p]

1
2 and q is the total number of points on the polygon

(equations 2.44-2.47, page 39, Lestrel 1997).
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The constant terms are given by,

A0 =
1

2π

q∑

p=1

,xp

2,tp
[t2p − t2p−1] + αp[tp − tp−1] (4.64)

C0 =
1

2π

q∑

p=1

,yp

2,tp
[t2p − t2p−1] + βp[tp − tp−1] (4.65)

(equations 2.50 and 2.51, page 40, Lestrel 1997) with,

αp =
p−1∑

j=1

,xn −
[,xp

,tp

p−1∑

j=1

,tj
]

(4.66)

and,

βp =
p−1∑

j=1

,yj −
[,yp

,tp

p−1∑

j=1

,tj
]

(4.67)

with α1 = β1 = 0 (equations 2.50 and 2.51, page 40, Lestrel 1997).
Bailey & Lynch (2005) applied the elliptical Fourier transform to discriminate between im-

ages of teeth from Neanderthals and anatomically modern humans. The elliptical Fourier trans-
form with N = 32 harmonics, was used to quantify observed shape differences (extracted from
outlines of images of the teeth) in the mandibular P4 tooth for 136 samples. The mandibular
P4 tooth is particularly useful for fossil identification of hominids and may in some cases be the
only feature available for classification. Figure 4.14 identifies the regions of the P4 tooth that
appear to be different between Neanderthals and anatomically modern humans.
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Key characteristics that might distinguish a Neanderthal tooth (from anatomically modern
humans) are:

a) a strong transverse crest

b) a well-developed and mesially placed metaconid

c) an asymmetrical lingual contour.

Figure 4.14: Differences between images of the (A: left) Neanderthal P4 and (B: right) the P4 of
the anatomically modern human. Characteristics indicative of a Neanderthal specimen include a.
a strong transverse crest (hatched area on the Neanderthal P4), b. a well-developed metaconid,
c. an asymmetrical lingual contour. Symbols B indicates buccal, L - lingual, M- mesial and D -
distal directions (Figure 1, Bailey & Lynch 2005).

Principal component analysis was applied to the data set of elliptical Fourier coefficients
that described the P4 molar shape. The first two principal components described 64.1 % of the
variation in the data set and a plot of the eigenvalues of the first two principal components (as in
Figure 4.15) resulted in some separation between Neanderthal and other groups of anatomically
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modern humans. The negative region of the first principal component corresponded to highly
irregular P4 outlines and the positive region with smooth P4 outlines. The anatomically modern
humans had a much greater variability in shape. Discriminant analysis on the 32 harmonics of the
elliptical Fourier coefficients was also used to produce a discriminant vector that approximately
separated the samples from the Neanderthal and anatomically modern human groups. Analysis
of variance indicated that the Neanderthals had P4 teeth different from anatomically modern
humans in:

i) the symmetry of the crown of the tooth and,

ii) the relative size of the lingual crown.

The model based upon the shape of the P4 molar provided correct identification for 65.0 %

of the Neanderthal samples and 98.1 % of the anatomically modern human samples (Bailey &
Lynch 2005). This study suggests that the shape of the P4 molar might be one of several useful
features that can be used to identify hominids and provides an example of how outline shape
features can be successfully incorporated into a classification model using the elliptical Fourier
transform.

4.2.16.3 Conclusion of Shape Analysis Techniques

Both the deformable template and outline shape analysis models have the potential to be very
useful in the analysis of SAXS images. Deformable templates could be used to extract the shape
objects (such as scattering rings) and the elliptical Fourier techniques could be used to analyse
these extracts. The scattering rings in the SAXS images convey shape information which is
related to the underlying collagen distribution and structure of the sample. Inclusion of this
shape information might be an important diagnostic feature in a classification model of tissue
group. A limitation of shape analysis as applied to SAXS images is that this method extracts
only a certain type of information from the images.
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Figure 4.15: Principal component analysis of the elliptical Fourier coefficients that describe the
shape of the P4 molar of Neanderthals and anatomically modern humans. The data is plotted
on the first two components (PC1) and (PC2) for the Neanderthal and a variety of anatomically
modern human subgroups. The first component appears to describe outline irregularity and is
able to separate the Neanderthal from the anatomically modern human (AMH) samples (Figure
2, Bailey & Lynch 2005).
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4.2.17 Fuzzy Analysis

Fuzzy image analysis can be loosely described as those image processing and analysis techniques
that rely on fuzzy set theory as a key component. Developed by Zadeh (1965), fuzzy set theory
is a mapping of data (for instance wavelet coefficient magnitude) from a set X onto the unit
interval. This mapping is expressed mathematically as γ : X → [0, 1] (from definition 1.7, page
17, Höppner et al 1999). The value that the mapping γ indicates how much an observation x can
be considered to be in the set X . A mapping value of γx ≈ 0 indicates that the observation has
a low amount of membership to the set and a value of γx ≈ 1 indicates that the observation has
a high amount of membership to the set.

An image analysis example that motivates fuzzy techniques is displayed in Figure 4.16. Some
images analysis problems desire the partitioning of the regions into distinct objects in a process
that is known as segmentation. Figure 4.16 displays a pair of overlapping circles superimposed
on a uniform background. The ‘dark’ region belongs to the background, the ‘light’ region to the
intersection of the two circles and the ’gray’ region to those regions outside the intersection of
the circles but still within their union. A challenge that must be addressed in the segmentation
problem is the assignment of each pixel in the image to a particular object or class label. In
this case unique assignment of each pixel to a particular object is not desirable. Those pixels
within the intersection of belong to both circles with equal weight. The fuzzy interpretation of
this problem is that the pixels within the intersection can be described by a membership vector
of M = [γb, γc1, γc2] = [0, 0.5, 0.5] where γb denotes the membership of an image pixel to the
set ‘background’, γc1 to the set ‘circle 1’ and γc2 to set ‘circle2’. This example motivates the use
of fuzzy set theory as a possible solution in image segmentation problems when the boundaries
of objects within the image are not clearly defined.
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Figure 4.16: An image analysis problem where fuzzy sets might be useful. Two circles are super-
imposed on a dark background, it is desired to segment the image and thereby detect those pixels
belonging to each circle. Those pixels within the intersection of the two circles can be thought
of as equally belonging to both circles, making the assignment of each pixel exclusively to one
circle or the other or the background a troublesome task.

As suggested by the above example, fuzzy image analysis has been widely applied to image
segmentation problems including the work of Huntsherger, Jacobs & Cannon (1985), Trivedi &
Bezdek (1986), Lim & Lee (1989), Nguyen & Cohen (1993), Lin, Cheng & Mao (1996), Udupa
& Samarsekara (1996), Moghaddamzadeh & Bourbakis (1997), Liew, Leung & Lau (2000),
Rezaee et al (2000), Ahmed et al (2002), Hall et al (1992), Leung, Wang & Lau (2004) and Pet-
rosino & Salvi (2006). Other prominent image analysis/processing applications include pattern
recognition (Pedrycz 1990; Pal 1992; Jahns, Nielsen & Paul 2001; Bezdek et al 2005; Binaghi
et al 2007), removal of image noise (Huang & Wang 1995; Mansfield et al 1998; DeVille et

al 2003; Rosales-Silva et al 2007; Morillas et al 2007; Schulte et al 2007; Tang, Wang & Qi
2007; Zhang & Zhang 2007; Nair & Wilscy 2008), image enhancement and event detection
(Goetcherian 1980; Pal & King 1980; Gong 1993; Tao, Thompson & Tour 1993; Kuo, Lee &
Liu 1997; Russo 1998; Tizhoosh 2002; Liang & Looney 2003; Wu, Yin & Xiang 2007), math-
ematical morphology (Sinha et al 1997; Strauss & Comby 2005; Bloch, Martino & Petrosino
2006; Mansoor et al 2007). A major application has been in the analysis of medical images
(Bezdek et al 1997; Udupa et al 1997; Park, Hoffman & Sonka 1998; John, Innocent & Barnes
2000; Mansfield et al 1998; Pavlopoulos et al 2000; Suri 2001; Guliato et al 2003; Hassanien,
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a) b) c)

Figure 4.17: Segmentation of thoracic magnetic resonance images using fuzzy surface templates:
(a) axial (b) sagittal and (c) coronal projections. Red dots indicate tissue regions between the
lungs and thoracic outer wall whilst yellow dots regions associated with the left lung as identified
by the algorithm (adapted from Figure 5.6, Lelieveldt et al 2000).

Ali & Nobuhara 2004). Reference works that discuss image analysis using fuzzy techniques in-
clude Kandel (1982), Pal & Dutta-Majumder (1986), Bezdek & Pal (1992), Ghosh & Pal (1992),
Klir & Yuan (1995), Chi, Yan & Pham (1996), Höpner et al (1999); Pal & Mitra (1999), Kerre
& Nachtegael (2000) and, Nachtegael et al (2003).

Lelieveldt et al (2000) describe the segmentation of thoracic magnetic resonance images us-
ing fuzzy implicit surfaces. Three-dimensional templates of relevant anatomical structures (such
as the heart and lungs) were modeled as surfaces of the form, f(x, y, z), which were used to
describe the appearance of the structure as it would appear when projected into a magnetic res-
onance image. A ‘crisp’ surface would have a boundary of the form of f(x, y, z) = c for a
constant c ε R with values less than this constant being inside the boundary and those greater
than this constant being outside the boundary. In contrast, a surface with a ‘fuzzy’ boundary
is less well defined with all points in R3 having membership to each of the three sets, ‘inside
boundary’, ‘on boundary’, ‘outside boundary’. The result is a surface that is modeled as a grad-
ual (rather than sharp) transition from object to background. Multiple organs were modeled as
three-dimensional fuzzy surfaces with respect to their expected position in the image and an al-
gorithm developed that allowed automated, accurate (within 6mm on average) identification of
the boundary surfaces of the heart and lungs in the images. Figures 4.17(a)-(c) display the results
of the automated detection of the boundary surfaces of the lungs in a variety of magnetic reso-
nance images. Yellow dots indicate regions associated with the left lung and red dots indicate
those tissues between the lungs and the thoracic outer wall. Identification of the vessel bound-
aries within acceptable accuracy (approximately 6mm) was reported for an average of 90 % of
the contour length of the boundary.
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The fuzzy image analysis techniques might have useful applications in the analysis of SAXS
images. One possible application is to transform the intensity values in the image into a fuzzy
set. Membership could be encoded in terms of ‘not edge’ and ‘edge’ or in terms of ‘high inten-
sity’, ‘medium intensity’ and ‘low intensity’ that might provide a different insight into the data
but it is necessary to verify that important diagnostic information is not lost in the transformation
process. Another approach could include a fuzzy classification with each image being assigned
membership to each of the three groups ‘normal’, ‘benign’ and ‘malignant’. The observed image
can then be said to be more like ‘normal’ or more like ‘malignant’ depending on these member-
ship values. Instead of distinct classifications into tissue groups, the images are assigned to a
continuous ‘spectrum’ of states.

The concept of a sample belonging to multiple states or groups simultaneously could be very
useful in SAXS image diagnosis. A sample may well contain both normal, benign and malig-
nant tissue. Classification models that would account for this characteristic would be beneficial.
Diagnostic models could be built that incorporate the concept that an observation can belong to
multiple groups but that still allow for probability estimates to be developed that allow accurate
detection of an abnormality. For instance a tissue sample could contain a 50-50 mixture of nor-
mal and malignant tissue, traditional fuzzy analysis would provide high membership values of
the sample for both the normal and malignant groups. In contrast, the diagnostic model could
be fined tuned for such cases such that it produces a high probability of malignancy even when
other tissue is present and a high probability of being normal only when normal breast tissue is
present in the sample.
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4.3 Summary & Conclusions to the Image Analysis Review

The interpretation of the data as a digital SAXS image was discussed in Section 4.1 and a wide
range of image processing and analysis techniques were reviewed in Section 4.2. This review
serves as a guide to some of the major image processing and analysis techniques that are avail-
able to study SAXS images. It is by no means comprehensive in comparison to the vast literature
that exists on the topic but it is sufficient enough to obtain ideas on how to model SAXS images.

Selection of a ‘best’ technique is a difficult and subjective task that inherently depends on the
application at hand. The majority of image processing and analysis techniques reviewed in this
chapter could certainly be incorporated as part of a diagnostic model of SAXS images. Fourier
analysis techniques might be useful because they allow back-transformation to recover the orig-
inal image, match well with the theory of SAXS image formation and capture spatial frequency
information. Wavelets and the scale-space approach matches very well with the hierarchical
structure of the collagen that generated the images, allows directional filtering to separate the
meridional and equatorial scattering rings and have already produced good results when used by
Erickson (2005) and Falzon et al (2006). The concept of a fractal surface might be useful in the
description of the amorphous scatter in the SAXS images that was of interest to both Fernández
et al (2002) and Round (2006). Random fields might also provide an alternative model to de-
scribe this background scatter. Prior information (from previous SAXS experiments) is available
and could be incorporated using Bayes’ian techniques. Both partial-differential equations and
variational methods could be used to pre-process SAXS images to provide one of several com-
ponents of a SAXS diagnostic model. This would have to be done in a way that ensures that
key diagnostic information is not lost. Mathematical morphology operations such as the top-hat
transform (equation 4.53) could also be used in such a manner to detect scattering rings in the
images. The shapes of the scattering rings could also be extracted as one of several components
of a diagnostic model but again they may have to be included as additional model component to
the intensity values of the SAXS image. The concepts of fuzzy set theory could be useful for
future demands of the classification model such as the diagnosis of malignancy grade or when a
sample belongs to multiple categories simultaneously. For instance, a future role of the SAXS
diagnostic model might be to provide the exact pathological type of the tumour, not just clas-
sification of whether it is benign or malignant. This could be very challenging as some breast
tumour pathologies such as Phyllodes tumor, can be both benign, malignant or somewhere in
between (borderline) (Scarff 1981). Models using fuzzy set theory might be well-suited to such
problems.
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Given the inherent hierarchical nature of the structure (collagen) that produced the images,
it seems sensible to analyse the SAXS image using image filters such as wavelets. A flexible
custom-designed image transform that incorporates a range of analysis functions seems to be
the key to extract and separate different information on tissue structure. As such, the transform
approach will be given emphasis in this thesis and serve as a initial starting point for model
development. The other desirable qualities possessed by the other image processing and analysis
techniques will also be incorporated into the model where possible.



Chapter 5

Frequency and Time-Frequency Image
Transforms

Chapter 4 reviewed the wide range of image processing and analysis tools that are available to the
researcher in the study of SAXS images. The Fourier and wavelet transforms were identified as
being of particular interest because of their ability to study the image in terms of either spatial fre-
quency or scale-space features. A wide range of frequency and time-frequency image transforms
have been reported in the literature that merit further consideration. This chapter will briefly
survey and describe a range of Fourier, wavelet and related transforms. Section 5.1 will review
the continuous, discrete and windowed Fourier transforms in greater detail, Section 5.2 examines
the integral, discrete and stationary wavelet transforms. More advanced, custom-designed image
transforms such as the wavelet packet, steerable pyramid, curvelet and contourlet transforms are
described in Section 5.3. Adaptive multi-scale image transformations that describe the image
using a library of waveforms are reviewed in Section 5.5. The best orthogonal basis, matching
pursuit and basis pursuit methods are all discussed in this section. The chapter ends with a brief
summary and a review which emphasises the broad, diverse and extensive range of transforms
available to the researcher.
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5.1 The Fourier Transform Family

The Fourier transform is useful to analyse the spatial frequency content of the image. The dis-
crete Fourier transform (discussed in Section 4.2.1) is one of several transforms in the Fourier
transform family that are available for image analysis. Other alternatives include the windowed
Fourier and the discrete cosine transforms. All three transforms are useful tools in different set-
tings. Section 5.1.1 reviews the discrete Fourier transform, Section 5.1.2 the windowed Fourier
transform and Section 5.1.3 the discrete Cosine transform.

5.1.1 The Discrete Fourier Transform

Recall equation (4.3) defines the discrete Fourier transform of a digital image I(x, y) of size N1

x N2 pixels that is indexed by location parameters (x, y) as,

F (k, l) =
1

N1N2

(N2−1)∑

y=0

(N1−1)∑

x=0

I(x, y) exp
[
− i2π(

ky

N1
+

lx

N2
)
]

(5.1)

for frequency parameters (k, l) where k = 0, . . . , N1 − 1 and l = 0, . . . , N2 − 1 (equation 2.42,
page 100, Rangayyan 2005). The discrete Fourier transform F (k, l) is in fact a sampled version
of the continuous Fourier transform F(ω1, ω2) which is defined as,

F(ω1, ω2) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y) exp[−i2π(ω1x + ω2y)]dx dy (5.2)

when f(x, y) ε L2(R) is a continuous function (adapted from equation 2.32, page 47, Jähne
2005). This continuous function is the ‘ideal’ representation of a digital image that has infi-
nite resolution. The frequency index (k, l) used in the discrete Fourier transform is a subset
of those frequencies ωωω = (ω1, ω2) described by the continuous Fourier transform. The dis-
crete Fourier transform is nonetheless sufficient to describe the discrete sampled intensity val-
ues of a gray-scale image in terms of spatial frequency (cycles/pixel). As the rate of sampling
increases, the discrete Fourier transform of an image more closely resembles the continuous
Fourier transform of that same image. Both versions of the Fourier transform analyse the image
in a global context, that is the support (range of non zero values) of the sinusoidal basis functions
{exp

[
− i2π( ky

N1
+ lx

N2
)
]
} is over the entire image. Therefore, the value of the discrete Fourier

transform coefficients, F (k, l) depends on the values of the image f(x, y) over the entire pixel
grid N1 x N2. This characterises the global nature of Fourier analysis, in that it is possible to
measure the spatial frequency content of the image but it is difficult to determine the locations of
where these frequencies occur in the image.
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5.1.2 The Windowed Fourier Transform

The windowed Fourier transform analyses an image in terms of both spatial location and spatial
frequency. It provides insight into not only the spatial frequency content of the image but also
the locations where these frequencies occur. The transform uses Gabor functions of the form,

gµµµ,εεε(x, y) = g(x− µ1, y − µ2) exp
[
i(ε1x + ε2y)

]
(5.3)

and,

Gµµµ,εεε(ωωω) = G(ω1 − ε1, ω2 − ε2) exp
{
− i[µ1(ω1 − ε1) + µ2(ω2 − ε2)]

}
(5.4)

where µµµ = (µ1, µ2) ε R2, εεε = (ε1, ε2) ε R2, ωωω = (ω1, ω2) ε R2 (adapted from equation 1.5,
page3, Mallat 1998). The windowed Fourier transform correlates the continuous image function
f(x, y) with the Gabor function gµµµ,εεε(x, y). The transform is defined as,

SF(µµµ, εεε) =< f(x, y), gµµµ,εεε(x, y) >=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)gµµµ,εεε(x, y) dx dy (5.5)

(adapted from equation 1.7, page 4, Mallat 1999). Approximations of this transform can be
readily obtained for discrete data (such as digital images) by convolution with discrete versions
of the filter gµµµ,εεε(x, y). The energy of gµµµ,εεε(x, y) is concentrated over the neighbourhood of µµµ

over an interval of size σσσµµµ = (σx, σy). In the spatial frequency domain the function Gµµµ,εεε(ωωω)

is localised over the frequency region εεε of size σσσωωω = (σω1 , σω2). The Heisenberg uncertainty
principal limits the precision of simultaneous measurements in space and frequency which means
that the product of σσσµµµ and σσσωωω has a finite value greater than zero (page 104, Prasad & Iyengar
1997). The Gabor function corresponds to the case when gµµµ,εεε(x, y) is a Gaussian, it allows
maximum resolution in both space and frequency. The windowed Fourier transform provides a
powerful alternative to the discrete Fourier transform when the spatial and frequency aspects of
the image need to be examined simultaneously.
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5.1.3 The Discrete Cosine Transform

The discrete cosine transform is an alternative to the discrete Fourier transform. A key difference
between these two transforms is that the coefficients of the discrete cosine transform are all
real-valued. There are at least eight versions of the discrete cosine transform reported in the
literature, all of which project the image onto various forms of cosine basis functions. Strang
(1999) discusses these various forms in detail. In this section the version of the transform that is
often presented in image processing textbooks is examined. The type II discrete cosine transform
(as labeled by Strang (1999)) is defined as,

FC(k, l) =
2√

N1N2

C(k, l)
N1−1∑

x=0

N2−1∑

y=0

I(x, y) cos
[πk(2x + 1)

2N1

]
cos

[πl(2y + 1)

2N2

]
(5.6)

for a digital image I(x, y) of size N1 x N2 and discrete frequency indices k = 0, 1, . . . , N1 − 1

and l = 0, 1, . . . , N2 − 1 where the filter coefficients C(k, l) are defined as,

C(k, l) =

{
1√
2

for k = 0 or l = 0

1 otherwise
(5.7)

(adapted from page 71, Acharya & Ray 2005). The inverse transform allows recovery of the
original image,

I(x, y) =
2

√
N1N2

∑N1−1
k=0

∑N2−1
l=0 C(k, l)F (k, l) cos

[πk(2x+1)
2N1

]
cos

[πl(2y+1)
2N2

] (5.8)

for x = 0, 1, . . . , N1 − 1 and y = 0, 1, . . . , N2 − 1 (adapted from page 71, Acharya & Ray
2005). The cosine basis functions are orthogonal and are separable, that is the basis functions
can be formed as a product of one-dimensional functions. Therefore, the type II discrete co-
sine transform can be performed by applying a one-dimensional transform along the rows of the
image followed by another one-dimensional transform along the columns. The discrete cosine
transform is well-known for its energy compaction properties and corresponding sparse repre-
sentation, that is the transform has few large magnitude coefficients. This property has lead to
applications in image compression such as the joint photographics experts group (JPEG) image
format that is widely used in digital media (Nixon & Aguado 2002). The discrete cosine trans-
form is shift-variant, which means that the transform of the translated image is not equivalent to
a translation of the same size of transform of the original image (Acharya & Ray 2005).
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5.2 The Wavelet Transform Family

The wavelet family of transforms describe a variety of approaches to the analysis of an image
over space and scale. The integral wavelet transform, which is introduced in Section 5.2.1 is a
redundant scale-space representation of an image that can be calculated using convolution of a
wavelet basis function and the image. In contrast, the discrete wavelet transform that is described
in Section 5.2.2 uses a combination of scaling and wavelet functions to describe the image. Sec-
tion 5.2.3 describes a translation-invariant but redundant version of the discrete wavelet transform
that is known as the stationary wavelet transform. It is useful in those pattern recognition tasks
where shifts of the patterns can occur. The wavelet packet transform is discussed in Section 5.2.4.
It is a generalisation of the discrete wavelet transform that uses a greater combination of image
filters which makes it more versatile in some image analysis applications.

5.2.1 The Integral Wavelet Transform

The integral wavelet transform is defined as,

Wψ[f(x, y)](a,b, θ) = C
− 1

2
ψ < ψa,b,θ(x, y), f(x, y) >

= C
− 1

2
ψ a−1

∫ ∞

−∞

∫ ∞

−∞
f(x, y)ψ!

(
a−1r−θ(x− b1, y − b2)

)
dx dy

(5.9)

where C
− 1

2
ψ is a constant, ψa,b,θ(x, y) ε L2(R2, dx dy) is a wavelet function such that ψa,b,θ(x, y) =

a−1ψ[a−1r−θ

(
x− b1, y− b2)], a ε R+ is a scale parameter, b = (b1, b2), b1, b2 ε R are translation

parameters and θ ε [0, 2π) is a rotation parameter (adapted from equations 1 and 13, page 569,
Arnéodo, Decoster & Roux 2000). The symbol rθ(x, y) denotes the rotation operation,

rθ(x, y) =
[
x cos(θ)− y sin(θ), x sin(θ) + y cos(θ)

]
(5.10)

(equation 2, page 569, Arnéodo, Decoster & Roux 2000) and f(x, y) ε L2(R2, dx dy) if
||f(x, y)||2 =

∫∞
−∞

∫∞
−∞ |f(x, y)|2dx dy < ∞ (equation 2.1, page 32, Antoine et al 2004). The

Fourier domain representation of the transform is,

Wψ[f(x, y)](a,b, θ) = C
− 1

2
ψ < Ψa,b,θ(ω1, ω2), f(ω1, ω2) >

= C
− 1

2
ψ a−1

∫ ∞

−∞

∫ ∞

−∞
exp

[
i(ω1b1 + ω2b2)

]
Ψ!(ar−θ ω1, ar−θ ω2)f(ω1, ω2) dω1 dω2

(5.11)
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where f(ω1, ω2) is the Fourier transform of the image f(x, y), Ψ(ω1, ω2) is the Fourier transform
of the wavelet function ψ(x, y) and ωωω = (ω1, ω2) are the spatial frequency indices for the x and
y directions of the image respectively (equation 5, page 569, Arnéodo et al (2000)). The original
image f(x, y) can be recovered from the transform using the following relation,

f(x, y) = C
− 1

2
ψ

∫ ∞

0

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
a−3Wψ[f(x, y)](a,b, θ)ψa,b,θ(x, y) db1 db2 dθ da

(5.12)

(equation 8, page 570, Arnéodo, Decoster & Roux 2000). Which holds as long as,

Cψ = (2π)2

∫ ∞

−∞

∫ ∞

−∞

|Ψ(ω1, ω2)|2

(ω1)2 + (ω2)2
dω1 dω2 < ∞ (5.13)

(equation 6, page 569, Arnéodo, Decoster & Roux 2000). Equation (5.13) is known as the ad-

missibility condition, this condition puts a requirement on the type of wavelet functions that are
acceptable for recovery of the original image from the integral wavelet transform. The admissi-
bility condition implies that the wavelet function oscillates around zero,

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y) dx dy = 0 (5.14)

(equation 7, page 570, Arnéodo, Decoster & Roux 2000). The integral wavelet transform is
a redundant representation of an image as it uses four parameters (a, b1, b2, θ) to describe an
image that is a function of only two parameters (x, y). Nonetheless it provides insight into the
structure of the image over a continuum of scales. The choice of analysis function ψa,b,θ(x, y) in
the integral wavelet transform is very flexible and options include the Mexican Hat, Morlet and
Poisson wavelet functions (Vidakovic 1999). The ability to reconstruct the original image from
the transform means that the integral wavelet transform preserves the image information.
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5.2.2 The Separable Discrete Wavelet Transform

The integral wavelet transform can be made into a discrete version by critical sampling of the
scale and translation parameters. The sampling is such that any coarser sampling would not allow
the original image to be recovered from the coefficients (page 50, Vidakovic 1999). Critical
sampling of the scale (a) and translation parameters (b1, b2) is specified by,

a = 2j, b1 = k 2j, b2 = k 2j, j, k ε Z (5.15)

(adapted from equation 3.6, page 50, Vidakovic 1999). The discrete wavelet transform was used
by both Erickson (2005) and Falzon et al (2006) to analyse SAXS images of breast tissue. Recall
from equation (3.2) the two-dimensional separable discrete wavelet transform is defined for a
square digital image, I(x, y) ε 22(R), for a total of J resolution bands as,

I(x, y) =

nj0∑

k1=1

nj0∑

k2=1

cj0,k1,k2φj0,k1,k2(x, y) +
3∑

l=1

J∑

j≥ j0

nj∑

k1=1

nj∑

k2=1

dl
j,k1,k2

ψl
j,k1,k2

(x, y) (5.16)

which is indexed by scale parameter j = 1, 2, . . . , J , a direction index l = 1, 2, 3 which corre-
sponds to the vertical, horizontal and diagonal directions and the location parameters k = (k1, k2)

(page 157 Vidakovic 1999). The notation 22(R) denotes the space of square-summable sequences
which is the discrete counter-part to the space L2(R). Data x belongs to the space of square-
summable sequences when the following holds, x = {xn} ε 22(R) if

∑
n ε Z |xn|2 < ∞ (page

25 Vidakovic 1999).The separable discrete wavelet transform produces a set of coefficient ma-
trices

{
CJ,k1,k2 ,D

1
j,k1,k2

,D2
j,k1,k2

,D3
j,k1,k2

}
. The coefficients CJ,k1,k2 describe an approximation

to the image found by projecting the image onto the scaling basis functions φj0,k1,k2(x, y) and
the coefficients Dl

j,k1,k2
that describe progressive image detail in a certain direction (as indexed

by parameter l) with increasing scale, j. These coefficients are found by projecting the image
onto the wavelet basis functions ψl

j,k1,k2
(x, y). According to the critical sampling requirements

the size of the coefficient arrays increase by a power of two for each increase in scale. A wide
variety of wavelet bases may be used in the separable discrete wavelet transform including the
Daubechies compactly supported, Coiflet and biorthogonal bases (Daubechies 1992; Daubechies
1993; Cohen, Daubechies & Feauveau 1992). Selection of the most appropriate wavelet basis
can be tailored to the task at hand. Orthogonal wavelet basis functions are readily available and
are useful in many statistical applications because they remove repetition of image information
in the transform coefficients.
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The discrete wavelet transform and its inverse (which is used to obtain the original image
from the transform coefficients) are found in practice by applying a series of discrete filter banks
that represent the scaling and wavelet functions. The decomposition filter bank that is used to
convert the image data into coefficients is given by,

Cj+1,k1,k2 =
M∑

m=0

N∑

n=0

hm−2k1,n−2k2 ·Cj,k1,k2 (5.17)

Dl
j+1,k1,k2

=
M∑

m=0

N∑

n=0

g(l)
m−2k1,n−2k2

·Cl
j,k1,k2

(5.18)

and the reconstruction filter bank that is used to recover the image from the coefficients is given
by,

Cj,k1,k2 =

nj∑

k1=1

nj∑

k2=1

hm−2k1,n−2k2 ·Cj+1,k1,k2

+
∑

l ε 1,2,3

nj∑

k1=1

nj∑

k2=1

g(l)
m−2k1,n−2k2

·Dl
j,k1,k2

(5.19)

for image bank filters hm−2k1,n−2k2 and g(l)
m−2k1,n−2k2

corresponding to the discrete digital repre-
sentations of the scaling and wavelet functions respectively (adapted from page 158 Vidakovic
1999). The use of filter banks allows rapid calculation of the transform and the ability to recover
the original image from the transform coefficients preserves the image information in the same
sense as the integral wavelet transform.
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5.2.3 The Stationary Wavelet Transform

The separable discrete wavelet transform lacks translation invariance, that is the wavelet trans-
form of a translated image is not equal to a translated version of the transform of the original
imageDWT [I(x−t1, y−t2)](a, b1, b2) .= DWT [I(x, y)](a, b1−t1, b2−t2) for t1, t2 ε R, where
the notation DWT represents the two-dimensional separable discrete wavelet transform. Lack
of translation invariance of a transform can be a problem in image recognition tasks. Shifts in the
position of a feature within an image can result in substantial differences in magnitude between
the coefficients of the original and the translated images. The stationary wavelet transformation
overcomes the lack of translation invariance in the separable discrete wavelet transform by omit-
ting the sampling operations of equation (5.15) (Dutilleux 1989). This improvement comes at
the cost of increasing the redundancy of the transform. Each scale j of the stationary wavelet
transform of an image will contain as many coefficients as there are pixels in the original image.

5.2.4 The Wavelet Packet Transform

The wavelet packet transform produces an orthogonal basis from linear combinations of the
wavelet functions that are used in the separable discrete wavelet transform. This produces a more
diverse representation of the image over scale and space which might assist in the identification
of particular image features such as rings or lines. The wavelet packet transform is defined by a
collection of packet functions, Wj,n,k1,k2(x, y) that obey the following relationship,

Wj,n,k1,k2(x, y) = 2
j
2Wn(2jx− k1, 2

jy − k2) (5.20)

for scale parameter j = 0, 1, . . . , J − 1, location parameters k1 and k2 ε Z and index parameter
n ε N (equation 5.13, page 135, Vidakovic 1999). The packet functions Wj,n,k1,k2(x, y) are
defined recursively according to the following equations,

W2n(x, y) =
Nh∑

i=0

hk

√
2Wn(2x− k1, 2y − k2) (5.21)

W2n+1(x, y) =

Ng∑

i=0

gk

√
2Wn(2x− k1, 2y − k2) (5.22)

where W0(x, y) = φ0(x, y) , W1(x, y) = ψ0(x, y), the weights hi and gi are coefficients of
the quadrature mirror filters (h and g) that are used in the two-dimensional separable discrete
wavelet transform. The number of coefficients in these filters is determined by using |h| = Nh
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and |g| = Ng (adapted from pages 56 and 133 and equation 5.12, page 135 Vidakovic 1999).
An orthonormal basis of L2(R2) can be found from the family of wavelet packet functions
and a variety of different combinations of parameters are available for the user to select that
produces different image representations. Image analysis in a non-orthonormal basis is also
possible by projecting the image I(x, y) onto each of a collection of wavelet packet functions
Wj,n,k1,k2(x, y) by using the inner product in order to obtain a set of transform coefficients
Dj,n,k1,k2 =< I(x, y),Wj,n,k1,k2 >. The wavelet packet transform offers a flexible alternative
to the separable discrete wavelet transform. It is used as a component in the best orthogonal
basis algorithm which is an adaptive image transform which is discussed in Section 5.4.1.
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5.3 Second generation Wavelet-like Transforms

A range of second-generation scale-space image transformations also exist that provide alter-
natives to the integral, discrete and stationary wavelet transforms. Prominent examples include
the steerable pyramid, curvelet and contourlet transforms. All of these transformations are char-
acterised by analysis functions that vary across position, scale and direction/orientation. These
image transforms will be the subject of this section. The steerable pyramid transform is exam-
ined in Section 5.3.1, the curvelet transform in Section 5.3.2 and finally the contourlet transform
in Section 5.3.3.

5.3.1 The Steerable Pyramid Transform

The steerable pyramid transform is a multi-scale, multi-directional representation of an image. It
is formed by a set of filters that are rotated copies of each other and have the property that a filter
at any orientation can be computed as a linear combination of filters at other orientations. These
filters are defined in Fourier space for the ith orientation out of I direction bands as,

Bi(ωωω, θ) = A(θ − θi)B(ω!) (5.23)

for the frequency indices ωωω = (ω1, ω2) and ω! = |ωωω| which are defined for parameters − π <

ω1, ω2 < π and with the orientation specified by using the parameter θ = tan−1(ω2
ω1

) relative
the reference orientation θi = 2π/i (page 445, Simoncelli & Freeman 1995). Because the fil-
ter Bi(ωωω, θ) is separable into a radial B(ω!) and angular A(θ − θi) component, it is sufficient
to describe this two-dimensional function in terms of one-dimensional functions. The angular
component, Ai(θ) = A(θ − θi) of the filter is given by,

Ai(θ) =





αI

[
cos(θ − πi

I )

]I−1

|θ − πi
I | < π

2

0 , otherwise
(5.24)

where,

αI = 2i−1 (I − 1)!√
I[2(I − 1)]!

. (5.25)
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Whilst the radial component of the filter, B(ω!) is given by,

B(ω!) =






cos

[
π
2 log2(

2ω"

π )

]
π
4 < ω! < π

2

0 ω! ≤ π
4

1 ω! ≥ π
2 .

(5.26)

(page 55, Portilla & Simoncelli 2000).

The transform is defined using a recursive algorithm that involves three types of filters, a
low-pass filter Lj−1(ωωω, θ) = Lj−1(ω1)Lj−1(ω2), a high pass filter H0(ωωω) = H0(ω1)H0(ω2) and
bandpass filters B(ω!). The lowpass filter, Lj−1(ωi) at scale j is defined as,

Lj−1(ωi) =






2 cos

[
π
2 log2(

2ωi
π )

]
π
4 < ωi < π

2

2 ωi < π
4

0 ωi ≥ π
2 .

(5.27)

for (i = 1, 2), (j = 2, . . . , J + 1) (page 55, Portilla & Simoncelli 2000). At scale j = 1, we
specifically set L0(ωωω) = L1(ωωω/2) in order to define the initial low-pass filter of the transform.
Similarly we define the high-pass filters H0(ω1) and H0(ω2) as H0(ω1) = H0(ω2) = B(ω!/2).

The low-pass filter, L0(ωωω) produces a smooth approximation to the original image, whilst
subsequent applications of the bandpass filter, Bi(ωωω, θ) extract increasingly finer details from the
image. The response of filters L0(ω1), H0(ω1) and B(ω!) are displayed as a function of ω1 in
Figures 5.3.1(a)-(c) and the response of filter A2(θ) is displayed in Figure 5.3.1(d) as a function
of θ.
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a) Low-pass Filter L0(|ω1|) b) High-pass Filter H0(|ω1|)
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c) Band-pass Filter B(ω!) d) Direction Filter A2(θ)
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Figure 5.1: Filters used in the Steerable Pyramid Transform: (a) the low-pass filter L0(|ω1|)
attenuates all of those frequencies greater than |ω1| ≈ 1 and omits those frequencies |ω1| > 1.6,
(b) the high-pass filter H0(|ω1|) removes the frequencies |ω1| < 0.75, applies negative weights
to those frequencies 0.75 ≤ |ω1| ≤ 1.6 and leaves unchanged those frequencies |ω1| > 1.6, (c)
the band-pass filter B(ω!) removes those frequencies ω! < 0.75, enhances those frequencies in
the range 0.75 ≤ ω! ≤ 1.6 and leaves unchanged those frequencies ω! > 1.6, (d) the direction
filter A2(θ) enhances data in the directions 0 ≤ θ < 1.0 radians, attenuates data in the directions
in the directions 1 ≤ θ ≤ 2 radians and down-weights data in the directions 2 < θ < 3.
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The algorithm to implement the steerable pyramid transform can be described as follows:

a) Apply the filters L0(−ωωω) and H0(−ωωω) to the image I(x, y).

b) Retain the coefficient matrix D0 which is obtained by filtering the image I(x, y) with the
high-pass filter H0(−ωωω), this matrix corresponds to coefficients at the first scale of detail.

c) Apply the filters Bi(−ωωω, θ) (i = 1, . . . , I) and L1(−ωωω) to the coefficient matrix C0 which
is obtained by filtering the image I(x, y) with the filter L0(−ωωω).

d) Retain the coefficient matrix D1,i which is produced by the application of the filter Bi(−ωωω, θ)

to the matrix C0. This matrix corresponds to coefficients at the second scale of detail in
the ith direction.

e) Down-sample by two the coefficient matrix C+
1 which is produced by applying the filter

L1(−ωωω) to the coefficient matrix C0. Down-sampling is achieved by removing the entries
along every second row and second column. Denote this down-sampled matrix as C1.

f) Apply steps (iii)-(v) above recursively for the filter functions and coefficient matrices cor-
responding to scales j = 2, . . . , J .

The low-pass filter L0(ωωω) retains only the low-frequency information in the image, with the
high-frequency information being modulated towards zero. The high-pass filter H0(ωωω) is used in
the initial step of the transform to retain a high-frequency residual band from the original image.
This filter is not applied to any other scales. The bandpass filter, Bi(ωωω, θ) retains information
only in a select frequency-direction band, multiple applications of this filter partition the image
into different frequency-direction bands. The direction filter A2(θ) detects image features at a
particular orientation it is the part of the bandpass filter B2(ωωω, θ) that provides the transform with
direction selectivity. Like the two-dimensional separable discrete wavelet transform, application
of the filter banks of the steerable pyramid transform produces a set of coefficients that describe
the image over multiple scales and directions.

The original image can be recovered from the set of steerable pyramid transform coefficients
by applying the steps of the algorithm specified above in reverse. The transform preserves the
image information but expresses it redundantly, with the number of coefficients being greater
than the number of pixels in the original image by a factor of 4I/3 (Simoncelli & Freeman
1995). Any number of directional bands can be accommodated (as specified by the user), so
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the level of redundancy can be quite high for a large number of directions, I. Nonetheless, these
directional subbands (that correspond to different Bi(ωωω, θ) filters) are essentially alias free unlike
the two-dimensional separable discrete wavelet transform whose directional bands within a scale
are aliased (Simoncelli & Freeman 1995). Spatial frequencies in certain image directions can
therefore be more reliably associated with different coefficient matrices in the steerable pyramid
transform as compared to the separable discrete wavelet transform. This makes the steerable
pyramid transform a useful addition to the image analysis tool kit.
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5.3.2 The Curvelet Transform

The curvelet transform is a multi-scale, multi-directional image decomposition designed to pro-
vide optimal sparse representations of certain types of images. The specific types of the images
that the curvelet transform is designed to provide optimal representations are those that are C2

smooth (functions that are bounded in magnitude and have both a first and second-derivative)
except at discontinuities that are themselves described as C2 edges. In other words, the spe-
cific digital images of interest can be segmented into regions that correspond to ‘smooth’ and
‘edge’ components which are at least twice differentiable and bounded in magnitude. The basis
functions otherwise known as curvelets (γj,lj ,k1,k2(x, y)) used in the transform are defined as,

γj,lj ,k1,k2(x, y) = 2
3j
2 γ (Djrθj,lj

(x, y)− kδ) (5.28)

for the scale parameter j = 0, . . . , J − 1, the orientation parameter lj = 0, 1, . . . , 2j , the transla-
tion parameters k1, k2, ε Z and the parabolic scaling matrix Dj which is defined as,

Dj =

(
22j 0

0 2j

)
(5.29)

the rotation operator rθj,lj
(x, y) (refer to equation 5.10) along with the rotation angle θj,lj =

2π2−jlj and the translation vector kδ = (k1 · δ1, k2 · δ2) for δ1, δ2 > 0 (adapted from equations
1.4 and 1.5, page 223, Candés & Donoho 2003). The curvelet basis functions vary across scale,
position and orientation. In fact, the curvelet function γj,lj ,k1,k2(x, y) has a length ≈ 2−j and a
width ≈ 2−2j . Hence the curvelet functions obey a parabolic scaling relation whereby at each
scale j ε (0, . . . , J − 1), the width of the curvelet function γj,lj ,k1,k2(x, y) approximately equals
the square of its length.

The curvelet transform is performed by projecting the image I(x, y) onto each of the curvelet
basis functions γj,lj ,k(x, y) by taking the inner product < I(x, y), γj,lj ,k(x, y) > across the range
of the scale, orientation and location parameters. A low-pass band is also found by projecting the
image I(x, y) onto a Lemarié scaling function φk1,k2(x, y) from the Meyer wavelet basis (page
12, Candès & Donoho 2003). These projections produce a set of coefficients,
{
C0,D1,l1 ,D1,l2 , . . . ,DJ−1,2J−1

}
that describe the image I(x, y) in terms of scale, direction and

location.
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The original image I(x, y) (of dimensions (N1, N2)) can be recovered from the curvelet
coefficients using,

I(x, y) =
J−1∑

j=0

2j∑

lj=0

N1−1∑

k1=0

N2−1∑

k2=0

< f(x, y), γj,lj ,k1,k2(x, y) > γj,lj ,k1,k2(x, y) (5.30)

(page 13, Candés & Donoho 2000).
The squared error ||I(x, y)−In(x, y)||2 of the n-term partial reconstruction, In(x, y) is found

by taking the curvelet transform of I(x, y), selecting the n largest magnitude curvelet coefficients
and applying the inverse curvelet transform. For certain types of images (those that can be
modeled as being as C2 smooth except at discontinuities which are also C2 smooth), the curvelet
transform captures the key image features with relatively few coefficients. The squared error
||I(x, y)−In(x, y)||2 of the n-term partial reconstruction In(x, y) converges as n−2, as compared
to the wavelet transform which converges as n−1 and the Fourier transform which converges as
n−

1
2 as n → ∞ (page 221, Candés & Donoho 2003). This gives the curvelet transform a

distinct advantage over both the wavelet and Fourier transforms in representing such images.
The curvelet transform is a very redundant representation of a digital image with the ratio of

the number of coefficients to image pixels being 16J+1, for a total of J scales in the transform
(page 88, Do & Vertelli 2003). Nonetheless, the curvelet transform offers very sparse, close to
optimal representations of those images that can be modeled as being as C2 smooth except at
discontinuities which are also C2 smooth.
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5.3.3 The Contourlet Transform

The contourlet transform is a discrete multi-scale, multi-direction and local image transform. It
applies a Laplacian pyramid (multi-scale) filter to separate the image into different resolution
sub-band matrices, followed by a directional filter on each of these sub-bandmatrices (Burt &
Adelson 1983; Bamberger & Smith 1992; Do & Vertelli 2006). The Laplacian pyramid detects
changes in image intensity (edges) and the directional filter detects the orientation and smooth-
ness along such edges.

The first step in the Laplacian pyramid is to apply a low-pass filter to the original image
I(x, y), this filtered image is then down sampled by removing every second pixel along the rows
and columns. This low-pass filter is again applied to the down-sampled filtered image, followed
again by further down-sampling. This filtering process continues in an iterative manner for all
J scales to produce a set of low-pass filtered images which are denoted [I1(x, y), . . . , IJ(x, y)].
This set of low-pass filtered images is called the Gaussian pyramid. Different low-pass filters
can be used to generate the Gaussian pyramid but a filter that resembles a bivariate Gaussian
function is most often used.

i) Low-pass filter original image I(x, y) to obtained smoothed image G1(x, y). The number
of elements in the image I(x, y) is reduced by a quarter in this smoothing operation.

ii) Low-pass filter image G1(x, y) to get smoother image G2(x, y). This filtering is achieved
according to the following formula,
G2(x, y) =

∑2
m=−2

∑2
n=−2 w(m, n)G1(2x + m, 2y + n) (equation 1, page 533, Burt &

Adelson 1983), w(m, n) is a weighting function, otherwise known as a generating kernel.
A range of generating kernels can be selected but often a generating kernel resembling a
Gaussian function is used.

iii) Continue iterative smoothing process for a total of J times, to get sequence of smoothed
images, G1(x, y), G2(x, y), . . . , GJ(x, y), which is called the Gaussian pyramid.

iv) Generate the expanded Gaussian pyramid, G e
1 (x, y), G e

2 (x, y), . . . , G e
J (x, y) by interpolat-

ing between each entry along the rows and columns of the Gaussian pyramid
G1(x, y), G2(x, y), . . . , GJ(x, y). The expansion is done according to the formula,
GJ+1(x, y) = 4

∑2
m=−2

∑2
n=−2 w(m, n)GJ(x−m

2 , y−n
2 ) where only terms for which x−m

2

and y−n
2 are included in this sum (equation 2, page 534, Burt & Adelson 1983).
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(v) Each matrix in the Laplacian pyramid is generated by the difference between the smoothed
images in the expanded Gaussian pyramid at a particular scale and the smoothed images
in the Gaussian pyramid at the previous scale.
That is,

L0(x, y) = Ge
1 (x, y)− I(x, y),

L1(x, y) = Ge
2 (x, y)−G1(x, y),

...
...

LJ(x, y) = Ge
J+1(x, y)−GJ(x, y).

The second step in the contourlet transform is to apply a directional filter to each matrix
produced by the Laplacian pyramid. A wide range of directional filters can be used the key
requirement being that the Laplacian pyramid matrix can be recovered from the directional filter
coefficients. The ‘pkva’ directional filters are particularly useful as they high spatial frequency
selectivity whilst still allowing perfect reconstruction (Phoong et al 1995).

The contourlet transform uses analysis functions of the form,

{
φj0,k1,k2(x, y), ρj,lj ,k1,k2(x, y)

}
(5.31)

for scale parameter j = 0, . . . , J − 1, orientation parameter 0 ≤ lj ≤ 2lj − 1, and location
parameters 0 ≤ k1 ≤ N1 − 1 and 0 ≤ k2 ≤ N2 − 1 for an image I(x, y) of dimensions N1

x N2 (equation 4.3.1, page 18, Do & Vertelli 2003). The scaling filter φj0,k1,k2(x, y) provides a
low resolution analysis of the image I(x, y), whilst the directional filters ρj,lj ,k1,k2(x, y) analyse
the detail of the image I(x, y) in a certain direction.

The transform produces a low-pass coefficient matrix C0 = < I(x, y), φj0,k1,k2(x, y) > by
taking the inner product of the image and the scaling filter φj0,k1,k2(x, y). Similarly, a set of
detail coefficients indexed by scale and direction Dj,lj =< I(x, y), ρ

lj
j,lj ,k1,k2

(x, y) > are found
by taking the inner product of the image and the detail filters ρ

lj
j,lj ,k1,k2

(x, y). Like the wavelet
and curvelet transforms, the original image can be recovered perfectly from these contourlet
transform coefficients.
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The contourlet transform offers a sparse representation of images with edges and a flexible
user choice of the number of directions per scale. This transform is specifically designed for
discrete grids of bivariate data. This can be a significant advantage over the curvelet transform
when analysing digital images or two dimensional histograms. The curvelet transform is de-
signed specifically for the continuous space bivariate data.

The contourlet transform is far less redundant than the curvelet transform. There will be no
more than 4/3 times more contourlet transform coefficients than there are entries (or pixels) in
the original bivariate data (image) (page 102, Do & Vertelli 2003). The contourlet filter-bank
structure is also very flexible and has the potential to use a range of filters (analysis functions) in
both the multi-scale and directional steps.



5.4. ADAPTIVE IMAGE TRANSFORMS 123

5.4 Adaptive Image Transformations

A variety of adaptive image transforms exist that use a library of functions taken from a range of
image filters. Prominent functions in these libraries are those from the Fourier and wavelet fam-
ilies of transformations. Adaptive image transforms seeks to match the most suitable function to
the image, with the most appropriate function being measured by a cost functional. The function
that minimises the cost functional is the one selected for use in the adaptive image transforma-
tion. The use of a range of different functions in the transform offers alternatives to the more
standard fixed basis transforms such as the wavelet and curvelet transforms. Selection of the
functions from the library can be computationally demanding and a number of algorithms have
been developed to meet this challenge. Section 5.4.1 examines the best orthogonal basis algo-
rithm which is often used in combination with wavelet packets. The matching pursuit algorithm
is discussed in Section 5.4.2 and its alternative, the basis pursuit algorithm in Section 5.4.3. Both
the matching and basis pursuit algorithms can utilize a large number of library functions but can
be time consuming to compute for images.

5.4.1 The Best Orthogonal Basis Algorithm

The best orthogonal basis algorithm uses orthogonal functions from a library of such functions
to represent an image. The functions used in the library are often derived from wavelet packet
functions (Section 5.2.4). A library of orthogonal functions is very useful for image compres-
sion applications as the energy of noise in the transform cannot exceed the energy of the noise
in the original image (Coifman & Wickerhauser 1992). This property assists with the reliable
transmission of image information. The use of a library of orthogonal functions with which to
represent the image further assists with this task. Those functions that best compress the image
information into a few coefficients can be selected from the library using a cost functional, C.
This cost functional is a criterion with which to compare functions in the library, L. A func-
tional based upon Shannon’s entropy is often used, which for a discrete probability distribution
{
p1, p2, . . . , pn

}
is given by

S(x) = −
n∑

i=1

pi log pi (5.32)

for a coefficient vector x = (x1, . . . , xn) where probability pi = |xi|2
||x||2 and pi ≥ 0,

∑n
i=1 pi = 1

(adapted from equation 5.16, Vidakovic 1999).
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The cost functional based upon Shannon’s entropy S(x) is defined as,

CS(x) = −
n∑

i=1

|xi|2 log |xi|2 (5.33)

(equation 5.17, page 142, Vidakovic 1999). Minimisation of the cost functional CS(x) in equa-
tion (5.33) is equivalent to minimisation of Shannon’s entropy. The notion of Shannon’s entropy
is deeply rooted in information theory and concerns (among other things) the minimum amount
of information needed to describe a signal (image). Selecting the function from the library L

minimises Shannon’s entropy is equivalent to selecting the function that best compresses the
signal. The best basis algorithm selects the best function from the library for all scales j and
locations k = (k1, k2) in line with the wavelet packet indexing. The algorithm can be organised
into a binary tree structure that allows for fast (O(N log N) for N image pixels ) (page 713 Coif-
man & Wickerhauser 1992). The best orthogonal basis algorithm does not always perform well
for highly non-stationary images (images whose statistical properties are dependent upon loca-
tion), the selection of the most appropriate functions can be driven by those transient features of
highest energy (such as high intensity image edges). Other transient features might be of equal
importance but that have small energy can be inadvertently suppressed using the best orthogonal
basis algorithm. Mallat & Zhang (1993) claim that the best orthogonal basis algorithm is better
suited to those images with stationary statistical properties and use this as one reason to advocate
the use of their matching pursuit algorithm which is the subject of the next section.

5.4.2 The Matching Pursuit Algorithm

The matching pursuit algorithm is also used to decompose the image into a linear combination
of functions that are selected from a library. It offers a flexible image decomposition and might
be useful in those cases where a single fixed basis, filter or transform does not provide sufficient
insight into the structure of the image. The matching pursuit algorithm is based upon successive
approximations of an image f(x, y) ε L2(R2) via orthogonal projections onto the functions
Gj,k1,k2(x, y) from the library L. For a function Gj,k1,k2(x, y) ε L the image is decomposed into,

f(x, y) = < f(x, y), Gj,k1,k2(x, y) > Gj,k1,k2(x, y) + R(x, y) (5.34)

where R(x, y) is the residual image remaining after approximating the image f(x, y) using the
function Gj,k1,k2(x, y) (equation 7, page 3340, Mallat & Zhang 1993). Since Gj,k1,k2(x, y) is
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orthogonal to R(x, y) the energy of this projection can be split into two components,

||f(x, y)||2 = | < f(x, y), Gj,k1,k2(x, y) > |2 + ||R(x, y)||2 (5.35)

(equation 8, page 33401, Mallat & Zhang 1993). Because ||f(x, y)||2 is fixed the residual
||R(x, y)|| can be minimised by selecting the function Gj,k1,k2(x, y) ε L such that the inner prod-
uct | < f(x, y), Gj,k1,k2(x, y) > | is maximum. Finding the optimum function that minimises
||R(x, y)|| can be computationally demanding for libraries with a large number of functions and
a compromise that is close to an optimal choice can be found using,

| < f(x, y), Gj,k1,k2(x, y) > | > α sup
Gj,k1,k2

(x,y) ε L
| < f(x, y), Gj,k1,k2(x, y) > | (5.36)

where α ε (0, 1] is an optimality factor that controls the rate of acceptance of the function
Gj,k1,k2(x, y) in the library. Relaxing the criterion (reducing α) for function selection signifi-
cantly reduces the computational complexity of the problem (page 326, Vidakovic 1999). The
matching pursuit algorithm involves recursive applications of the selection of the ‘best’ function
from the library to represent the image. It decompose an image f(x, y) into the form,

f(x, y) =
M−1∑

m=0

< Rm(x, y), Gm
j,k1,k2

(x, y) > Gm
j,k1,k2

(x, y) + RM(x, y) (5.37)

for a total of M iterations (orthogonal projections) where the initial residual is R0(x, y) = f(x, y)

(page 326, Vidakovic 1999). The iterations are halted when ||Rm+1(x, y)||2 < ε2||f(x, y)||2,
for a pre-defined tolerance criterion ε < 1.

The matching pursuit algorithm selects at each iteration the function (from the library) best
adapted to approximate a region of the image. As such the matching pursuit algorithm only looks
one step ahead in each iteration and may miss the optimal decomposition. Bergeaud & Mallat
(1995) applied the matching pursuit algorithm to images using Gabor functions and developed
a fast matching pursuit algorithm developed specifically for images that has a complexity of
O(N log2 N) per iteration for an image of N × N pixels. This suboptimal approach to the
function selection is not desirable and the basis pursuit algorithm has been proposed in an attempt
to produce an even sparser image representation (Chen, Donoho & Saunders 2001).
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5.4.3 Basis Pursuit

Basis pursuit considers a linear image representation of the form,

f(x, y) =
∑

γγγ

υγγγGγγγ(x, y) (5.38)

where the vector γγγ describes a collection of indices that are appropriate to describe the function
Gγγγ(x, y). For instance, γγγ may index scale and location or alternatively scale, direction and lo-
cation. The coefficients υγγγ describe the contribution of each function Gγ(x, y) from a library
of such functions. A large range of functions can be used in the library and the main require-
ment is that they can be specified in discrete form. This allows a finite dictionary that consists
of K functions to be described using a three-dimensional array ΨΨΨ. The two-dimensional matri-
ces that describe each function are stacked along the third dimension of this array. The image
decomposition problem can then be represented as,

f = ΨΨΨυυυ (5.39)

where υυυ = (υγγγ) is the vector of coefficients in equation (5.38) and f is the discrete matrix repre-
sentation of the image f(x, y) (adapted from equation 2.2, page 134, Chen, Donoho & Saunders
2001). A cost functional is selected that minimises the 21 norm of the coefficient vector υυυ, it is
of the form C+1 = |υυυ|1 =

∑K
i=1 |υiυiυi|. A cost functional based upon a minimal 21 norm of the

coefficient vector υυυ is driven by the desire to achieve a sparse image representation.
Basis pursuit is principle of global optimisation rather than a specific algorithm, the key

concept is to find a linear representation such that the coefficients have minimal 21 norm. This
optimisation problem is computationally demanding that has been tackled using linear program-
ming techniques such as those described in Gill, Murray & Wright (1991). Chen, Donoho &
Saunders (page 140, 2000) describe two such algorithms, the BP-Simplex and the BP-Interior
that use linear programming to solve the basis pursuit problem for one-dimensional signals. A
range of alternative algorithms could also be developed using linear programming for use in basis
pursuit. Despite the success of linear programming techniques in the application of basis pursuit
to one-dimensional signals, the routine application of the basis pursuit methods to image analy-
sis problems is quite limited. The global optimisation problem is on larger scale for images and
is difficult to compute in practice. Advances in global optimisation algorithms may overcome
this obstacle in the future and if so the basis pursuit method might become a practical option for
image analysis.
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5.5 Summary and Conclusions to the Survey of Frequency
and Time-Frequency Image Transforms

This chapter has surveyed the a range of spectral and scale-space image transforms. The discrete,
windowed and discrete cosine transforms are designed to analyse the spatial frequency content of
the image. The windowed Fourier transform is of particular interest as it analyses the spatial fre-
quency structure in a local manner. The integral, discrete and stationary wavelet transforms adds
an additional layer to the analysis allowing the image to be examined over a range of resolutions.
These transforms are very useful in the detection and description of transient events such as im-
age edges. Second generation wavelet-like transforms such as the steerable pyramid, curvelet
and contourlet transforms are designed to represent an image (especially those with edges) with
as few large magnitude coefficients as possible. The sparse image representation (one that has
relatively few large magnitude coefficients) offered by these transforms might be useful in image
compression and analysis applications. Associating image features with a few coefficients might
reduce the complexity of any statistical model used to analyse the image. Adaptive image trans-
forms that develop a description of the image using a library of functions. These transforms offer
flexible representation of the image and can be designed to a specific task at hand. The computa-
tional complexity of selecting the optimal set of functions from the library to represent the image
is a challenge that needs to be met in order for these methods to reach their full potential. The va-
riety of transforms available to the researcher is quite large and allows for a number of different
approaches to the image analysis problem. Selection of the most appropriate problem depends
on the task at hand and the focus of the analysis. The nature and structure of the image that is
under study is important, the Fourier transform seems more appropriate for images consisting of
smooth periodic components whilst images with sharp edges seem better suited to analysis with
the curvelet transform. This challenge of selecting the most appropriate image transform must
be met for the analysis of SAXS images and will be the subject of later chapters.
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