Management Options for the Inland Fisheries Resource in South Sumatra, Indonesia

by

Sonny Koeshendrajana
B.Sc. (Bogor Agricultural University, Indonesia),
M.Sc. (Kasetsart University, Thailand)

A Thesis Submitted for the Degree of Doctor of Philosophy
of the University of New England

Department of Agricultural and Resource Economics
The University of New England
Arm dale, NSW 2351
Australia

August 1997
Declaration

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree.

I certify that, to the best of my knowledge, any help received in preparing this thesis, and all sources used, have been acknowledged.
Abstract

The objective of this study was to develop an appropriate analytical model for identifying an efficient level of exploitation of the inland fishery resource in South Sumatra, Indonesia. This study involved the evaluation of the existing status of fish stock and assessment of various possible policies for the fishery.

The main problem for the inland fishery in South Sumatra is the tendency for the resource to be over-fished, which has been well recognised as shown by some overall indicators, such as virtual disappearance of certain important species and continuous reduction in the size of harvested fish. These problems indicate that proper management is required. This was approached by formulating an analytical framework which includes biological, economic and social aspects of the fishery.

Using the biological surplus production model, a bioeconomic model for the inland fishery was developed. Based on the models of Gordon-Schaefer, Gordon-Fox and Copes, supply models for the fishery were estimated. Demand for freshwater fish in the region was assumed to be perfectly elastic.

Primary data were used to describe recent cost of fishing effort. Secondary data, combined with results of analysis of primary data, were used to derive a supply function for the fishery. Given the available data, and in order to satisfy the requirements for applying the selected model, different types of fishing gear were standardised into a single fishing unit and mixed species of harvested fish were treated as an aggregated fish stock.

Empirical results revealed that both riverine and swamp fisheries in South Sumatra, Indonesia, were biologically and economically over-fished during the period of study. This implies that proper regulation is required to reduce the level of fishing effort.
Using simulation procedures, the relative effects of alternative policy options were analysed. Simulation results indicated the levels by which policy options producing an increase in total cost of fishing effort would reduce total fishing effort and increase stock biomass, and hence cause total catch to increase. It is argued that policy options directly restricting total fishing effort, although effective in protecting the fishery, should be accompanied by other regulatory regimes. Limited-entry regulations alone were undesirable in the long run because of their requirements in terms of considerable costs in maintaining and controlling the policies. One suggestion for overcoming this enforcement problem is for the government to decentralise management of the fishery to the local level. In addition, the limited-entry regulations can be combined with regulatory regimes such as increased licence fees. Model results also suggest that the current trend of increasing fish price may negatively affect fishermen, consumers and the fishery resource, which means that the government may wish to control the fish price at an appropriate level.
Contents

Declaration ii
Abstract iii
List of Tables ix
List of Figures xii
Acknowledgments xv

1. INTRODUCTION 1
 1.1 Background 1
 1.2 Problem Statement 5
 1.3 Objective of the study 6
 1.4 Hypothesis 6
 1.5 Organisation of the thesis 6

2. THE STUDY AREA 8
 2.1 Introduction 8
 2.2 Characteristics of Inland Fishery in South Sumatra 10
 2.3 Production System of the Fishery 13
 2.3.1 Fishing gear and techniques 13
 2.3.2 Fish populations 18
 2.3.3 Spatial distribution and fish production 19
 2.4 The Fishing Community 22
 2.5 Demand Relations and Market 23
 2.6 Fishery Management Practice 25
 2.7 Summary and Concluding Remarks 26

3. METHODOLOGY 27
 3.1 Introduction 27
 3.2 Biological Models 27
 3.3 Economic Models 39
 3.3.1 Supply 44
 3.3.2 Demand 48
3.4 Bioeconomic Models and Optimal Resource Use
 3.4.1 Alternative sustainable equilibrium 49
 3.4.2 Measures of welfare change 55
3.5 Fisheries Management 58
 3.5.1 Licensing 59
 3.5.2 Limited entry 62
 3.5.2.1 Taxes 62
 3.5.2.2 Quotas 64
 3.5.2.3 Gear restrictions 65
 3.5.2.4 Mesh-size limitations 65
 3.5.2.5 Closed seasons 65
 3.5.2.6 Closed areas 66
 3.5.3 Territorial use rights in fisheries (TURF’s) 66
 3.5.4 Mixed regulations 67
3.6 Summary and Concluding Remarks 67

4. DATA, SELECTION OF PARAMETERS AND ESTIMATION PROCEDURES 69
 4.1 Introduction 69
 4.2 Data and Data Sources 69
 4.3 Measurement of Variables 71
 4.3.1 Catch and effort 71
 4.3.2 Costs of fishing effort 78
 4.3.3 Price of freshwater fish 81
 4.3.4 Annual prices and consumer price index 81
 4.3.5 Annual fish consumption and per capita income 81
 4.4 Selection of Models, Their Parameters and Estimation Procedures 83
 4.4.1 Supply models, parameters and estimation procedures 83
 4.4.2 Demand models, parameters and estimation procedures 86
 4.5 Summary and Concluding Remarks 88

5. EMPIRICAL RESULTS 90
 5.1 Introduction 90
 5.2 Supply and demand for the fishery 90
 5.2.1 Supply of fish from the fishery 90
 5.2.2 Demand for fish from the fishery 97
 5.3 Bioeconomic Model and Optimal Resource Yield 101
 5.3.1 The Gordon-Fox and Gordon-Schaefer models 102
5.3.2 The Copes model
5.4 The Base Case Model and Sensitivity Analysis
 5.4.1 Rationale
 5.4.2 Estimation of biological parameters and initiation of the
 ‘base-case’ model
 5.4.3 Sensitivity analysis
5.5 Summary and Concluding Remarks

6. THE FISHERIES RESOURCE ALLOCATION AND PROPERTY
 RIGHTS SYSTEM
 6.1 Introduction
 6.2 Fisheries Resource Allocation
 6.3 The Design of Fishing Rights Systems
 6.3.1 The nature of traditonal fishing rights
 6.3.2 Organisation of the fishing community
 6.4 Summary and Concluding Remarks

7. MANAGEMENT OPTIONS, SIMULATION AND POLICY
 IMPLICATIONS
 7.1 Introduction
 7.2 Rationale
 7.3 Assumptions
 7.4 Simulation Results
 7.4.1 Policy options affecting total cost of fishing effort
 7.4.2 Policy options affecting price of freshwater fish
 7.4.3 Policy options affecting total fishing effort
 7.4.4 Policy options affecting total cost of fishing effort and total
 fishing effort
 7.5 Adjustment Path
 7.5.1 Adjustment path caused by policies restricting the fishing effort
 7.5.2 Adjustment path caused by policies which increase the total
 cost of fishing effort and restrict fishing effort
 7.6 Implications of the Simulation Results
 7.6.1 Policy options directly affecting total cost of fishing effort
 7.6.2 Policy options directly affecting price of freshwater fish
 7.6.3 Policy options directly affecting total fishing effort
 7.6.4 Policy options directly affecting total cost of fishing effort and
 total fishing effort
7.7 Summary and Concluding Remarks 168

8. SUMMARY AND CONCLUSIONS 170

8.1 Introduction 170
8.2 Summary of the Study 170
8.3 Policy Implications 174
8.4 Limitations of the Study 175
8.5 Contributions of the Study 175
8.6 Area for Further Study 176

REFERENCES 178

Appendix 192
List of Tables

1.1 Number of fishermen and fisheries production in Indonesia according to types of resource, 1983-1990 2

1.2 Selected species of harvested fish from Lubuk Lampam fishing ground in South Sumatra, 1985-1993 4

2.1 Fishing gear used on riverine, swamp and lake fishery resource in South Sumatra 15

2.2 Units, number of trips and total production of inland fishery in South Sumatra according to selected regions and years 20

4.1 Average annual riverine and swamp fishery data of South Sumatra Indonesia, 1979 -1994 73

4.2 Average investment costs of bubu portable trap in the inland fishery in South Sumatra, 1994 79

4.3 Calculated costs of fishing effort by bamboo fishing traps (bubu) in different types of resource in South Sumatra 80

5.1 Regression results for selected model in each type of fishery resource in South Sumatra 91

5.2 Estimated result of double-log demand function for fish in South Sumatra using 1978-1993 data 99
5.3 Calculated effort, catch, costs, revenues and profits of the inland fishery in South Sumatra, Indonesia, based on fixed price model by using Fox model

5.4 Calculated effort, catch, costs, revenues and profits of the inland fishery in South Sumatra, Indonesia, based on fixed price model by using Schaefer model

5.5 Calculated effort, catch, costs, revenues and profits of the inland fishery in South Sumatra, Indonesia, based on Copes model

5.6 Estimated biological parameters of fish in terms of catchability coefficient (q), intrinsic growth rate (r) and carrying capacity (K) in different types of resources based on Schaefer models

5.7 Description and values of model parameters and variables based on Copes model

5.8 Sensitivity analysis of biological parameters of the inland fishery in South Sumatra, Indonesia

5.9 Results of sensitivity analysis of biological parameters in terms of relative change in stock size and total catch

7.1 Description of selected policy options in the inland fishery management in South Sumatra, Indonesia

7.2 Comparative static analysis of policy options affecting total cost of fishing effort in terms of relative change in level of fishing effort and catch in both types of resource
7.3 Comparative static analysis of policy options affecting total cost of fishing effort in terms of relative change in biomass of the fish stock and catch in both types of resource

7.4 Comparative static analysis of an increase in fish price in terms of relative change in level of fishing effort and catch in both types of resource

7.5 Comparative static analysis of policy options affecting total fishing effort in terms of relative change in level, catch and stock size in both types of resource

7.6 Resource rent or profit generated by limited-entry regulations in both types of resource

7.7 Percentage change in stock size (Y) and catch (Y) by various policy options affecting total cost of fishing effort and restricting fishing effort in the long run in both types of resource

7.8 Resource rent or profit generated by various policy options affecting total cost of fishing effort and restricting fishing effort in the long run in both types of resource
List of Figures

2.1 Geographical map of Indonesia 9

2.2 Typical hydrogeographic map of inland fishery in South Sumatra, Indonesia, represented by the Ogan-Komering-Lempuing catchment area (from anon. 1994) 12

2.3 Typical fishing units operated in the inland fishery of South Sumatra (modified from Arifin and Ondara 1982) 17

2.4 Typical marketing channel of fresh water fish from the inland fishery of South Sumatra 24

3.1 Basic biological model of the fisheries dynamics and four directions of possible elaboration (from Hilborn and Walters 1992, p. 70) 29

3.2 Biological relationship between growth, stock and time 34

3.3 Sustainable rent generated by the fishery resource using the Gordon-Schaefer model 43

3.4 Relationship between catch, effort and cost in a fishery 47

3.5 A fixed price model of a fishery indicating five possible equilibria, i.e., the MEY (E1), MScY (Ex), MSY (E2), ZRR (E3) and ZScY (Ey) 51

3.6 The Equilibrium Point of the maximum sustainable yield (Y4) maximum economic yield (Y3), monopoly (Y2) and bioeconomic condition (Y1) under the variable price model 57
4.1 Average number of trips according to fishing unit operated in riverine and swamp fishery resources in South Sumatra, Indonesia

4.2a Standardised catch and fishing effort in terms of *Bubu* portable trap in riverine fishery in South Sumatra, 1979-1994

4.2b Standardised catch and fishing effort in terms of *bubu* portable trap in swamp fishery in South Sumatra, 1979-1994

4.3 Annual freshwater fish and beef prices and CPI of South Sumatra, 1978-1993

4.4 Annual per capita consumption of fish and income of South Sumatra, 1978-1993

5.1 Estimated profits derived from the Gordon-Fox model in South Sumatra inland fishery

5.2 Various ‘critical points’ of fishing effort in South Sumatra inland fishery estimated by the Gordon-Fox and the Gordon-Schaefer models

5.3 Supply and demand for fish derived by Copes model in South Sumatra inland fishery

5.4 Adjustment trajectory caused by changes in biological parameters (r, K and q) in terms of change in stock size (FX) and catch (Y) in the riverine fishery

5.5 Adjustment trajectory caused by changes in biological parameters (r, K and q) in terms of change in stock size (FX) and catch (Y) in the swamp fishery

6.1 Legal structure for fisheries resource management in Indonesia
7.1 Typical supply and demand curve relationship for freshwater fish and their corresponding sustained yield curve

7.2 Evolution of total catch (Y) and change in stock (FX) caused by 10 per cent (a), 25 per cent (b) and 50 per cent (c) reduction in the initial fishing effort in riverine fishery

7.3 Evolution of total catch (Y) and change in stock (FX) caused by 10 per cent (a), 25 per cent (b) and 50 per cent (c) reduction in the initial fishing effort in swamp fishery

7.4 Evolution of total catch (Y) and change in stock (FX) caused by mixed regulation in the riverine fishery

7.5 Evolution of total catch (Y) and change in stock (FX) caused by mixed regulation in the swamp fishery
Acknowledgments

In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah, the Cherisher and Sustainer of the worlds; without His blessing, surely I cannot complete this PhD dissertation.

The preparation of this dissertation has been made possible through the contributions of a number of people. I am particularly indebted to my supervisors, Dr Oscar Cacho and Dr Phil Simmons, for their generosity, encouragement and inspiration throughout the entire period of this study.

I am most grateful to Dr David R. I vans for his generous assistance and comments given in correcting my English writing. Sincere appreciation and gratitude is extended to Professor John Dillon for his kind help in providing current references for me from the ICLARM.

Special thanks are due to all staff of the Research Institute for Freshwater Fishery (RIFF) station, Mariana, South Sumatra for their general assistance and moral support, and assistance during the data collection period.

My thanks also go to the Research Institute for Freshwater Fishery (RIFF), Agency for Agricultural Research and Development (AARD) of Indonesia, for providing study leave, and to the Australian Agency for International Development (AusAid) for awarding me a scholarship, namely the ADCOS, which has enabled me to pursue my further study.

Thanks are also due to the Head of the Department of Agricultural and Resource Economics of UNE, Professor Roley R. Piggott, to all academic staff, administrators and all PhD candidates for their support and assistance during my study in Armidale.
Finally, I am very grateful to my parents for their spiritual support and encouragement. Also, to my wife Fitria Virgantari and my son Auliansa Muhammad for their understanding, spiritual support and encouragement, so that I could prepare this dissertation.

Even though an effort has been made to maintain the accuracy of the presentation in this thesis, I accept responsibility for any remaining error(s).