Chapter 6

Technical Specifications and

Pre-processing of SAXS Images

Digital images are stored in a variety of numerical formats that determine the nature of the data
to be analysed. Understanding these technical specifications is a central issue to the proper
analysis of SAXS image data as it influences the nature of the subsequent statistical models that
are developed. The technical details of the SAXS images to be analysed are reported upon in
Section 6.1 of this thesis. The process of SAXS imaging produces artifacts and errors on the
observed SAXS image, some of the more readily identified artifacts are presented in Section 6.2.
The SAXS images are extensively processed before any further analysis in order to account for
such experimental effects and artifacts. Section 6.3 discusses these ‘pre-processing’ operations
and the impact that they may have on the results of any subsequent statistical analysis. A brief

summary in Section 6.4 concludes the chapter.

6.1 Technical Specifications of the SAXS Images

The SAXS images used in this thesis were recorded using the SAXS imaging facilities at station
2.1 of the Daresbury Synchrotron Radiation Source. A multi-wire proportional counter detector
was used to record an image of the pattern by summing the number of detecting x-ray photon
counts on the detector over an exposure time of 300 seconds (Lewis ef al 1997b; Lewis et al
2000). The detector has a high dynamic range in that it can record over 4 decades in intensity. The
Intel IEEE Float format was used to record this large range of intensity values as real numbers
with high precision (IEEE Standards Committee 754 1985; Daresbury Synchrotron Radiation
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Source 2009 online). An image matrix (raster) of 512 rows and 512 columns is used to capture
the pattern, with only one intensity value per entry. Each image was approximately one megabyte
in size and stored in the BSL file format which is amenable to a range of x-ray diffraction specific
functions (Daresbury Synchrotron Radiation Source 2009 online). The BSL file format used at

station 2.1 consists of several components:

a) a header file written in ASCII containing information such as image title, the number of

frames in the file, the names of the data files and,

b) a binary data file of the SAXS image intensities in unformatted, fixed length records as a
stream of 4 byte floats with the Intel IEEE Float format for big-endian machines used to

record the intensity values and,
c) a binary file describing the calibration operations performed

(Daresbury Synchrotron Radiation Source 2009 online). The image data was pre-processed to
correct for a number of experimental parameters (see Section 6.3) using a in-house software
package called PCDetpack (Lewis et al 2000). This software can import BSL file format data,
perform specialist image processing operations (such as image intensity corrections for a variable
incident x-ray beam flux) and record the data as a DET file which has a similar structure to the

BSL format but allows a greater range of calibration operations.
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6.2 Artifacts of the SAXS Imaging System

6.2.1 Image Formation & Noise

The detector builds up a digital image of a SAXS pattern by recording the counts of scattered
photons at different positions on its surface. Stray photons scattered by objects other than the
sample of interest may also be recorded by the detector. These stray photons add extra intensity
counts on the image and can therefore be considered as additive noise. The counting nature of
the detection process suggests that this noise can be modeled according to a Poisson statistical
distribution. Detector noise can also be produced by internal electronic components. Lewis
(1994) states that the noise (both background and internal) of the multi-wire proportional counter
detectors used at Daresbury synchrotron radiation source is so low (=~ 107° counts pixel ! s7*
for a 1000 x 1000 pixel image) that the noise is swamped by diffuse scatter from the sample.
Therefore, for the diagnosis of breast cancer using SAXS images the noise levels are assumed to

be negligible.

6.2.2 Detector Point-Spread Function

The sample is imaged using an incident x-ray beam of finite width which has an influence on
the observed SAXS image. The SAXS image observed is a convolution between the image of
the x-ray beam on the detector plane, Ipeam(h) and the ‘ideal’ image that would be obtained
if the sample using a ‘point-source’ x-ray beam, I;geq1(h) (Le Flanchec et al 1996). That is,
Iops(h) = Ipeam(h) * [igear(h), where % denotes the convolution operation. The convolution
of the ‘ideal’ SAXS image with the image of the incident x-ray beam filters and reduces the
resolution of the observed SAXS image. The impact of the x-ray beam profile on the subsequent
image analysis must be carefully considered. Comparisons of data collected between different
experiments (such as that of Lewis et al (2000) and Round (2006) which use different beam
profiles) must be done cautiously and the the effects of the convolution removed as much as

possible.
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6.2.3 Beam-Stop

The high incident x-ray fluxes used at synchrotron sources can damage multi-wire proportional
counter detectors and result in incorrect functioning (Lewis 1994). As a result the primary X-ray
beam must be attenuated using a lead beam-stop, which is visible in the centre of the SAXS
image as a rectangular block of (approximately) uniform intensity. The beam-stop removes a
proportion of the low- resolution (> 100 nm) information on the structure of the sample and

excludes a proportion of potentially useful diagnostic information.

6.2.4 Capillary Flare

The tissue samples are placed in capillary tubes and stacked on a multiple sample holder in order
to facilitate imaging. Careful horizontal alignment was performed using positioning motors that
are attached to the sample holder to ensure that the sample was fully irradiated by the beam.
Incorrect horizontal alignment results in an artifact known as ‘capillary flare’. Figure 6.1 displays
an example of this artifact, a sharp ‘streak’ across the equatorial direction of the image. This
artifact destroys image information that could otherwise be used for tissue diagnosis. Fine control
of the horizontal motors and a short ‘test’ exposure of the sample (in order to visually inspect the

image) minimised the occurrence of this artifact.

Figure 6.1: A breast tissue SAXS image with the capillary flare artifact present (the large inten-
sity streak across the centre of the SAXS image).



6.2. IMAGING EFFECTS 133

6.2.5 Insufficient Exposure

An exposure time of 300 seconds was required in order to capture sufficient signal intensity
of scattered photons from the structure of collagen. Images of poor quality are captured when
the exposure time is insufficient. Both biological and experimental factors can be responsible
for this problem. A tissue sample might have little collagen present which could lead to a low
scattered photon flux. The structure of the collagen in the tissue sample can also be damaged or
destroyed due to poor sample extraction and handling. Storing the samples for too long (on the
order of months) in liquid nitrogen at -80 °C can cause some damage to the specimen structure,
as might poor handling when placing the samples in capillary tubes in preparation for imaging.
The samples can also suffer damage from the heat generated by the incident x-ray beam during
the imaging process. To minimise the risk of such damage, a relatively large piece of sample
is placed in the capillary tube (the incident x-ray beam has dimensions of approximately 1 x 1
mm? compared to the sample which has dimensions of approximately 1 mm wide x 10 mm long)
and the tube oscillated through the x-ray beam throughout the exposure. This imaging technique
minimises the risk of heat damage to the sample and produces an averaged SAXS image of the
structure throughout the sample. Producing an averaged SAXS image has the additional benefit
of minimising the influence of any one region of tissue in the sample. For instance, the tissue
sample might be very heterogeneous consisting of regions of both adipose and collagenous tissue.
Visual inspection of the specimen prior to imaging and other good experimental practices (such
as watching the total scattered photon count on the detector as the sample is scanned) may not
be able to accurately detect these different regions. Without the sample averaging technique, a
poor quality SAXS image may simply result from sampling error in which the adipose region of

the sample is incorrectly imaged by chance.

6.2.6 Cosmic Ray Artifact

Cosmic rays can also register on the detector and produce an intensity artifact in the SAXS image.
Such an event is very rare but it has been know to occur during the SAXS imaging experiments
used to collect this data. Foreign objects such as small pieces of shattered capillary glass can
also influence the appearance of SAXS images. These artifacts are often easily identified (using

regularly updated image monitors) and can often be corrected by running the exposure again.
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6.2.7 Summary

The imaging process influences the quality of the SAXS image data that is obtained. It is im-
portant to identify and understand such processes in order to guard the quality of the data used
in the development of a diagnostic model. Many of the problems encountered in the imaging
process can be overcome using well designed experimental techniques and expert supervision.
The SAXS image data collected in this thesis was performed by an experienced team (whose
origins can be traced back to the work of Lewis et al (2000)) whose sample storage and handling
techniques followed strict, well-understood protocols. Details of such protocols can be found in
Round (2006). Trained scientists readily identified the presence of capillary flare and understood
how to re-position the sample to mitigate its effect. The influence of the point-spread function
(image of the incident x-ray beam) was controlled by the use of skilled scientists and technicians
who could obtain consistent x-ray beam profiles across experiments. These counter-measures are
not perfect and image artifacts (and other errors) can still make it through to the analysis stage.
In this thesis, the data was carefully screened prior to analysis for any such errors using visual
inspection, five number summaries and the careful study (varying bandwidth) of the density esti-
mates of the intensity values in the image. The data (as supplied) was deemed to be of sufficient

quality to develop a breast cancer diagnostic model.
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6.3 Processing of SAXS Images to Correct for Experimental
Effects

The raw SAXS images obtained from the synchrotron need to be corrected for a number of
effects prior to further analysis. Those relevant to the analysis of breast tissue structure are
the removal of detector wire artifacts, adjustment for detector flat field response, correction of
the variation in the incident x-ray flux throughout the course of imaging, removal of background
scattering and indexing of pixel location with object size. The details of these methods are poorly
documented but they are well known and used by the x-ray diffraction community to pre-process
SAXS images, this account is based primarily on the work of Round (2006). The data used in
this thesis were supplied after these pre-processing operations had been done by Dr. K. Siu of

Monash University, Melbourne, Australia.

6.3.1 Remove Wire Structure Algorithm

The wire-based structure of the multi-wire proportional detector introduces high-frequency line
artifacts in the SAXS image. The remove wire structure algorithm was applied to remove these
artifacts. A region of the image away from the beam-stop, that did not contain capillary flare
artifacts or scattering rings was selected and the spectral components examined. High spatial
frequency components of the image were identified and removed using a high-frequency filter.
The form of this filter is ‘fine-tuned’ to the image at hand and assessed visually for optimum
artifact removal. Figures 6.2 (a) and (b) display the result of the remove wire structure algorithm

for a breast tissue SAXS image.

Figure 6.2: Removal Wire Structure Processing.
a) Before b) After
| |' o i i '.'::"'
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The subjectivity involved in this pre-processing technique is of great concern. Selection of the

region used to extract the high spatial frequency components corresponding to the wire artifacts
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is an issue of contention. The method relies on the user being able to visually identify image
regions that do not contain scattering rings or artifacts. This method works under the inherent
assumption that such features can be identified visually but given the high dynamic range of
these images this may not be the case. User adjustments to the frequency filter are also of great
concern, slightly different filters can be applied to different images and any apparent differences

between images might be a result of such adjustments to the filter.

6.3.2 Detector Flat Field Response Correction

An image of the detector (flat-field) response to an iron 55 radioactive source was recorded during
the imaging process and was used to correct for subtle differences in the detector response. Upon
normalisation (achieved by dividing all image pixel magnitudes by the maximum magnitude of
all of the image pixels) this flat-field response image can be used to suppress detector noise and
other detector inhomogeneities. The correction is performed by dividing the pixel magnitudes
in the SAXS image with the corresponding pixel magnitudes in the flat-field response image.
This technique is often used in SAXS imaging and it might be very useful for the correction of
location dependent differences in detector response. If detector noise is deemed to be a problem
(even though Lewis (1994) indicated that it was not a problem for certain detectors used in SAXS
imaging) then more sophisticated noise removal algorithms (such as those in Chapter 4) seem to

be more appropriate than the detector flat-field response method.

6.3.3 Beam Intensity Normalisation

The incident x-ray beam at the synchrotron varies in intensity over time. This variation is due to
both base usage and natural beam decay, as such the x-ray beam requires regular boosting. The
beam intensity variation at the Daresbury synchrotron radiation source is on the order of a factor
of two over a twenty-four hour period. This variation can influence the measured intensity of
the image and can make comparisons between images collected under different beam intensities
very difficult. Attenuation of the x-rays within the sample is another factor that influences the
observed SAXS image intensity. Differences in tissue composition, quality and the amount of
tissue packed in the capillary tube lead to such differences in sample attenuation. These variations
are corrected for by the calculation of a normalisation factor. This factor is obtained by taking
the reciprocal of the beam intensity as registered by an ion chamber post sample. In some cases

a semi-transparent beam stop allowed the recording of the post-sample x-ray beam directly using
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the SAXS image. The observed SAXS image is then multiplied by this correction factor.

Beam intensity normalisation is an important and effective image correction procedure. One
complicating factor has been the use of different devices to record the transmitted x-ray beam
intensity. The use of different semi-transparent beam stops in different x-ray imaging sessions
is a problem in the analysis of the SAXS images (Round 2006). These semi-transparent beam
stops have different levels of x-ray attenuation which influences the accuracy in the estimates of
the normalisation factors. Comparison of the intensities in the SAXS images between different

imaging sessions will be influenced by these errors.

6.3.4 Sample Holder Background Removal

Scattering from the capillary tube used to hold the samples contributes to the intensity of the
SAXS images. To correct for this additional scattering component, a series of SAXS images
from blank capillary tubes were recorded and an average image found. This average image
was then subtracted from the SAXS image of the capillary loaded with the breast sample. The
method assumes that the effects of the SAXS image of the capillary tube and the SAXS image of
the tissue sample are additive. Subtraction of an average ‘representative’ SAXS capillary image
also assumes little variation in the image between different capillaries. An alternative technique
would have been to image the blank capillary prior to loading and imaging the sample. This
approach would allow for a more precise measurement of the capillary tube scatter relevant to

that sample.

6.3.5 Position Indexing

The position of each element (pixel) in the image array was indexed to the physical size of the
scattering object. Pixels in the centre of the image correspond to larger object sizes and pixels
towards the edge of the image to smaller object sizes. Indexing is achieved using a calibration
SAXS image based on a sample of rat-tail collagen. This image, displayed in Figure 6.3 consists
of a series of scattering rings along the meridian. These rings are associated with the axial D-
repeat structure of fibrillar collagen, whose position can be indexed to an object size of D = 67
nm, when hydrated (Round 2006). The indexing operation is useful for those studies that extract
physical parameters for classification, it is additional information not immediately available from

the intensity values of the SAXS image.
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Figure 6.3: A false-colour SAXS image of hydrated rat tail collagen as obtained at Daresbury
synchrotron radiation source station 2.1 with a camera length of 6.25m. Note the scattering rings
on the meridian that correspond to the axial D-repeat structure.

6.4 Summary and Conclusions to Pre-processing of SAXS

Images

The SAXS images are an array of real numbers that record the x-ray photon intensity as registered
on the detector. The imaging process influences the record of the SAXS pattern (which is a
physical electro-magnetic field). Factors such as detector noise and the point-spread function
alter the appearance of the image. A number of pre-processing operations are performed in
order to correct for well known imaging variables, it is important to understand these operations
and any effects that they may have on the subsequent analysis. Improvements to the remove wire
structure algorithm, beam intensity normalisation and the capillary scattering removal procedures
are needed. Nonetheless, the current pre-processing operations are considered state of the art in

the field and have been used to correct the data to greatest extent possible.



Chapter 7
Adaptive Transformation of SAXS Images

This chapter is the first of three chapters (Chapters 7, 8 and 9) that describe the original contri-
butions of this thesis. The overall strategy of this project is depicted in Figure 7.1 and consists of
a sequence of logical steps based upon the established knowledge to develop analytical methods
with which to infer the presence of cancer in a tissue sample. The scientific evidence that was pre-
sented in Chapter 2 suggests a change in the structure of collagen when breast cancer is present.
Imaging of this structure using X-ray diffraction techniques yields a SAXS pattern, which is an
electro-magnetic field that varies both in space and time. The SAXS pattern is recorded by a
detector and stored in a digital format that is referred to as a ‘SAXS image’. It is these SAXS
images that are analysed using statistical models to infer tissue state. Chapter 7 develops digital
image processing methodology that filters the SAXS images in order to facilitate statistical mod-
eling. Chapter 8 describes the statistical models that can be used to infer diseased (cancer) tissue
state based upon the pre-filtered SAXS images. Application of these digital image processing

and statistical modeling techniques to actual test data is then assessed in Chapter 9.

@l | agen I nage Satistical
Sructure f— Transform Model

Figure 7.1: Strategy for the diagnosis of breast cancer using SAXS images of collagen structure.
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The raw SAXS image data might contain many features and the use of a single filter function
(for example a wavelet filter) might extract one feature at the expense of another useful feature.
These undetected features may well contain vital information that enables accurate detection of
disease. An alternative filter function could be used to extract such a diagnostic feature, but it may
also come at the cost of the loss of other useful diagnostic features. As explained in Chapter 2,
SAXS images of breast tissue contain a variety of features. It is unlikely that these features can
be successfully extracted using a single image processing filter function. The use of a library of
filter functions overcomes this difficulty by allowing the use of more than one function in the
processing of the image. Features arise in different scale-locations. For each scale, the entire
image data is analysed using each filter in turn and after each individual analysis, the significant
coefficients are recorded. At the end of this process, there are sets of coefficients derived using
each of the filter functions in the library. The next step is to reduce this collection to a single set
of coefficients. The coefficients included in this set are those that correspond to the ‘best’ filter
for each scale and location. The ‘best’ filter at each scale-location is determined using Bayes”
Rule.
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The content of this chapter concerns a transform which is composed of filter functions from a
library of such filter functions which are designed specifically to capture different features from
the SAXS image. The remaining of this chapter is organised as follows, Section 7.1 elaborates
on the rationale for the image processing and transformation applied to the SAXS image. A
case is made for the processing of the images using scale-space transforms such as wavelets. An
adaptive scale-space image transformation that uses a library of filter functions with which to
represent the image is presented in Section 7.2. The specific filter functions to be included in this
library are examined in Section 7.3, with five new filter functions developed for the purpose of
processing the SAXS images. The selection of the most appropriate filter function from the li-
brary with which to transform the image is discussed in Section 7.4. Since the primary objective
of this project is successful classification of tissue state, filter functions from the library are com-
pared based upon their ability to separate data belonging to different tissue groups in a training
data set. Upper and lower bounds on the Bayes’ probability of error for classification (calcu-
lated with the Jennsen-Shannon divergence measure) are used as a criterion to compare statistics
based upon the coefficients of SAXS images processed with different functions from the library.
At each scale and location of the transform, the filter function with the smallest probability of
error for classification is selected as an analysis filter. The chapter is reviewed and concluded in
Section 7.5.

The original contributions to the mathematical and statistical sciences found in this chapter

are:

(1) An adaptive image transformation that allows the image to be represented across scale and

space as a combination of different filter functions (Section 7.2) .

(ii) The development of five new filter functions that have properties that might be useful in

image analysis (Section 7.3).

(ii1) Combining adaptive image transformation, the selection of the most appropriate filter func-
tions from a library and classification into the same framework using Bayes’ probability of

error for classification (Section 7.4).
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7.1 Rationale for Image Transformation

In Section 4.3 and in Chapter 5, Fourier and wavelet methods were selected as one of several
avenues of further investigation in this thesis. The Fourier methods focus on the extraction
of spatial frequency information in the image and appear to be very useful in the analysis of
regularly repeating structures in the SAXS image. The axial scattering ring features might be
amenable to Fourier analysis. In contrast, the wavelet methods were very appealing because they
allow modeling of the image over scale and space. This scale-space transformation provides an
inherent hierarchical structure to the analysis, which matches well with the hierarchy of collagen
structures within the breast tissue that produced the SAXS image.

Wavelet methods have further appeal in the analysis of SAXS images. Vidakovic (pages
9-10, 1999) demonstrated that wavelets can be used to separate a high-frequency signal that
was super-imposed on a low frequency signal. This result suggests that wavelets can be used
to decompose the signal into components from different structures of tissue across a variety of
scales. The image information associated with the quasi-hexagonal packaging of collagen fibrils
might be able to be separated from the information associated with the axial D-repeat structure
of collagen fibrils. The separation of image information relevant to different physical features is
a motivating reason for the use of the wavelet or other scale-space transforms in SAXS image
analysis.

Vidakovic (1999) states on page 19, “Being self-similar themselves, wavelets are especially
apt to describe phenomena exhibiting self-similarity in different scales”. Wavelet (and related)
methods are sensitive to self-similarity within an image and might be able to detect any depar-
tures from self-similarity. This could be very relevant in the diagnosis of breast cancer using
SAXS images. Section 2.3 presented evidence for a breakdown in the structure of fibrillar col-
lagen when breast tissue is malignant. Any similarity in the structure of collagen over several
length scales could be lost as a result of such changes. The axial D-repeat structure of fibrillar
collagen is likely to be self-similar over a range of scales. Figure 7.2 displays a diagram illus-
trating the periodic low and high density regions along a collagen fibril that are associated with
the axial D-repeat structure. Section 2.2 explained that the axial D-repeat structure is of period
64 to 67 nanometres and is produced by the alignment of collagen molecules into a single fibril.
The length of this fibril (when mature) is typically thousands of nanometres (Kadler ez al 1996).
Inspection of the diagram in Figure 7.2 over a variety of length scales suggests that the fibril has

a self-similar structure. There is every reason to believe that this self-similarity will be contained
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within the SAXS image of breast tissue collagen structure and that wavelet analysis might be
able to detect any breakdown in this self-similarity associated with malignant conditions. The
ability of wavelets (and other scale-space methods) to detect self-similar structures in the image

data is another good reason for their inclusion in this thesis.
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Figure 7.2: Diagram illustrating the self-similarity of the collagen fibril that is a result of the
axial D-repeat structure. Examination of the fibril over a variety of scales reveals a structure that
looks exactly the same. Note: high density regions are shaded in black.

7.2 Adaptive Transformation of SAXS images

This section develops a scale-space transformation of SAXS images. This transformation is
simple in structure but seems well suited to the task at hand. Chapter 5 examined a range of

image transformations such as the
(1) The windowed Fourier transform (Section 5.1.2).
(i1) The separable discrete wavelet transform (Section 5.2.2).
(iii) The steerable pyramid transform (Section 5.3.1).

Of particular interest were the adaptive image transformations (such as the matching pursuit
algorithm of Section 5.4.2) that allow an image to be modeled with a variety of filter functions.
The use of a library of filter functions in these transformations allows the selection of the image
representation best suited to the task at hand. It also offers a way to combine Fourier and wavelet

analysis functions in the same setting.
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The adaptive image transformation approach will be adopted in this thesis to structure the
data into an amenable multi-scale format. Candes & Donoho (2000) and Donoho (2001) argue
against adaptive transforms on the grounds that non-adaptive transforms such as curvelets can
achieve similar (optimal) m-term linear approximation rates of images. That is the number of
medium to large magnitude coefficients is similar for both transforms when studying images with
edges. While this may be true, the position of Candés & Donoho (2000) and Donoho (2001) fails
to appreciate the flexibility offered by an adaptive transform. The library of filter functions can
be selected at will and the cost functional selected for the task at hand. For instance, a sparse
(optimal m-term linear approximation) representation may not be the objective of the study.
Instead the researcher might be interested in the fractal properties of the image at a particular
scale and the smooth trend at another. Rather than a sparse representation, one that separates the
fractal and smooth signals seems far more important in this example. The focus of this thesis
concerns the accurate classification of tissue state using SAXS images. Image transformations
are used in order to develop a statistical model that yields accurate classification. The entire
purpose of the transformation is to find a representation that produces superior classification
results and structures the data in a form amenable to statistical analysis; this may or may not be
the sparest image representation. For this reason, the adaptive image transformation approach is
preferred over ‘off-the-shelf” solutions such as the curvelet and contourlet transforms.

A drawback of current adaptive image transforms such as the matching and basis pursuit
algorithms is their high computational complexity. This hinders practical implementation when
large data sets are involved. The approach adopted in this thesis is a practical compromise.
The transform coefficients are calculated rapidly for each function in the library. This creates
a very redundant image representation and a potentially large storage requirement in a digital
format. The image transform proposed in this thesis which we will refer to as the adaptive image

transform is,

1 N
I(m,y) = N ZJi;y f@y(l’,y) < fl-ﬁ(x,y),[(x,y) > (71)
i=1

where &; ,(z, y) is the ith out of the N filter functions in the library £ and is indexed by a param-
eter vector, 7y. The particular form of the parameter vector, 7y is dependent on the filter function
used. For instance, a wavelet filter function, & ., (z,y), could be indexed by scale paramater
a € R, location parameters (b, b,) ¢ R? and orientation parameter 6 € (0, 27|. The appropriate

parameter vector in this case is y; = (a, by, by, #). In contrast a Fourier filter function, &; , (z, y)
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indexed by parameters k& ¢ R and [ ¢ R has a parameter vector v = (k,[). The transform co-
efficients are found by the inner product of the filter function &, -, (z,y) with the image /(x,y).
That is via < & (x,y), I(z,y) >. Coefficients have largest magnitude when the features in the
image correspond to the features of the filter function. By designing filter functions of different
shapes (and mathematical properties), the image can be analysed for different types of features.
Whilst some features may not be detected by a particular filter function, another filter function
in the library is likely to find it.

The matrix J;, indicates whether the function &; ., (x,y) is included in the transform for pa-
rameters 7y, It is zero if the function is not included in the transform for these parameters and is
one otherwise. Multiple functions from the library can also be assigned when they have the same
parameters in the parameter vector vy. Selection of the most appropriate function for each value
of these parameters depends on a cost functional that is discussed in detail in Section 7.4.

In summary, the adaptive image transform represents an image as a linear combination of
filter functions from a library of such functions, these functions can vary across parameters such
as scale, position and direction. Within a transform scale, the functions used in the transform
need not be of the same type across locations. For instance, a windowed Fourier and wavelet
function are allowed to co-exist within the same scale.

As the focus of this thesis is on analysis, the inverse transformation is not required. Nonethe-
less it is noted that in certain cases recovery of the original image is possible from the coefficients.
Successful recovery of the original image requires that the image information is preserved in the
transformation process. One example of this is when J;, = 1 for at least one of the ¢ out of the
N filter functions and when this filter function has a convenient algorithm to perform the inverse
transformation. There is no need to recover the original image in this thesis and all that is re-
quired of the transform is that important image information useful for classification is extracted
and put in a form useful for a statistical classification model. This is achieved by the careful
selection of the matrix J; , via a cost functional based upon the probability of producing an error

in data classification.
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7.3 The library of transform functions

The library of functions in the transform library requires special attention, in particular families
of functions that vary across scale, location and direction such as wavelets are of interest. The
filter functions proposed in this thesis are similar to wavelets in that they can be designed to vary

in scale, location, orientation and phase. The functions are of the form,

fy(@,y) = fa(z,y) sin {wolz sin(6) + y cos(0)] + ¢} (7.2)

for scale parameter a ¢ Z*, frequency parameter wy, location parameters (z,y), orientation

s
)
central interest and a collection of such functions can be stored in a library £ of the transform.

parameter 6 € [0,27) and phase parameter ¢ ¢ [0, %]. The form of the function f,(z,y) is of
The filter function, f,(z,y), can then be created from the library function, f,(x,y), when the
parameters, ¥ = (a,wp, 0, ¢) are specified using equation (7.2). The thesis will include both
well-known as well as custom-designed filter functions in the transform library.

Functions sourced from the literature included in the library of filter functions are:
(i) Gabor functions (equation 5.3)
(i1) Mexican Hat wavelet (equation 7.3)
(iii)) The Pet Hat wavelet (equation 7.4).

The Gabor function was defined in Section 5.1.2, it is the function used in the windowed
Fourier transform. The Mexican hat is an isotropic wavelet that is rotation invariant and is defined

as,
(7.3)

for scale parameter a ¢ R and spatial frequency parameters w = (w,,w,) (equation 3.8, page
101, Antoine et al 2004). This wavelet has excellent resolution in the spatial coordinates but poor
selectivity in both scale and direction (page 570, Arnéodo, Decoster & Roux 2000). Analysis
using the Mexican hat wavelet will provide a set of coefficients that allows identification of the
location in the image where a feature occurs but will provide limited information as to both its

scale (for instance, whether it is sharp or diffuse) and orientation.
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The Pet hat wavelet is an alternative to the Mexican hat that has better resolving power in
scale. It is defined as,

U(w) =

{0082 (Zlogy 22L) for T < |wl/a < 4rm (7.4)

0 for |w|/a < 7 and |w|/a > 4«

(adapted from equation 3.11, page 101, Arnéodo, Decoster & Roux 2000). It has superior ability
in resolving the scale of an image feature because it resembles an annulus in the frequency plane,
allowing only those frequencies between (7 < |w|/a < 4m) to be included in the analysis.
This is in contrast to the Mexican hat wavelet which is a product of a quadratic and an exponen-
tial term therefore allowing a range of frequencies to influence the analysis at a particular scale.
Five new custom-designed filter functions are introduced in this thesis and are included in the
transform library. All of these custom-designed filters could be described as wavelet functions
in two-dimensions as they can be shown to satisfy the modified admissibility condition (equa-
tion 5.13). These functions have been designed for specific tasks and allow the examination of

the image from different viewpoints. The functions introduced in this thesis are:

(1) Gamma filters - designed to emphasise smooth trends as well as to separate jumps in image

intensity from changes in image phase.

(i) Mellin filters - designed to be a bandpass filter, allowing only a select window of frequen-

cies into the analysis at a particular scale.

(iii)) Chebysheyv filters - designed to detect and extract smooth trends that resemble Bessel func-

tions.
(iv) Zeta filters - designed to detect power law trends in the SAXS data.

(v) Witch’s Hat filters - designed to apply a ‘frequency comb’, extracting both smooth and

high frequency components.

Sections 7.3.1- 7.3.4 will discuss each of these functions and their advantages in depth. All
filter functions will be developed at first in one-dimension and then extended to two-dimensions.
Thus the library £ consists of the three established functions in equations (5.3), (7.3) and (7.4)

as well as the five new proposed filter functions above.
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7.3.1 The Gamma Filter

a) b) c)

05 -

Im y(x)

-0.5 1

Figure 7.3: The Gamma filter in one-dimension: (a) in the Fourier domain for scales a = 5-8, (a
= 5 solid line, a= 6 long dash, a = 7 dots and a = 8 dot-dash), (b) the real component and (c) the
imaginary component of the Gamma filter in the space domain for scale a = 8.

Figure 7.3 displays examples of the Gamma filters in both the space (x) and Fourier (w) do-
mains. These filters will be discussed in the following paragraphs. The Gamma filter is motivated
by the need for a filter that has low energy at high (fine) scales and for which priority is given
to smooth trends. It allows fine-tuning of the response with respect to scale such that the ma-
jority of high frequency spatial oscillations are supressed and only the largest of intensity edges
contain significant energy. This type of filter might be useful in the analysis of SAXS images
because it might allow better separation of the smooth background intensity trends in the image
from the scattering ring features. It might also assist in isolating the background scatter from
other smooth features in the image. The Gamma filter is also designed to detect both jumps and
variations in image intensity. It can achieve this because of its response to spatial frequency with
respect the scale and by the shape of the filter. Both of these properties influence the magnitude

of the adaptive image transform coefficients (when the Gamma filter is used) at a particular scale.
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Denote W(a,w) as a filter function that depends on frequency parameter w ¢ R and scale
parameter a ¢ RT. The admissibility condition of equation (5.13) places requirements on those
filter functions acceptable for wavelet analysis. The specific requirement of the admissibility

condition is that the integral [~ > is finite. Careful substitution of a function f(a,w)

|\I’( ¥ term in the admissibility

(where parameter a ¢ R™ represents a scale term) in place of the
condition can be used to guarantee this condition is met for some general function dependent on
both scale and frequency parameters. By equating f(1,w) = ) w)l (for scale parameter a =1) it
is also possible to find the function W(1,w). This filter function \IJ( ) is the mother function from
which an entire family of similar filter functions can be formed using scale parameter a ¢ R™
and translation parameter b € R. This can be achieved in a manner similar to that in the integral
wavelet transform of Section (5.2.1). Denote the space-domain representation of the mother
Gamma filter as ¢)(a, z) (which is the inverse Fourier transform of ¥(a,w)), then the family of
one-dimensional Gamma filters is given by, 1, () = a '4[a~' (x — b)]. In image analysis only
the positive spatial frequencies, w > 0 are of interest so we can omit the negative frequencies
w < 0 keeping in mind that the filter functions developed are designed to be suitable for a

two-dimensional, not a one-dimensional wavelet analysis. Thus the admissibility condition can

be slightly modified to be,

00 /] 2
Cy = / de forweRT, aeRT (7.5)
0 |w]
(adapted from page 112, Prasad & Iyengar 1997).
Substituting f(a,w) = W = w* e gives,
Cy = / wle™¥dw foraeZ* (7.6)
0

which is a Gamma function of scale parameter, a so that
Cw = F(CL)
— (@-1)! < x (7.7)

(a w)[?

which is finite for a € R*. Notmg = wv e forw > 0,a e RY, we can solve for

U(a,w) to find the Gamma filter,

U(a,w) = Vwiewe#®), (7.8)
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as defined in Fourier space. In this thesis, we set p(w) = 2, so that e?(@) = 1. The inverse
Fourier transform of W(a,w) is used to find the spatial version )(a, z) version of the Gamma

filter. The inverse Fourier transform of ¥ (a,w) = w®?e™*/? is,

1 [t |
Y(a,z) = e U(w)e™*dw
1 [t <
= 5 w2 lE=1/2) gy, (7.9)
™ — 0o

Using Mathematica software (Wolfram Research 2008), the integral in equation (7.9) is

1 g +1,—(iz — 5w

vlae) = —o (L —iz)ED
1@ , 1
= k(x) F[§ + 1, —(iz — §)w] (7.10)
where k(z) = —2m(3 —ix)2™, 2« # 2. Thus the spatial version of the Gamma filter can

be described as an incomplete Gamma function I'[% + 1, —(iz — 3)w| that is weighted by a

polynomial, x(x). Note that the incomplete Gamma function is (in general) defined as,

L(n,z) = ﬁ/jettnldt (7.11)

which is a truncated form of the ordinary Gamma function, I'(z) whose integral limits range from
[0, z] instead of [0, c0) (equation 6.5.1, page 260, Abramowitz & Stegun 1972). The smaller the
value of z, the smaller the ‘weight’ that the integrand (e~*2"~!) contributes to the incomplete
Gamma function and hence the Gamma filter. The polynomial ~(x) moderates the influence of
the incomplete Gamma function I'[§ + 1, —(iz — %)w] according to the scale parameter, a, the
greater the magnitude of the scale parameter the greater the degree of the polynomial in x(x).
This polynomial can also be viewed as a filter, the greater the scale, a, the greater the degree of
the polynomial and hence the more sensitive the Gamma filter ¢)(a, ) is to « the spatial position
parameter.

Observe that the Gamma filter ¢)(a, ) has both a real and imaginary component. Both of
these components can be viewed as extracting different features from the data. The coefficients
from a Gamma filter analysis can be expressed in polar form. Denote d,(z) =< f(z),¢(a,z) >

as the coefficients formed by taking the inner product of the data (expressed as a function f(z))
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with the Gamma filter ¢)(a, z). The coefficients can be represented in modulus (|d,(x)|) and

phase (6,(x)) format via,

do(z) = |dg(2)] €=, (7.12)

The modulus, |d,(x)|, provides information on the presence of periodic structures in the data
and is conveyed by the real component of the coefficients. In contrast, the phase 6,(z), provides
information on the relative position of periodic structures in the data and is contained within the
imaginary components of the coefficients. Therefore, the Gamma filter ¢(a, x) is designed to
separate out the modulus and phase information in the data.

In order to plot both ¥(a,w) and ¥ (a,w), the magnitude of the filter is calculated at a large
number of points at uniform spacing and over a wide range. For convenience, calculations were
performed in the Fourier domain using V(a,w) = Vwie— over therange 0 < w < 35
radians. Calculations using the location domain version of the Gamma filter, ¢)(a,z) would
involve the incomplete Gamma function I'[¢ + 1, —(iz — 3)w| and hence the calculation of
definite integrals which can be computationally more demanding. The estimate of the Fourier
domain representation of the Gamma filter ¥(a,w) is displayed over a range of scales (a = 5-8)
in Figure 7.3(a). This figure indicates that as the scale parameter, a, increases the height and
spread in frequency (w) of the wavelet increases. The inverse discrete Fourier transform can be
applied to the discrete set of points that was used to estimate ¥ (a,w). The result is a discrete
set of points that provides an estimate of ¢/(a,w). By the sampling theorem (Section 4.1), this
estimate can assumed to be a reasonable estimate of v)(a,w) under the assumption that the data
was sampled sufficiently fine and over a wide enough range. Figures 7.3(b) and (c) display the
estimates of the real and imaginary components of the Gamma filter ¢)(a, =) for scale a = 8. The
real component of ¢)(a, x) is associated with the modulus |d,(x)| and the imaginary component
of 1(a, z) with the phase 0,(z). Both components of the filter are highly localised in space
indicating that they would be good at detecting edges or discontinuities in a signal. Observe the
differences in the filter function v(a, ) shape, the real component in Figure 7.3(b) consists of
one sharp spike (large jump in magnitude) surrounded by two small wells (dips in magnitude).
In contrast, the imaginary component in Figure 7.3(c) has two small dips and two large jumps.
These differences in filter function shape between the real and imaginary components of ¢(a, x)
are very important because they indicate that very different features are extracted by the modulus

and phase of the coefficients.
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Coefficient energy, I/, of the integral wavelet transform is defined by,

e = L[ [ V@) @)
E_/ I (z)2d Cw/oo/oo = da db (7.13)

o0

where Wy[f(x)(a, b)] is the one-dimensional equivalent of the integral wavelet transform for
scale parameter a ¢ Z* and location parameter b € R (page 47, Vidakovic 1999). The coefficient
Cy weights the energy of the transform to that of the signal. The admissibility condition and the
coefficient U, are related to Parseval’s identity (theorem 2.2.2, page 27, Vidakovic 1999), which
states that the energy calculated from the data and the coefficients is the same. The Gamma
filter weights the energy of coefficients according to scale, Cy, = (a — 1)!, thus £ ﬁ
Therefore, the energy of the signal f(z) becomes much smaller than the energy of the transform
as scale increases. At higher resolutions (larger scales) the coefficients become much larger as
compared to those at lower resolutions. In two-dimensions, the adaptive image transform can
be used instead of the integral wavelet transform but the general properties of the energy of the
Gamma filter coefficients remains the same. The response can also be altered such that filter
prefers low-frequency trend terms by substituting o* = (J — a) for a in equation (7.8), where
J 1s the number of scales considered in the transform. Thus, the Gamma filter offers a flexible
method to emphasise certain signal components at the expense of others via the scale parameter.

The Gamma filter of equation (7.8) can be extended to two-dimensions using the tensor

product. The two-dimensional Gamma filter is defined as,

U(a,wy,we) = Y(a,w)- ¥Y(a,ws) (7.14)

fora e R, w; e R, wy e R.
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Figure 7.4: The two-dimensional Gamma filter (for scale a = 8) in Fourier space: (a) image
perspective (b) three-dimensional perspective.

Figures 7.4(a) and (b) display two perspectives of the two-dimensional Gamma filter ¥ (a, wq, wo)
in Fourier space. The filter function is broad, diffuse and is centered on a set spatial frequency.
The real and imaginary components of the two-dimensional Gamma filter are displayed in Fig-
ures 7.5(a)-(d) in both the image and three-dimensional perspective. The real component is
highly localised in space, the imaginary component is also highly localised but has two sharp
positive-valued spikes along one diagonal and two sharp negative-valued spikes along the op-
posite diagonal. Both components are useful in the detection of intensity spikes in the image.
The real component would match well (and hence produce a large inner product/ high energy
coefficients) with the axial ring features of the SAXS image. The dips around the central spike
may also assist with the analysis of SAXS images. At the appropriate scale, these lobes may
capture and remove the effect of the even-ordered meridional scattering rings (which are not as
prominent in the image) thereby enhancing the analysis of the odd-ordered meridional scattering
rings (that are visible in Figure 2.2). The imaginary component of the Gamma filter is also very
useful for the analysis of SAXS images. It would also match very well with the axial scattering
ring features but would extract pairs of scattering rings. This is very useful as the meridional
scattering rings features always occur in pairs in the SAXS image. Furthermore, the imaginary

component of the Gamma filter conveys information on the position of the scattering rings in the
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SAXS image. Coefficient energy is large only when the imaginary component of the wavelet
and the image match each other well. At a particular scale, the imaginary component of the
Gamma filter will extract the contribution to image energy of a scattering ring pair. The filters
at adjacent scales will not match as well and there will be a distinct decrease in coefficient en-
ergy. Therefore, comparison of the imaginary component of the Gamma filter coefficients across
scales for different SAXS images (particularly those from different tissue groups) might allow

the detection of any differences in the position of their scattering rings.

/
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Figure 7.5: The two-dimensional Gamma filter (for scale a = 8) in spatial coordinates in both
the image and three-dimensional perspectives for the real (a)-(b) and the imaginary components
(c)-(d) respectively.
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7.3.2 The Mellin filter

a) b) c)

Re 1(x)
Im p(x)

Figure 7.6: The one-dimensional Mellin filter for: (a) ¥(a,w) for scales a = 1-5 in frequency
space and (b) the real and (c) imaginary components of ¢)(a, x) in space domain. The solid line
in (a) corresponds to scale a =1,the short dash to scale a =2, dots to a =3, dot-dash to a =4 and
the long-dash to a = 5.

The Mellin filter is motivated by the desire to have a filter function that is similar to the
Gamma filter in the location domain but is more specific bandpass properties in the frequency
domain. This filter is designed to decay rapidly and smoothly from a particular reference fre-
quency, w(o,q). The reference frequency is scale dependent which ensures that there is limited
overlap between the filter functions at low resolutions and those at higher resolutions. The name
‘Mellin filter’ is motivated by the Mellin transform which is defined as,

+o0
g(z) = (w)w* tdw (7.15)
0

for parameter z ¢ C (page 305 Erdélyi er al 1954). Clever choice of the function f(w) leads to
a filter function with properties that the user desires such as the ability to extract high intensity

peaks from the data. Equation (10) on page 313 of volume 1 of Erdélyi er al (1954) states that,

/0 e 1) e = T [ — 1) = () (7.16)

for R(z) > 2 where I'(z) is the Gamma function and ((z) = Y ;5 k™% (R(z) > 1) the
Riemann zeta function (equation 23.2.1, page 807, Abramowitz & Stegun 1972). Thus, equa-

tion (7.16) provides an analytical form for the Mellin transform (equation 7.15) of

F(w) = (e —1)2.
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A substitution is now made to relate the Mellin transform to the modified admissibility con-
dition, observe that if we substitute 2 = 4a + 1 into equation (7.16) (where a ¢ Z* is the scale

parameter of the filter function) then,

g(da+1) = / (¥ — 1) 2w dw
0

= T(4a+1)[¢(4a) — ((4a+1)]

(27’()4&
(4a)!m|34a| (7.17)
as
I'(4a+1) = (4a)! (7.18)

using I'(n 4+ 1) = n! for n € Z (equation 6.1.6, page 255, Abramowitz & Stegun 1972) and

B (27T)4a
((4a) = 2(da)] Byl (7.19)
and
- (27T)4a+1 B
((da+1) = m“ﬂwﬂ =0 (7.20)

where B,, and B, are Bernoulli numbers (section 23.1 and equation 23.1.2, page 804, Abramowitz
and Stegun 1972). The results in equations (7.19) and (7.20) can be demonstrated using the fol-

lowing rule,

2 2n
C(2”>_(2(72T—2m‘B2”” nez (7.21)

(equation 23.2.16, page 807, Abramowitz & Stegun 1972). Substituting 2n = 4a into equa-
tion (7.21) gives the result in equation (7.19). Observe that, ((4a + 1) = 0 because

Bgn*+1 = O, n*eZ (722)

(equation 23.1.19, page 805, Abramowitz & Stegun 1972). Substitution of n* = 2a demonstrates
that Bo,» 11 = Ba(2a)+1 = Bagt1 = 0. Thus from equation (7.20), ((4a+1) =0.
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By selecting,
= (e = 1) 2w (7.23)

the modified admissibility condition (equation 5.13) is satisfied because,

+oo 2
¢, - / P
0

w

+o0o
= / (e¥ — 1) 2w dw
0

= T(4a+1)[¢(4a) — ((4a +1)]

27 )4e
= (4a)! (2(42), By, < o0. (7.24)
Therefore,
U (a,w)* = (¥ — 1) Zwtet? (7.25)
and the definition of the Mellin filter function is
U(a,w) = (e — 1)_1w2“+%ew(w) (7.26)

forw > 0 and some function p(w) € L;(R). In equation (7.26), for p(w) = 27 (and ' = 1),
the filter function v (a, =) is complex in the location (z) domain. An analytical form of ¢(a, x)

has not been found and can only be expressed as,

1 [t .
U(a,r) = Py U(a,w)e™ dw
™ —0o0
1 [t 1
= 5 (e¥ — 1) tw*teerdy. (7.27)
T J -0

This integral appears intractable, nevertheless highly accurate graphs of the function ¢ (a, z)
can be drawn and understanding of this wavelet developed using the graphs. Figure 7.6(a) dis-
plays the Mellin filter function W (a,w) for the scales a = 1 — 5. Note how the filter associated
with each scale is centered around a particular frequency (w(o )) and that this frequency increases
as the scale parameter increases. The lowest scale (¢ = 1) and the highest scale displayed (a =
5) barely overlap, which indicates that these two functions filter out very different frequencies in
the data. Figures 7.6(b) and (c) display the real and imaginary components of the Mellin filter

¥(a, z) for scale a = 1 respectively. The real component of the filter is sharply defined around a
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central location and is non-zero over a finite interval which means that is has compact support.
The real component of the filter is also symmetric about the point z = 0, which indicates that sig-
nal features either side of the central peak of the filter are given equal weighting when calculating
transform coefficients. In contrast, the imaginary component of the filter is not symmetric about
2 = 0. The region of the imaginary component of the Mellin filter corresponding to z < 0 is
the exact opposite of the region corresponding to z > 0. The real component of the Mellin filter
seems better suited to detecting jumps in signal/image intensity whilst the imaginary component
seems better suited to detecting change in polarity ! (from positive to negative or vice versa) in
signal/image intensity. Therefore, the Mellin filter allows for multi-scale analysis that is focused
on detecting two types of signal/image characteristics. Using the Mellin filter for image analysis
provides sets of real and imaginary coefficients that describes the jumps in intensities and the
changes in polarity of features respectively.

The two-dimensional version of the Mellin filter is found using the tensor product,
U(a,wr,ws) = ¥(a,w;) - V(a,ws). The frequency space version of the Mellin filter ¥ (a, wy, ws)
is displayed in Figure 7.7(a) as an image and in Figure 7.7(b) as a three-dimensional perspective.
The Mellin filter in the frequency domain is a disc of finite size centered on reference frequencies
(wl,()’a, C()Q’(]’a). Figure 7.7(c) displays the real component of the Mellin filter (for scale a = 1)
it is a sharp spike of finite size. The imaginary component of the Mellin filter is displayed in
Figure 7.7(d), it consists of two sharp large magnitude peaks that alternate between positive and
negative values and small side lobes that surround these peaks. Therefore the two-dimensional
Mellin filter is localised over a region in the frequency domain, highly localised in the spatial
domain and able to identify change in image intensity as well as change in image polarity. As
with the Gamma filter, the imaginary component measures the combined positive and negative

lobes that result in SAXS images via diffraction from a physical structure.

'a feature of diffraction images.
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Figure 7.7: The two-dimensional Mellin filter ¥(a,w;,ws) for scale @ = 1 in frequency space
in the (a) image and (b) three-dimensional perspectives and (c) the real R[¢(a, x,y)] and (d)
S (a, z,y)] the imaginary components in the spatial domain.
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7.3.3 The Chebyshev Filter
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Figure 7.8: The one-dimensional Chebyshev filter for (a) ¥(a,w) for scale a = 1 in frequency
space and (b) the real and (c) imaginary components of ¢)(a, x) in location domain.

The Chebyshev filter is designed to detect and extract trends that resemble Bessel functions of
the first kind, J,,(z) in the data. This filter function might be useful for examining the equatorial
scattering rings in the SAXS images as Lewis et al (2000) extracted one-dimensional profiles of
the the intensity of these features and discovered that Bessel functions of the first kind provide a
good fit. The Bessel function of the first kind is defined as,

2(37

B )
Jy(z) = %F(’y n

1
) / (1-— t2)”’_% cos(zt)dt (7.28)

N[

(v e C,R(y) > —1) (equation 9.1.1, page 358, Abramowitz & Stegun 1972). It is a solution
to the following differential equation,
o d%w dw

w 4+ z— 7 + (22 —=~7yHw =0 (7.29)

for z and w € C (equation 9.1.1, page 358, Abramowitz & Stegun 1972). The fact that Bessel
functions of the first kind, J,(z), are solutions to a differential equation (equation 7.29) implies
that they have constraints on their derivatives (and hence on the rate of oscillation of z about the
w axis). Analysis using the Chebysheyv filter is confined to detecting very specific trends in the
data that conform to the smoothness specified by equation (7.29) and can therefore be described

using Bessel functions of the first kind, .J, (2).

40
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The Chebyshev polynomial, 7),(z) is defined as

1 (=)t
To(x)=— [0 7.30
()= 1 L 1— 20t + 12 (7.30)

forn € Z*, x € R and 7 is a contour corresponding to the unit circle (equation 14, page 397,
Weisstein 2003). The Bessel function of the first kind, J,,(z) (where the subscript v has been
replaced by the subscript n to specifically indicate that the indices are integer values) is related

to the Chebyshev polynomial T, (x) via:

d - M (7.31)

Tligy) Jo(x)

(modified from equation 21, page 397, Weisstein 2003). Therefore the nth Chebyshev polyno-
mial, 7,,(x) can be understood to be related to the nth Bessel function of the first kind J,,(z),
scaled by Jy(x), the Bessel function of the first kind of order zero and the constant i " (for fixed
n).

To develop a filter function, 1(a, x) that is capable of extracting trends in the data that are related

to Bessel functions of the first kind, .J,,(x) observe that

+00
/ In(@) 4 L (7.32)
0

T 2n

where ®(n) > 0 (equation 10, page 283, Jeffrey 2000). Recall the modified admissibility

condition of equation (7.5) is

00 2
Oy = / ey, (7.33)
0

w

forw e RT and a € ZT. Setting |V(a,w)| = J,(w) (Where J,(w) is a Bessel function of the first
kind of order a indexed by frequency space parameter, w).

Therefore,

U(a,w) = Ju(w) exp(ip(w)). (7.34)
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For the image analysis applications in this thesis, the Chebyshev filter is designed to have
only a real component in frequency space, so that exp[ip(w)] = 1. The modified admissibility
condition of equation (7.5) is satisfied as,

00 2 0 2
/ |9 (w) dw:/ L1 (735)
0 0

w w 2a

using equation (7.32).
The Bessel function of the first kind, J,(w) and the Chebyshev polynomial, 7),(x), are a

Fourier transform pair. That is,

Y(a,x) = % :O\If(a,w)ewxdw (7.36)
1 [t -
= 5 N Jo(w)e™“ dw
. 0,1 -0 < z < 1
= m (1—$2)_§Ta((£), — 1 < x < 1
0, 1 < =z < o

(using the table of Fourier transforms, equation 2, page 122, Erdélyi et al 1954). Note that the
Chebyshev filter is non-zero over the domain (—1, 1) which indicates that it has compact support.
The Chebysheyv filter derives its’ name because it is proportional to the Chebyshev polynomial,
T.(x) as evident in equation (7.37). Observe that the Chebyshev filter ¢)(a, z) also consists of
a(l-— {EZ)_% term which acts like a polynomial filter, modifying the degree of the Chebyshev
polynomial 7}, (z). This polynomial filter resembles a ‘well’ (U-shaped graph of f(x) againist z)
and has the least influence (weight) around =z = 0 and the greatest influence around the extremes

of the domain (x = —1land z = 1).
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In a manner similar to the Gamma and Mellin filter, the frequency space representation
U(a,w) and the location domain representation (a,w) can be accurately plotted using soft-
ware. The one-dimensional version of the Chebyshev filter is displayed in Figures 7.8(a)-(c)
for scale a = 1. The frequency space representation, W(a,w) is displayed in Figure 7.8(a), it is
equivalent to the Bessel function of the first kind J, (w). Further examples of Bessel functions of
the first kind are available in Figure 17.1, on page 274 of Jeffrey (2000). Figure 7.8(a) reveals
that the Chebyshev filter seeks out trends that resemble Bessel functions of the first kind in the
frequency domain. The real R[¢(a, )] and imaginary [¢(a, x)] components of the Chebyshev
filter in the location domain for scale a = 1 are displayed in Figures 7.8(b) and (c) respectively.
The real component R[¢)(a, x)] appears to be capable of extracting smooth ‘bumps’ in signal
intensity similar in shape to the intensity profile of the equatorial scattering rings. Therefore, it
may capture different signal information than either the Gamma or the Mellin filters. The imag-
inary component (¢ (a, z)] is very sharp and jagged in shape. Similar to the Mellin filter, it is

useful in detecting changes in the polarity of signal intensity.
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Figure 7.9: The two-dimensional Chebysheyv filter for scale a = 1 in perspective view for the:
(a) real and (b) imaginary components in the spatial domain.

The real and imaginary spatial components of the two-dimensional version of the Cheby-
shev filter ¢(a, z,y) for scale a = 1 is displayed in Figures 7.9(a) and (b) respectively. The
real component R[¢)(a, x,y)] resembles a ‘box’ surrounded by very sharp edges. Similar to
the one-dimensional version this component of the filter is best suited to extracting the larger and
smoother features from an image. It is also suited to extracting those image features that resemble
squares, rectangles or other regions of the image that have changes in image intensity magnitude
and sign in two orthogonal directions (such as the beam-stop region of the SAXS image). The
imaginary component of the Chebychev filter 3[¢(a, x, y)] that is displayed in Figure 7.9(b) for
scale a = 1, has both a positive {S[¢(a, z,y)] > 0} and negative {3[¢(a, z,y)] < 0} com-
ponent. The peaks of the positive component are connected together along a smooth curve that
resembles a ring. A similar geometry holds for the peaks of the negative component. Together,
the positive and negative components allows the detection of a change in image intensity polarity
along a scattering ring. It could allow precise determination of where a scattering ring ‘jumps
up’ from the background intensity and where it ‘falls down’ back to the background intensity.
Thus it would enable measurement of the width of the scattering ring. This could be very impor-
tant if malignant breast tissue conditions results in a greater variation of the axial d-spacing or
in the lateral organisation of collagen fibrils (refer to Section 2.2) as both may result in a greater
width of the scattering rings in the SAXS images. Therefore, imaginary part 3¢ (a, x,y)] of the

Chebyshev filter might provide useful information in the analysis of SAXS images.
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7.3.4 The Zeta filters
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Figure 7.10: The one-dimensional Zeta filter for scale a = 1 in the: (a) ¥(a, w) frequency domain
(the open dot indicates a discontinuity at w = 0) and (b) the real and (c) imaginary components
of ¢(a, x) in the location domain.

Zeta filters are designed to capture power law (a polynomial dependency of data magnitude
with frequency) processes. These trends are of significance for the analysis of SAXS images be-
cause they describe relationships across scales and hence between spatial frequencies. The equa-
torial and meridional scattering rings in the SAXS images of breast tissue (refer to Figure 2.2)
are due to diffraction from the physical structures of collagen over different length scales. A rela-
tionship might exist between these tissue structures for healthy breast tissue and this relationship
may breakdown upon the onset of breast cancer. The SAXS image features are likely to convey
this information and the Zeta filter is suitable for detection and description of such relationships.

The particular power-law processes that we are interested in analysing are those that can be

described by a function of the form,

w—2a

¢(2a)

for scale parameter a € Z*. In equation (7.37) the Zeta function ((2a) is a scaling function that

fla,w) = (7.37)

is dependent on the scale parameter, a. The frequency dependency of the data is described by

the polynomial w22

of the form (1/w??).

and therefore the analysis function f(a,w) examines power-law processes
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By taking the logarithm of f(a,w) the scale-dependency of these processes is more explicit,

log[f(a,w)] = —2alog(w) + log[1/¢(2a)]. (7.38)

A linear relationship exists between log|f(a,w)] and log(w). Changing the scale parameter a
alters the slope (—2a) and the intercept log[1/{(2a)], but the relationship still holds. Power law
relationships are known to exist in SAXS data. The analysis of SAXS image intensity profiles
of the form I(h) against h (|h| = 47 sin /) refer to Section 2.2) typically involves studying
such power law processes. Porod’s law states that I(h) oc h™* (Section 2.4.4, page 45, Feigin &
Svergun 1987). Studies of the adherence or deviation of SAXS intensity profiles to Porod’s law
can be used to infer the fractal nature of the surface of the object under study. When the frequency
space representation W (a,w) of the Zeta filter is used to analyse SAXS data (or images) it is
particularly adept at picking out Porod law trends (as they are proportional to minus two). By
including a scale parameter @ in the analysis it is possible to use the Zeta filter to search for a
whole family of power law processes (not just the Porod law trends).

The Zeta filter, ¥(a, w) can be defined in frequency space as,

w—?a

¢(2a)°

where K, is a constant selected such that ffooo VU(a,w) dw = 1. The modified admissibility con-

U(a,w) = K, (7.39)

dition (of equation 7.5) nor the standard admissibility condition (of equation 5.13) are satisfied

as,

> \‘P(a,w)P > w2 2 -1
PNG9OF 1, = K2 12,
[ e = [ (@) @ *

K, i
_ [g(za)]Q / w4 D gy (7.40)
0
does not converge. Similarly,
W (a, w)[? Ky 5 [T 2
T dw = [ —(a’+1) 7.41
[ i e T

does not converge.
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The consequence of this lack of convergence is that the Zeta filter can be used for a multi-

scale analysis but the data cannot be reconstructed from the corresponding coefficients of an

integral wavelet transform (or the adaptive image transform in two dimensions). In the case of

the analysis of SAXS data (as in this thesis) such a situation is acceptable as there is no need to

reconstruct the data from the coefficients.

The location space version of the Zeta filter, ¢/(a, ), can be found by applying the inverse

Fourier transform.

Y(a,z) = Kq +Oo\Il(a,w)exp(iw:ﬁ)dw

2 s
K, [+®

_ —2a .
= 2nC(2a) /_OO w exp(iwz)dw.

The integral | f;o w2 exp(iwr) dw can be solved by using,

/* Texp(kt) 1 [k / " exp(t) ), explk)

o tm o m — 1 e tmfl tmfl

which is not defined for £ # 0.5 (equation 404, Peirce 1899).
Thus,

v(a,z) = /+OO w2 exp(iwz)dw

[e.9]

2 — 1 w2a—1 w2a—1
-1 exp(iwz)

2a — 1 [ w2a—1

_ 1 [w/ exp(iwx)dw B exp(iwx)}

+ iw* T Egq_1 (—iwz)].

Where E,(z) is the exponential integral which is defined as,

tn

En(z) = /100 exp(—zt) .,

forze C, R(z) > 0,n e Z (equation 5.1.4, page 228, Abramowitz & Stegun 1972).

(7.42)

(7.43)

(7.44)

(7.45)
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The Zeta filter ¢)(a, x) consists of an exponential term exp(iwz) weighted by the polynomial
w?2~ !, The larger the scale parameter, a, the greater the degree of this polynomial. An additional

component is provided by the product of the polynomial w324

and the exponential integral
FEs, 1 (—iwx). As scale increases, the degree of w32 decreases and the polynomial transfers
from the role of function enhancer to function moderator. The exponential integral Es, 1(—iwx)
depends upon the scale parameter, a, in such a way that as the scale increases the exponential
integral function becomes flatter (smaller magnitude derivative with respect to x).

The Riemann zeta function, ((2a) can be found for a € N by noting that,

2 2a
(2m) [Ba| (7.46)

where B,, denotes the (2a)th Bernoulli number (equation 23.2.16, page 807, Abramowitz &

Stegun 1972). Specific values of the Bernoulli number By, can be found using,
By, = B2, (0) = D7 20Ca) = 1 (7.47)

for a € N where By,(0) is the Bernoulli polynomial By, (z) evaluated at = = 0 (equation 23.1.1,
page 804, Abramowitz & Stegun 1972). Once ((2a) is calculated specification of v (a, x) is
straightforward.

The one-dimensional Zeta filter is displayed in both the frequency and location domains in
Figures 7.10(a)-(c) for scale parameter a = 1. The Zeta filter W(a,w) is highly localised in
the frequency domain, and is symmetric around, but also discontinuous at w = 0. The real
component of the Zeta filter, ¢(a, z) is displayed in Figure 7.10(b), it appears useful in the
detection of features that change polarity (from negative intensity to positive intensity). Note that
the real component is not defined for z = 0. Figure 7.10(c) displays the imaginary component
of the Zeta filter ¢)(a, x) for scale a = 1. It resembles the frequency space version ¥(a,w) of

the Zeta filter and might be useful in the detection in jumps in signal intensity.
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Figure 7.11: The two-dimensional Zeta filter ¢(a, z, y) for scale a = 1 in the spatial domain:
(a) real and (b) imaginary components.

The two-dimensional version of the Zeta filter is displayed in Figures 7.11(a) and (b). The
real component of v(a, =, y) in the spatial domain is displayed in Figure 7.11(a), it appears that
it might be useful in detecting changes in the polarity of intensity for pairs of scattering ring
features. It may be able to resolve the edges of closely spaced scattering ring features. Such a
characteristic might be useful if the tissue sample under investigation contains several different
populations of collagen that have different axial D-repeat periods. In this case, the axial scattering
ring features might contain very fine scattering rings hidden within them. The real component
Y (a,z,y) could be very effective at detecting such features. The imaginary component of the
Zeta filter (for scale a = 1) is displayed in Figure 7.11(b), it appears useful in detecting a series
of intensity peaks. The SAXS image of breast tissue collagen contain such series of intensity
peaks along the meridional axis. The imaginary component of the two-dimensional Zeta filter

might be effective at detecting such features.
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7.3.5 The Witch’s Hat Filter
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Figure 7.12: The one-dimensional Witch’s Hat filter for scale a = 1 in the:
(a) Fourier domain and (b) the real and (c) imaginary components in the spatial domain.

The Witch’s Hat filter function is designed to be a ‘frequency-comb’ filter, that is certain fre-
quency components retained whilst others are attenuated. The series of frequency components
are retained depends on the scale parameter, a. Both low and high frequency components are
retained simultaneously, allowing the Witch’s Hat filter to perform an analysis that examines
the interaction between low and high frequency signal components. This is of significance in
SAXS data analysis because the same physical structure (such as the axial D-repeat) can pro-
duce both low and high frequency features in the signal. The frequency components within the
feature might then be coupled and dependent upon each other. Standard wavelet filters (such as
those reported in Mallat (1998)) attempt to separate the low and high frequency information in
a signal into different analysis bands. Such an approach could fail to detect frequency coupling
within a signal and obscure potentially useful diagnostic information. Analysis using the Fourier
transform (Section 5.1) may be able to detect such frequency coupling but will probably not be
able to identify the features involved. The Witch’s Hat filter overcomes both of these problems
and is able to identify certain types of frequency coupling as well as those features/frequencies
involved.

A frequency-comb filter can be designed using the following function,

U(a,w) = \/sin (aw) + vw exp(—aw) (7.48)

w

fora e RT.
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The Smiﬂ term of ¥ (a,w) provides the ‘frequency comb’ structure whilst the \/w exp(—aw)
adds a smooth decaying background trend. The dependency of sin?(a, w) on the scale parameter
a ensures that a whole family of different frequency relationships is considered. As the scale
increases, the ‘finer’ this comb is, with frequencies of similar magnitude being alternatively re-
tained or attenuated. By design the Witch’s Hat filter ¥(a,w) hopes to capture scale dependent
frequency couplings that can be described by the sin?(aw) function.

The Witch’s Hat filter, U (a, w) satisfies the modified admissibility condition (equation 7.5)

as,

[l [T | oot

_ /°° sin:awdw N e exp(—aw)dw
0 w 0 vw

- Oy \/E (7.49)
2 a

using [;° Siri—;““’dw = ¢ for a ¢ R" and [~ =2 exp —aw) 7y — \/g for a ¢ R, (equations 486 and
equation 497, page 63 Peirce 1899, Wolfram 2008).
Figures 7.12(a)-(c) display the one-dimensional version of the Witch’s Hat filter for scale

a = 1, Figure 7.12(a) is of the Witch’s Hat filter, U (a, w) in the frequency space. Note its repet-
itive structure, a key reference frequency wy , is retained, whilst all other frequencies are either
substantially attenuated or removed. The amount of attenuation increases for higher frequen-
cies and is dependent on scale due to the sin*(aw) and exp(—ax) terms in equation (7.48). The
plot of ¥ (a,w) against w in Figure 7.12(a) suggests that the Witch’s Hat filter might be useful
for extracting features that contain a number of coupled frequency components. The inverse
discrete Fourier transform of W(a,w) was used to obtain a numerical estimate of the real and
imaginary components of ¢(a, z). The real component of the Witch’s Hat filter is displayed in
Figure 7.12(b), the shape of the filter function in this plot inspired the name ‘Witch’s Hat’. This
component of the filter appears to be useful in detecting sharp ‘spikes’ or rises in the intensity
of a signal/image. Figure 7.12(c) displays the imaginary component of the Witch’s Hat filter for
scale a = 1, its interesting shape might be useful in the detection of a series of intensity ‘steps’
in an signal/image. The Witch’s Hat filter provides another tool in the arsenal of functions that

are available to analyse a signal or image.
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Figure 7.13: The two-dimensional Witch’s Hat filter ¢)(a, x,y) for scale @ = 1 in the spatial
domain: (a) real and (b) imaginary components.

The two-dimensional version of the Witch’s Hat filter is displayed in Figures 7.13(a) and (b).
The real component in Figure 7.13(a) consists of the combination of a cross-shaped and a sharp
peaked structure. This component of the filter function might be useful in detection sharp rises
in image intensity in certain directions. The imaginary component of the Witch’s Hat filter (for
scale a = 1) is displayed in Figure 7.13(b), it has two very jagged positive components along
both diagonals and it might be useful in analysing the orientation of features in an image. The
coefficients of the adaptive image transform are found by taking the inner product of the im-
age with the wavelet analysis function. Large magnitude coefficients correspond to those image
features that produce a large inner product with the analysis function, the greatest magnitude
inner products occur when the image features resemble the relevant component of the filter anal-
ysis function. The real and imaginary components of the Witch’s Hat filter look very different
and appear to extract very different features from the image. In conclusion, the real and imagi-
nary components of the adaptive image transformation using the Witch’s Hat filter produce large
magnitude coefficients for different image features but when studyied together provide a deeper

understanding of image structure.
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7.4 Function Selection for Pattern Recognition

A major challenge with the adaptive image transform is the need to select the most appropri-
ate filter function from the library with which to represent the image over a range of scales and
locations. The ‘best’ function with which to represent the image is often dependent on the ob-
jective of the analysis. For example, the best filter function for image compression may not
correspond to the best filter function for image recognition. Furthermore selection of the ‘best’
function from a library of such functions can be a computationally demanding task (as discussed
in Section 5.4.2). The challenge is therefore to find a method that selects those filter functions
from the library that are best suited to the task of image recognition and to do so with minimal
computation. The approach adopted in this thesis differs substantially from the best basis and
matching pursuit methods that were designed for data compression (Coifman & Wickerhauser
1992; Mallat & Zhang 1993). For the task of image recognition, the upper and lower bounds
on classification performance were calculated for each function in the library (across scales and
locations) and were used as a means of function selection.

In order to select the best filter functions a training data set is required which consists of suf-
ficient samples from each group to be separated. From this data set bounds on the probability of
misclassification (the probability that a sample belonging to one group will be incorrectly classi-
fied as belonging to another group) can be calculated and used as a measure to compare different
filter functions. The function with the smallest probability of misclassification is selected for
inclusion in the adaptive image transform for that particular scale and location. The training data
set consists of NV images (of dimensions N, by N, ) that can be separated into subsets according
to a vector G = {g1, g2, - - ., gn } Of groups. For instance, the data sets under investigation in this
thesis can be separated according to whether they belong to the ‘normal’ gy, the ‘benign’ gp
or the ‘malignant’ gy, groups. The data are assigned to these groups by the modeler and must
be known in advance. For each of the [ = 1,..., L filter functions (denoted v;(a, x,y)) in the
library £ = {¢1(a,z,y),v2(a,x,y),...,¥r(a,x,y)} and for each of the j = 1,..., N images
(denoted I;(x,y)), the inner product D; ;, =< ¢y(a,x,y), [;(x,y) > is calculated at the scale
a € Z. The result is an (1 by NV by IV, by N,) array of coefficient matrices denoted D, that

describes the analysis of the the /th filter function, on the jth image at the ath scale.
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The structure of this array can be specified as follows,

Dl,la DL717a
Dise ... Disa
D= | TR (7.50)
| Dl,N,a DL,N,a |

where each entry describes a coefficient matrix D, ; ,, with the columns referring to coefficient
matrices that are associated with each filter function and the rows to the image studied. This pro-
cess is repeated across a range of scale parameters (as specified the scale parameter vector a* =
(ay,az,...,ay,), m € Z) to produce the super-array of coefficients D = [D,,, D,,, ..., Da,,]
whose entries are the coefficient arrays specified in equation (7.50) that are relevant to scale a,,
where m € 1,..., M. Each entry within the array D is a coefficient that can be considered a
feature which is denoted z ¢ C. For the [th filter, the ath scale and the location specified by the
pair (, y), the value of the feature for each of the NV images can be collected into a feature vector
Ziasy = {Z1amys -2 Nawy)- NOW for each feature vector z;, ., we associate the known
group label (g, ¢ G, n* € 1,...,n) with the jth image to produce the pair (zfmw Gn+). In

addition, the prior probabilities 7, , for each of the n groups by,

Mg v = % (7.51)
where N is the total number of images from the group g,,» and N is the total number of images
in the training data set.

For the task of image recognition, the unconditional probability of misclassification for each

group (denoted pmc, ) is of interest and is defined as,

pmcgn* - Pr[é(zl,a,a:,y) 7é Gn~, é(Zl,a,ac,y) € (91, g2,... 7gn)|G = gn*} (752)

where the symbol Pr denotes probability, the symbol G denotes the true state or group of the
sample and ¢(z;4.,) : C — (g1,92,...,9,) denotes an arbitrary classification function that
takes coefficients from the complex plane C and assigns a group label from the set G (adapted
from equation 2.1, page 18, Ripley 1996) . Application of the classifier ¢(z; 4,5, ) to the feature

vector z; 4., produces a classification vector C;, ., = (g1, J2, - .., Gx) of the estimate of the



7.4. FILTER FUNCTION SELECTION 175

appropriate group for each image using the coefficient information from the :th filter, at the
ath scale and at location (z,y). If the classifier does not separate the groups perfectly, then
¢(z102y) = C # G. The total unconditional probability of misclassification pmc for all

groups is then,

pmc = Pré(z;q.,) # GJ. (7.53)

In order to determine the probability of misclassification the posterior probability for each
group g,» (under the assumption that the elements from the coefficient vector z;, ,, is of a
certain fixed magnitude denoted z € C ) needs to be calculated. The elements in the vector z; , , ,,
are indexed by parameter, r = 1,...,n, so that the element z;, ., (7) is assigned value z if it
belongs to group g, (the group under consideration) and to the value zero if it is not in this
group. Denote the set 12 to contain all of those indices  to which the value of z was assigned.

Then the posterior probability for each group is defined as,

PriG = gnl210,00(r) = 2, 7 € Bl = p(gn*|2i0,04(r) = 2)

__TowPgu(2) (7.54)

2 i=1 TaiPg (2)

where p, . (z) is the probability density function of the feature (coefficients of magnitude z)
when only the data from the group g,,» is considered and z,;, . ,(r) is the rth element of vector
Zq,2,y (€quation 2.4, page 19, Ripley 1996). Provided all of the classification errors are con-
sidered to be equally serious, the group with the largest value of p(g,+|2j44,(7) = 2) (and
hence the largest magnitude of 7,,p, . (%)) is deemed to be the most probable group to which
the data belongs for that particular value of magnitude z. This method of assignment is known
as Bayes’ rule, it is the optimum method of classification and provides a limit on how well data

from different groups can be separated.
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The probability of misclassification pmc can be calculated from p(g,+|2iq4,.,,(r) = z) by
noting that,

pmc = E[l— @%}fp(gn*|zl7a,x,y(r) = z),7 € R
+0o0
= / p(2)[1 — Ig%}fp(gnqzl’a%y(r) =z,7 € R)|dz (7.55)

where p(z) is the probability density function of the data irrespective of group and when there
is exact assignment of observations to groups that is there is no ‘doubt’ report option avail-
able to the classifier (adapted from page 20, Ripley 1996). Function selection based upon the
probability of misclassification is closely related to Bayes’ rule. Calculation of pmc involves
using [1 — max]’._; p(gn+|21.a2,4(r) = z)] whilst Bayes’ rule involves allocating the observa-
tion to the group with max}._; p(gn+|2i.a2(r) = 2). The term p(z) in equation (7.55) is the
same irrespective of the group g+, thus it can be inferred that the larger the posterior probability
P(Gn*|21,0,2,4(7) = 2)] the smaller the probability of misclassification pmc. Different filter func-
tions in the library are compared using the probability of misclassification, the function with the
smallest probability of misclassification is selected for use in the adaptive image transform. By
adopting this approach we ensure that the filter function with the highest posterior probability
among all posterior probabilities calculated (the maximum of all max. _; p(gn+|Z1a,2,4(7) = 2))
and the filter function that achieves the separation of the data (for at least one group) is selected.

Integration over p(z)[1 — max’._; p(gn+|Ziaxy(r) = 2,7 € R)] in equation (7.55) can (at
times) make the calculation of the probability of misclassification (pmc) either computationally
demanding or infeasible. This obstacle is unacceptable in the adaptive image transformation
where the probability of misclassification must be calculated for many filters over many scales
and locations. A practical solution is to calculate bounds on the magnitude of the probability of
misclassification and to use these as a guide for filter function selection. The bounds proposed
are readily calculated and thus provide a realistic solution to the problem. When the conditional
probability density function p(g,+|2; 4 ,(r) = 2) is denoted as p(g,|2), the upper bound on the

probability of misclassification is given by,

pmc < [H(m) — JG(p(g1]2),p(g2]2), - - ., p(gnl2)] (7.56)

where H(mw) = H(m, a9, ..., m,) = — y_», 7;log, m; is a multi-dimensional version of Shan-

non’s entropy (section 20, Shannon 1948) which considers the entropy induced by the relative
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proportions of the groups and JG[p(g1|2), p(g2|2), - - .,p(gn|2)] is the Jenssen-Shannon diver-

gence which is defined as,

TG p(ae) plaelo). . planl2)] = ] S mntale)| - Somit[otals)] a5

where H(p(g;|2)] = — > i, p(g:]2)log, p(gs|2) is the Shannon entropy function for the con-
ditional probability density function p(g;|z). The Jenssen-Shannon divergence compares the
entropy of the sum to the sum of the individual entropies. In heuristic terms the entropy of the
entire data set (via H[> ", m;p(g:]%)] ), irrespective of group, is compared to the combined effect
of the entropies from each group (via > " | m; H(p(g;|z)). If there is little separation in the data
(for a particular group), then both of these terms will be approximately equal and the Jenssen-
Shannon divergence will be close to zero. If a particular group is clustered in a particular region
of the feature space, then it will have a low entropy and hence the terms H (>, m;p(g;|%) and
> mH(p(gs]z)) will not be equal allowing the separation to be identified. The lower bound

is given by,

pmc > ﬁ{H(ﬂ) — JGp(g1]2),p(g2]2), - - -, p(gnl2)]} (7.58)

(equation 5.4, page 149, Lin 1991).
The lower and upper bounds of the Bayes’ probability of error for classification are readily

computed using equations (7.57) and (7.58) provided that all the conditional probability density

functions p(g,+|z) can be accurately estimated from the data, z. The density estimation from data
problem is well studied in statistics and is well-documented, selected references include Wand
& Jones (1995), Silverman (1986) and Scott (1992). These methods can be used in practice to
estimate the probability of misclassification from data and thus select the filter functions from the
library. In this thesis an alternative technique called exclusive-or (XOR) estimation was devel-
oped and implemented to overcome the computational challenges produced by the large number

of density functions that need to be estimated. This technique is described in Section 8.2.2.
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The filter function selection algorithm that is based upon the probability of misclassification

can be incorporated in the adaptive image transform as follows,

i) For each filter function ¢)(a, x, y) in the library £ of the adaptive image transform, calculate
the coefficients, z and hence the bounds on the probability of misclassification provided
by equations (7.57) and (7.58).

i1) Retain those coefficients that have the smallest lower bound on probability of misclassi-
fication. Set the coefficients that correspond to the same scale and location on the other

filter functions in the library to zero.

iii) For those coefficients that were retained in the previous step, set to zero all of those whose

lower bound exceeds 0.50.

(iv) Create the array D*. This array is produced by recording the magnitude, filter index, scale
and location of all the coefficients that remain non-zero from the previous three steps. A di-

agrammatic representation of the reduced array of coefficients is displayed in Figure 7.14.

(v) Remove the super-array D from computer memory but retain the array D*.

Image Coefficients -,
1
2
3
J1 o2l ,j1,a1,71,y1 e2l2,j1,a2,22,y2
J2 211 ,j2,a1,T1,Y1 eZl2,j2,a2,72,y2

Figure 7.14: Schematic diagram to represent the array D*. The coefficients Zl{a,:v,y that are se-
lected by the filter function selection algorithm are recorded in this array where the rows corre-
spond to different images and the columns correspond to different combinations of the parame-
ters (1, a,x,y).
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The filter function selection algorithm is applied to the super-array D to give a vastly reduced
array (but still not small in general) of coefficients D*. For the majority of cases the filter func-
tion selection algorithm will reduce the data to one complex coefficient for each scale-location,
from the eight coefficients that come from the full library of filter functions in the transform.
This is because one coefficient will often be optimal in the Baye’s probability of misclassifica-
tion. Sometimes coefficients from multiple filter functions will be retained as the algorithm may
not be able to decide on a clear winner. In the array D*, each column is the coefficient from a
scale-location which best classifies the groups when classification is done independently. Also
in the notation, the index of the filter function which produced that coefficient is retained so that
cases with more than one coefficient for a scale-location can be identified. Thus the complex

coefficients are given the notation z/, , , where,

J indicates the image number,
l indicates the filter function,
a indicates the scale and

x,y indicates the location.

The filter function selection algorithm provides a method with which to select the best fil-
ter functions in the library for pattern recognition. It allows a diverse range of filter functions to
be considered and their performance compared. A variety of statistical techniques can also be in-

corporated to estimate p(g,-|z) allowing further development and improvement of the algorithm.
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7.5 Summary and Conclusion to the Adaptive Image

Transform

This chapter has introduced five new functions- the Gamma, Mellin, Chebyshev, Zeta and Witch’s
Hat filters each of which was designed to be efficient at identifying a particular type of feature
in a SAXS image. A transformation was proposed that uses these functions (plus another three
from the literature) to analyse a digital image over scale and location. This transformation is
adaptive in the sense that the most suitable of these functions can be selected to represent the im-
age. Different functions can be used within the same transform allowing a flexible representation
that is not offered by many other image transforms such as curvelets.

Use of Bayes” rule allows the problem of selection of the most appropriate filter function
from the library to be tailored to classification problems. More precisely, it provides bounds
on the Bayes’ probability of error for classification for each of the eight filter functions in the
transform. Across location and scale all of the filters are trialled. The image data for a particular
scale-location is conveyed by the coefficients from the ‘best’ filter (out of the eight in the library)
for the data. This approach to image modelling is different from other adaptive image transfor-
mation algorithms such as best orthogonal basis model which focus on sparse representations for
image compression. Such a strategy is selected because the vast amount of salient information in
an image is unlikely to be utilised if only a single filter was used. The library of filter functions
provides a better chance of picking up image features that might be significant for detecting can-
cer. These features could otherwise be missed. This approach seems far more sensible than the
ad hoc feature discovery methods that have been previously applied in the field of SAXS image
analysis (refer to Chapter 3) and is driven by rigorous mathematical methodology that can be
readily applied to others types of digital SAXS images, not just breast tissue. Such an approach
circumvents the problem of having to search for promising diagnostic features every time a new
application of SAXS technology is developed. Furthermore, we can be confident that the coeffi-
cients extracted using Bayes” rule in conjunction with the adaptive image transformation are the
best available for classification within the scope of the filter functions in the library. The adap-
tive image transform detailed in this chapter provides features (coefficients) via a deterministic
analysis, a statistical model must also be built to consider the stochastic part of the analysis and
use these features to provide accurate diagnosis. The development of this statistical model will

be the subject of the next chapter.





