Chapter 1

Introduction

1.1 Nuclear Spin Relaxation

Manv atomic nuclei have a non-zcro spin angular momentum in their ground state, and
as such have a magnetic dipole moment. Different orientations of the magnetic moments
with respect to an applied magneti - field 13 correspond to different maznetic energies I,
According to the Boltzmann law, the pooulations P, of the encergy levels are therefore
proportional to exp(—1,,/kT), wtere k i- the Boltzmann constant and 7' is the absolute
temperature. A sample containing N spins consequently has a net magnetisation A/ and in

the high temperature limit it can he expressed as

1\[” == \()I}(‘) (ll)

where \( is the static nuclear su: ceptibility and is proportional to /T (the Curie law)
{Abragam, 1961).

A sample containing such a population of spins. when immersed in a static magnetic
field (chosen to be the z direction), will have the spins precessing about the magnetic field at
their Larmor frequency. If a magnoatic field 3] rotating at the Larmor frequency is applied
in the . —y plane perpendicular to the static field, the individual nuclear magnetic moments
may be rotated with the result tlhat the entire macroscopic magnetisation may be turned
away from the static field. Once the pert irbing field is removed, the spins will then relax
back to their equilibrium orientations at a rate that can be detected.

The application of the rotatiny magnetic field is the basis ol modern pulse NMR tech-

niques. The rotating lield, usually at vadic requencies of the order of 1000 times lower than
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the statie field. is applied for enoug b tinie 1o rotate the magnetisation through 907 (called
a /2 pulse) or 180Y (or 7 pulse). Immediately after a 907 pulse, the magnetisation lies
along the rotating y axis and will d cay back to equilibrium due to two mechanisms. It will
realign in the z direction as thermal equilibrium is regained and will dephase in the » — y
plane due to the field inhomogene tv. The decay of the magnetisation in the z direction
is exponential. with the time taken for the magnetisation to realign being given by the
time constant 77, called the spin-la tice {or longitudinal) relaxation time. The decay in the
£ —y plane may also be exponentind with a time constant 75, the spin-spin {or transverse)
relaxation time. The decay rate for the magnetisation in the @ — y plane is usually larger
than or equal to the decay rate for the recovery of the magnetisation along the = direction
(Fukushima and Roeder, 1981) .

If the magnetisation is observe | in the rotating frame of reference. e, in the rotating
2+ — y plane, then the magnetisation in the = direction will appear 10 be stationarv. The
equations describing the transforn ation from the laboratory [rame to a frame rotating at
the Larmor frequency cause the siatic field to disappear from the equations of motion of
the magnetisation. A 90" pulse is & pplied to the system and as soon as the pulse is removed
a steady field By is applied out of phase with the pulse. The spins then precess about this
field. and 3| becomes analogous 10 the Ey field in the laboratory frame. The relaxation
rate in the rotating frame has the time constant 77 ,.

In a bulk material the spins ar» able to diffuse due to thermal activity. The motion of
these precessing spins will result 'n fluctuating magnetic dipolar interactions. [t is these
interactions that allow the z component of the non-equilibrivim magnetisation to recover to
its equilibrium value. Ior a spin to align itself with the applied field energy must be trans-
ferred, so the rate at which the m:ignetisation recovery occurs depends on the mechanisms
available for the spins to transfer »nergy to something else. namely the lattice. The mech-
anisms include rotations. vibratior s and translations of the spins, so that the examination
of the relaxation rates can give viluable information about the motion of the spins. The
relaxation rate in the rotating frame will be most strongly affected by motions occurring
at the Larmor {requency in the ro ating frame, thus making analysis in this rame sensitive
to slow motions in the ktlz freque ey region rather than the MHz region of the laboratory
frame,

The purpose of this thesis is 5 examine the nuclear spin relaxation rates for dilfusion

in a disordered syvstem. This is co nplicated as the presence of the disorder means that the
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spins no longer diffuse about the : vstem in a siiaple. regular manner. T'he way in which
the disorder is manifest in the svstm is diflicult to know exactly and the modelling can be
difficult and time consuming for a large system with many spins present. For this thesis it
was decided to examine the relaxa ion rates by modelling the diffusion exactiyv for a small,
finite system at a low concentraticn of spins. The time constants 1y and Ty, can then be
calculated exactly and compared t) both cxperimental and theoretical work carried out on
much larger systems. The purpose of this was to see how accurately a small system coull
model the real, large scale systems and to gain some insight into the mechanisms behined
the diffusion process in a disordered system.

The siniplest model for diffusior is to consider a single spin on an otherwise empty lattice
that is diffusing by making jumps to nearest-neighbour sites. The jumps are assumed to
be discrete and occurring instanta eously from one site to another. Site blocking by other
spins, an important consideration for any real system. is also considered when caleulating
the probabilities of spins jumping to vacaut sites on the svstem. This is called the simple
hopping model.

The next section describes a particular example to which the theory can be applied:

that of hvdrogen in metals.

1.2 Hydrogen in Metals

Hydrogen in metals is an example of diffusion through both crystalline and non-cryvstalline
svstems. The reasons behind the : tudy of hyvdrogen in metals are twofold. Firstly, there is
the purely scientific pursuit of knowledge: secondly, there are the practical applications of
such systems.

Practical applications are derived from the fact that the thermodynamic properties of
the absorption process of hydroge 1 into metallic lattices can be put into use in energy stor-
age devices and heat pumps. Hydrogen is usually absorbed under counditions of rcasonable
temperature and pressure, and sinilar processes can be used to extract the hvdrogen when
required. [t has been found that under s .andard temperature and pressure, the hvdrogen
will remain trapped in the metalli- lattice for long periods of time (MeDowell, 1993). Clom-
mercial applications have so far Heen largely limited due to engineering difliculties, with
an exception being the development of the nickel-hvdrogen battery, a replacement for the

NiCad battery.
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When hydrogen is absorbed in o a me allic lattice, it does so as an interstitial defect.
The number of interstitial sites ava lable depends on the stracture of the 'attice: for example
in the FC'C structure the interstitial locations between atoms are the centres of tetrahedra
(~T" sites, giving eight possible si-es per unit cell) or the centres of octahedra (“O7 sites.
with four sites per unit cell). As a result of the large number of possible sites for the
hydrogen to occupy, a very large ¢ 1antity of hydrogen can be absorbed into a lattice, up to
a point where, in some cases. the censity can exceed that of liquid hydrogen.

Although there are a large nuiiber of mterstitial sites, not all will necessarily be filled
by hydrogen. Palladium, for exariple, can only absorb up to a relative concentration of
hvdrogen atoms of 0.6. i.e. giving a stoichiometry of Pdl g, rather than a ratio of 1.0 or
greater if all the interstitial sites wre filled. The amount of hydrogen that can be absorbed
is limited by a number of factors, including the electrostatic repulsien ol the hydrogen
atoms as they approach cach othcr. and by the effect the absorption of hydrogen has on
the electronic structure of the host. In general, two hydrogen atoms cannot be found in
sites that are closer than 2.1 A. a condition known as the Switendick criterion (Switendick.
1979).

The structure of the lattice aff>cts the way in which the hvdrogen diffuses. It the host
is not a perfect lattice, that is, it ontains some degree of disorder, then the diffusion will

be greatly aflected. The next secton details the kinds of disorder scen in metal alloys.

1.3 Types of Disorder

A disordered system is one that does not contain any long range order. There are several
wayvs in which disorder may be classified. the main ones being structural disorder, site energy
disorder and saddle point energy disorder. In general all three will be present in a sample.

Structural disorder occurs whe 1 the atoms of the system are displaced from their ordered
FCC, BCC, ete structure. Structiral defe-ts are classified by their dimensionality as point
defects (those of atomic size or effectivelv zero dimension). lincar defects or dislocations
(dimension one). surfaces and inte faces (¢ imension two) and voids, precipitates, inclusions,
cte (dimension three) (Allnatt and Lidiard, 1993).

Point defects are principally vacant lattice sites, interstitial atoms, forcign atoms and,
in compounds. what are called wrong atoms. These are where atoms are present in one

sub-lattice that properly belong o1 anothor.



CHAPTER I INTRODUCTION bt

Dislocations are a result of the way a specimen has been prepared and handled. Thoy
may contain straight sections. but are gensrally curved. The distortion of the ervstal struc-
ture around a dislocation bounda v can become an internal source of vacancies and inter-
stitials. In practice most solids will contain a fairly high density of dislocations ~ around
107 to 10'? lines cutting each squire metie of area.

Ioxternal surfaces interrupt the lattice Heriodicity of the otherwise perfect infinite crystal
and can act as sources or sinks of point defocts. An important interface defect is the stacking,
fault, where the correct relationslip betwaen successive lattice planes is upset.

Three-dimensional imperfecticns include voids, colloids (small metallic parcticles in a
compound host), bubbles, other | recipitate phases and inclusions. These are most signifi-
cant in diffusion as they can act ¢s sources and sinks of point defects.

Of these four classes of imperf xctions only point defects may exist in a state of thern.o-
dvnamic equilibrinm. In general, »oint defect concentrations increase rapidly with tempeor-
ature, decrease with pressure and in compounds. increase with departures from stoichion-
otry,

Site energy disorder occurs wl en the potential energy of the atoms in the svstem varies
from site to site. This creates potential wells, where a diffusing atom can hecome trapped.
as well as sites that allow the rapic hopping of atoms due to their relatively hallow potential

well.

Es e

Figire 1.1: Site Energy Disorder
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Saddle point enerey disorder is where the potential barrier that must be overcome for
a atom to jump [rom site to site varies from direction to direction. This can result in a
site having a jump from it blocked »y a large potential barrier in one direction. but having

another direction with a small barr er, thus allowing diffusion to continue.

E SADOLE

Figure 1.2 Saddle Point Fnergy Disorder

In asample all of these classifica ions of defects will be present. To simplify the modelling
of diffusion through disordered sy:tems it i often assumed that there is only one defect
mechanism present. Structural discrder is most often ignored and models of energy disorder
often use only site energy disorder »r saddle point energy disorder. The system used in this
thesis models small svstems with ither site energy or saddle point energy disorder, and
no structural disorder. While this is quite a simplification of the real situation it allows
some determination of which kinds of disorder have the greatest influerce on the diffusion
through disordered systems.

The next chapter will detail th> derivaiion ol the relaxation rates as well as examining
the work that has been done in the past on ordered and disordered svstems. Chapter 3 will
give the basic theory of applying t e model of finite svstems to both ordered and disordered
svstems. and will detail the testin: of the model on an ordered. infinite system. Chapter
4 will build on these results, app ving thom to a disordered system. and Chapter 5 will

conclude the thesis.



Chapter 2

Review

2.1 Nuclear Spin Relaxation Rates

Relaxation by dipolar coupling cen be analysed by treating the dipole dipole interaction
as a perturbation of the nuclear Zeeman Hamiltonian (Abragam. 1961) . The dipole-dipole

interaction between two spins [ ard S can be written

)
hHy = > FaAW (2.1)
=z
where the F(7) are random functicus of the relative positions of two spins, defined as

ol = fﬁl_}é‘_/(ﬂ)

o (2.2)
The vector ris the separation of the two spins [ and S, defined in spherical coordinates as
r = (, Q). The randomness of the functions 119 arises from the diffusion that aflects r.
Y5, (€2) are the normalised sphericar harmonies defined relative to the direction of the applied
I S . 2 , : -
magnetic field and d, are constan s such that § = 167 /5. df = Sz /15 and di = 327 /15.

The A1) are spin operators:

2 |
AW = 1{_§Ls;+r(us_+1_sg}
. )

AW = LSy 4 1S

. | )
{(2) = _2(\’[+;S_|.
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no= - -57175'/)

where 57 and 54 are the nuclear ¢ vromagnetic ratios for spins [ and 5 respectively. The
relations /(1) = F=D= and Al = 4D1 also hold.

The ensemble averaged correl:ition function, for both like- and wnlike-spin magnetic
dipolar interactions, is given by

( N o) gy ol 5

GOt = > FEP0)FL () (2.1)
)

where the subscripts ¢ and j represent the spins [ and S respectively. The corresponding

spectral density function is

‘]({I)(W) / (}'('”(f)o,\'p(vi“}/)(/[
— 2 /"\ Crv(!{)(f) (0\(\4)(‘){[[ (2.3)
v ()

Writing S. as I to highlight the fact that the spins are like spins it can be shown that

the macroscopic equation for spin-lattice relaxation of like spins has the form

d

‘l / 7 . .
m<1”+]£>:_7_{\l" + 1/>—<["+[~>U} (2-‘))
with

Ti] =R = 3 A+ 1) {.,JW(.JU) + .1“”(2%)}. (2.7)
The examination of the amplitude of jrecessing magnetisation in a plane perpendicular
to the applied magnetic field can b performed with similar methods. It leads to 7, in terms
of the spectral density functions () (w), which can be written as

1 K i -
— =Ry = AT 1) < TP (i) + 100 (W) + .1‘0)(0)} (2.%)
T, = N
and the relaxation rate in the rotiting frame is given by
1
,['l/)

= Iy, =5y W T+ L (2u) + 1000 (wg) + ./<“?‘(2w.)} (2.9)
where wg is 5 Bg. the Larmor {recuency i1 the stationary laboratory frame, while the [re-

quency wy is 5 By. the Larmor [tec uency i1 the rotating frame. [t is generally of magnitude
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1000 times less than that of the frequency wy. Ry, 2y and Ry, arve celled the relaxation
rates.

The parameter ¢ can take the values (, £1 and £2, and corresponds physically to the
possible transitions between nuclcar Zeeman states of a pair ol spins. The term ¢ = 0
corresponds to classical local magnetic field effects and coupled transitions between the
Zeeman states such that Am = -kl for one spin and Am = —1 for the second. These
transitions will conserve the eneryy of the spin system for like spins, but not for unlike
spins, so ¢ = 0 will not occur in Irgitud nal relaxation for like spin svstems. The terms
¢ = £1 correspond to Am = %1 or one spin and Am = 0 for the second. while ¢ = £2
has for both spins either A=+ or An. == —1. These transitions change the component
of magnetisation parallel to the direction of the magnetic field, so terms such as J( (&)
and JP (@) will appear in relaxat on rate expressions for both like and unlike spin dipolar
interactions.

Using the above deflinitions the correlation functions may be expressed as (Sholl, 1993)

A2 < Yo (0,)Y5 (52,)

G = -4 N7 . Po(ron(r.. rat 2.10
() A £~ " alra )l -l (210
and so the spectral density functic ns will be
, A7 o Yo, (Q2,)Y5,(25) )
](’)(w‘) = ‘1—7[: . ‘3,‘:51 })5,1(7',3)77(7‘“,'I’/j.w')- (‘211)
' o d fal 3

7 (r.,,ry. t) is the probability of the spins being separated by vy at time ¢ if they were initially
separated by r,. The term 7 (7,173, w) is the Fourier transform of the probability function
m(r,.ry.ti. Py(r,) is the equilil riuim probability of finding a pair of spins separated by
r.,. It is included to account for tl e fact that the jump rates out of a site dite to site energy
disorder. when present. are temperature dependent, so the initial distribution of spins on
the lattice is not constant and ¢ depend on temperature. In the absence of disorder
Pry(7,) is a constant equal to the average probability of occupation of a site.

The spherical harmonics in eq rations (2.10) and (2.11) are defined relative to the mag-
netic field direction as the z axis so that the correlation functions and thus the relaxation
rates depend on the direction of tie applied magnetic field relative to the erystal axis. LFor
polyerystalline or amorphous systems, only the average over all field directions relative to
the crystal axis can be observed. n this casce it is sufficient to consider the spectral density

functions averaged over all field d rections. although strictly it is the magunetisation rather
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than the spectral density functions that should be averaged but the difference between the
two is usually small (Barton and Sholl, 1930).

The spherically averaged corre ation lunctions are

d? Pa(cos 8,
— _'dTT’il'[)rq(rn’)’”r(ru-rd-’) (2.12)

Gy = .
";» Ij

o - lﬂ- -
7

and so the spherical averaged spectral density functions will be

0« P(cos 0.5)
S = SU B rn
HA x\/i )(1 ‘A’f
¢, .
= —’-](wl. (2 I ;)
dr ’

In these expressions 2)(cosé,, ;) is the second Legendre polynomial, which results from the
spherical harmonics averaged over all possible field directions, 8 being the angle between
r, and rgy.

An important feature of the es perimentally observed NMR data is the second moment
ol the lineshape. Al,. or a resonace curve described by a normalised shape function f(w)
with a maximum at a frequency <z, the ath moment A, with respect to the point wy is

defined as (Abragam. 1961)

A, = /(w = wo)” f(w)dw. (2.11)

If f(w)is svimmetrical with respect to wy then all odd moments vanish. The knowledge of
the moments gives some informatibn on the shape of the resonance curve and in particular
on the rate at which it falls down to zero in the wings, far away from wy.

The second moment of an NMR line is analogous to the moment of inertia of an ob-
ject with the same shape as the line and contains line-broadening contributions only from
pairwise interactions between spins (Fukushima and Roeder. 1981). In a homogencously
broadened system, cach magnetic resonai ce line is symmetric and the normalised free in-

duction decay (FID) can be expressed in a series

FO) =1 = 2?20 4 My 4= Mt® /60 + (2.15)

where Mo, My, Ay, ete are the sccond. fourth, sixth, ete moments of the lineshape. rom

this it can be seen that the second moment describes the short time behaviour of the system.
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In particular, the term (1 — 3512 /21 describes the FID to within 1% when it has decaved
to 89%. of its initial height.

In solids the most commonly fo ind lineshiape is Gaussian, which yields a second moment
given by A, = o2, where o is tle widtl of the Gaussian distribution. \Where there is
considerable motional narrowing t e lineshape will be Lorentzian in form. which does not

vield finite values for moments abcve the ficst moment Afy.

2.2 Spin Jump Rates

The spins in a lattice are able to diffuse due to the prescuce of defects, as outlined in the
previous chapter, and due to theriial motion of the spins and host species. The mean time
between jumps of a spin from one site to another is given by 7 and is often of the activated,

or Arrheniius form

T = 1yexp(F/kT) (2.16)

where & is the Boltzmann constant 1" is the absolute temperature and 7 is a pre-exponential
factor, which scales the jump time. £ is an activation energy, related to the potential barrier
that must be overcome for a spin to jump from one site to another. The spectral density
functions will be dependent on thii mean time 7 between jumps, so it is convenient to write

equations (2.12) and (2.13) as

! Z P 0.3
/!u [/T = [ ) (,()s.. 74)1)’(1(71")”(74&"‘70!1*,//T)
A2
Ji(wr)y = -Lrfiws)
s
d? ,
= L(eriJ(wr). (2.17)
CTw

The first form of the spectral density function gives the relaxation directly for a fixed
7. l.e. constant temperature, whereas the second {orm is useful for obtaining the relaxation
rates as a function of temperature for a fixed frequency. as is usual in experiments.

For an ordered system each site is at the same potential, so that the diffusion throughoit
is characterised by a single jump t ine. In this case there is only one independent variable to

consider for an experiment at a fixed frequency, the product wr. and equation (2.17) will give
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the spectral density functions for a single spin diffusing about the lattice. It the correlation
between two diffusing spins is bein 2 studied, then 7 must be replaced by 74 = 7/2.

When presenting the results cf experimental or modelled NMR data the convention
is to plot the relaxation rates R; as In(wR;) versus In(wr) so that the wr-axis becomes
proportional to 1/T. The curves produced are, for an ordered system, symmetrical. with
peaks at wr = (', where (" is of the order of unity. Since there is only a single independent
variable wr, a set of universal cur-es for the relaxation in the system under consideration
can be drawn. A change in the frequency «t which the experiment is performed will merely
result in a scaling of the relaxatior curves.

This is not the case for a disordered system. The curves are fonnd to be no longer
symmetric, the peak positions are shifted and changing the frequency will give a different
set of results that are no longer merely a scaling effect. The presence of the disorder resulis
in a spread of jump times across the system which leads to these effects. Previous work
that has indicated such effects wil be examined in Section 2.4, while Chapter 1 will show
the results of the procedure adopt d by this thesis when applied to a disordered system.

The theory of nuclear spin relaxation in ordered systems has been well studied and the

next section will briefly review wo 'k in this area.

2.3 Ordered Systems

The simplest model for the spectri | density functions in an ordered lattice is dne to Bloem-
bergen, Purcell and Pound (194%). It effectively assumes that the probability of a spin

jumping from one state to anothe - in a time ¢ is given by

(1,7 t) = dapexpl—t/T4) (2.1%)

where 7, is the initial separation cfa pair of spins. rjz is the final separation of the spins and
70 is the mean time between jump, of one of the two spins. This is correct at time ¢ = 0 but
is an approximation for other times. The exponential exp(—f/7;) is the probability of there
being no jump in a time £ If 7, is the mean time between jumps of a single spin the above
oquation is applicable for diffusior of unlike spins, for example, when one spin is fixed and
another diffuses. For like spin diffusion. where both of a pair of spins diffuse. 7y must be
replaced by 7,/2. This BPP mod I corresponds physically to assuming that when a jump

occurs the correlation between tle two spins is destroved. This would be the case il the
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jump occurred over very large distances. n practice the jump distances are small enough
for the correlation to be signilicant for several jumps of the diffusing spins. T'he model
also does not take into account structura differences in the samples when modelling the
diffusion. only including structura effects in the lattice summation. The spectral density

function that corresponds to this nodel is

7 2
I+ (wTy)?

Torrey (1953) realised the BPP model gave no great insight into the diffusion mechanism

J(wry) = (2.19)

and introduced a method of exanining some of the microscopic details of the diffusion
process. He used a random walk theory to account for the diffusion amongst lattice sites.
The random walk theory used a Pcisson distribution of jumps of a spin and the calculations
were simplified by assuming one spin was lixed at the origin and the other diffused at twice
the standard jump rate. The corrclation function was written as an eusemble average. and
then an expression was derived for the jurip probability that involved the structure factor
A(p) and the probability function f(ry) that depended on the nature of the diffusion taking
place. The function f(ry) is the iaitial spin density which depends on the circumstances
of the particular problem. Lor uriform spin density f(rp) is a constant while for lattice
diffusion f(ry) may be expressed as a swin over delta functions centered at the lattice
points. The structure factor A(p) is defined by inverting the three-dimensional Fourier

transform of the probability of a s»in being found at r and integrating over all r:

A(p) = / Py(r)explip - r)dr. (2.20)

Pi{r)dr is the probability that aft>r one jnmp of the spin the new spin position will be at
1 | A .

r in dr relative to its previous position. or a random walk on a space lattice the integral
form of the structure factor is repli ced by a summation term over all the nearest neighbour

sites:

Alp) = —l Z(‘Xp(ip'n) (2.21)

e
where z is the number of nearest 1 eighbot rs.

Torrey was not able to solve he equations exactlv. By assuming isotropic diffusion,
where A(p) depends only on the nagnitude of p and [(rg) = n, or uniform spin density,

he was able to evaluate expressiors for the spectral density functions in the low and high



CHAPTER 2. REVIW I

temperature regions. These expressions then depended on the form of the structure factor
chosen. For lattice diffusion an exy licit solntion could only be obtained for the low temper-
ature region. where wr > 1. To cover the whole temperature range the approximation of
isotropic diffusion where each jump distance was always the same was used. He found that
this approximation gave good agrcement with the explicit solution in the low temperature
limit from which he concluded that his model gave an adequate approximation to the lattice
diffusion problem.

Sholl (1974) applied 1his theory of lattice diffusion rigorously and compared the results to
those of Torrey for the FCC lattice. The low and high temperature limit could be evaluated
exactly, and numerical summatior s were 1sed to obtain data between these lunits, Sholl
found that the differences betweer the exact analysis and the work of Torrey were quite
small, with the maximum differer ce being 2.5%. Torrey’s method of approximating the
twelve nearest neighbours of the F 'C lattice by spherical symmetry was expected to be less
accurate for BCC and SC lattices due to their lower number of nearest neighbours.

Sholl (1975) later extended his exact analysis to BC'C and IPCC lattices and found that
the agreement with results from Lorrey’s work was worse than that for the I'C'C' lattice, as
expected.

Wolf (19741) developed a model to calculate T for a monovacancy system. This was the
simple-hopping model applied in 1he limit where there is a low concentration of vacancies
so that they do not interact in an infinite crystal. In comparing Woll's results to the BPP
and random-walk approximation, where a single particle diffuses as if on an empty lattice,
Fedders and Sankey (1978) first usad a mean-field approximation that iucluded a correction
term to the random-walk approximation to account for the fact that two particles could
not occupy the same site. The ca culations were done using a reciprocal-space formalisin.
The mean-field model assumes the t any size a single particle might hop to has a probabiliry
¢. the concentration of vacancies, of being vacant. Thus the concentration of particles ¢ is
given by ¢ = | —¢. This approxi nation is exact when ¢ — 0 or ¢ = 1. This lowered the
relaxation rate 7' by 1% at low [equencies and raised T by 18% at high frequencies for a
simple cubic lattice, indicating thit the re ndom walk model was inaccurate in these limits.

Fedders and Sankey then apylied a more accurate multiple-scattering approximation
which can be described as including the multiple scattering of the specific particle with a
single vacancy (or other particle) exactly while the rest of the vacancies or particles are

taken into account in a mean-fielc approsimation. They found the results from this model
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s |

agreed well with the computer simulatiors of De Bruin and Muorch (19733 and believed
their data to be exact to between 1% and 84 when ¢ = 1. better than 1% il ¢ < 0.9 and
approached 2% accuracy as ¢ — 0.

Barton and Sholl (1980) expan -led on the work done by Fedders and Sankey. By taking
the double Fourier transform and summing over the first Brillouin zone, as was done by
Fedders and Sankey, care had to be taken in evaluating the lattice summations so that they
would converge. Barton and Sholl used the planewise summation method, a more efficient
system than the Ewald method en ploved by Fedders and Sankey.

The Brillouin zone summations were calculated by realising that the 1°C'C or BC'C attice
sites were sublattices of a SC' latt ce of half the FCC or BC'C lattice parameter. Neares!'-
neighbour jumps on a FCC lattice hen corresponded to second-nearest-neighbour jumps on
a SC lattice and nearest-neighbou  jumps on a BCC lattice corresponded to third-ncares:-
neighbour jumps on the SC' lattite. This gave the advantage that the reciprocal-space
summations were then evaluated over the simpler SC' Brillouin zone. The mean-field and
random-walk approximations coull then be casily calculated over the whole temperature
range for all three lattice structur»s. Barton and Sholl found that the results obtained by
this method were in good agreement with those of Fedders and Sankey,

FFaux. Ross and Sholl (1986) : pplied the Monte Carlo method to a variety of crystal
structures over a wide range of sp n conccutrations. Forms of the corvelation function and
spectral density function could be found analytically for small and large values of ¢ and
y = w7/2 respectively, and these were used to analvse the Monte ('arlo simulation data
accurately. The simulation itsell only included the relative motion of pairs of spins which
were within a distance d of each other at time zero and at time {. so a correction term
for other spin separations had to ne included. This was evaluated in a similar way to the
analysis used by Abragam (1961) in his calculation of spin-lattice relaxation rates due to
translational diffusion in liquids.

The Monte Carlo data gave the correlation Tunction G/(¢) which then had o be Fourier
transformed to give the spectral censity function. Rather than use a least-squares fit to a
sum of exponentials, which gave naccurite results for the asymptotic behaviour of (/(i).
the expression for (/(t) was rewritten so that it displaved the proper behaviour for large and
small values of {, and gave an exoression. the Fourier transform of which could be taken
accurately,

For a concentration of ¢ = 0 0l the results from the Monte Carlo simulation agreed
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to better than 14 for y < L8 when compared with the mean-field theory caleulations
performed previously (Fedders and Sankey. 1978, Barton and Sholl. 19%0). Ior larger values
ol y statistical errors in the calcula‘ions produced fluctuations in the lourier transform aul
hence also in the relaxation rate. Other concentrations were also madelled with the result
that reasonablv accurate data could be generated, when compared to the analytic forms for
large and small values of y. 1t was found as the concentration was varied the magnitude of
the relaxation maximum varied by only approximately 6% over the whole range of ¢, but
that the position of the maximuimn showed a strong concentration dependence.

Sholl (1988) recognised that tables of rumerical data were often unwieldy and inconve-
nient to usce when calculating relax tion ra es. He proposed an analytic form of the spectral
density function that was calculate I to fit the tabulated data. The analytic form comprised
seven parameters which could be ovaluated for different concentrations and crvstal struce-
tures by considering extremes suct as w7 '3 [ and wr — 0 as well as peak positions of the
curves. Once a set of parameters was determined, the entire spectral density and relaxation
curves could be generated. This produced a much simpler table of parameters based on the
crystal structure and the spin concentration. The results were compared to known data in
the high and low frequeney limits, as well as peak positions. The analytical approximation
was found to be accurate to better than 2.

Monte Carlo simulations have »cen performed by Bustard (1980). based on a modified
system used by Barton and Sholl. The simulation used over 6000 spins on a 20 x 20 x
20 simple cubic lattice. The technique calculated the correlation function (/(¢) at discrete
times, approximating this descrip:ion by a linear sum of exponentials and then Fourier
transforming this exponential suir. They found that for large vacancy concentrations the
computer model was highly inefficient due to a lack of spin pairs with a suitable number of
first, second, and higher nearest d'stances for the lattice size used. Their results compared
[avourably with previous work. In the monovacancy limit and for the low frequency regime
the results differed from Woll's by less than 6%.

This is by no means an exhaust ve analysis of the previous work done on ordered systems.
but is to indicate that this is a we | covered and understood area. Accurale analvtic forms
for diffusion in ordered systems are known for a wide range of crystal structures and spin
concentrations and spectral densitv functions can be easily calculated.

Diffusion in a disordered syste n is much less well understood and a great deal of work

has been done in attempting to understan:l the mechanisms behind the diffusion processes.
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The next section will outline some of the work that has been done in this area.

2.4 Disordered Systems

There are many theories on the storage of hydrogen in amorphous svstems and on the
mechanisims behind the diffusion. The complex nature of disordered svstems has led to a

large number of different ways to analyse sxperimental data and model the diffusion.

2.4.1 Structural Analysis

The detailed structure of disorder-d systems is often uncertain. There are. however, sonie
cases where models have been developed. An example is the work of Harris, Clurtain and
Tenhover (1987) who made electrechemical studies of early and late transition metal amor-
phous alloys. Based on their work they corstructed a model for the absorption of hvdrogen
in the amorphous system. They proposed that for hydrogen storage in alloys of stoichiome-
trv Ay, f3,.. the glass was a chemically random alloy with a structure composed of packed.
distorted tetrahedra. The types of metal atoms at the vertices are given by 1, _, B, . where
n = 1,2.3 or 4. so that the numbcr of each type of tetrahedra is proportional 1o the prob-
ability of choosing n B and 1 — 7 A atoms from the overall alloy composition. Due 1o
extended site blocking effects not all of the available hydrogen sites may be occupied simul-
taneously, and Harris ¢t al. propored that the number of available hvdrogen sites per metal
atom was 1.9, independent of typ> of site, alloy composition and hydrogen concentration.
Hydrogen interstitial sites were lccated at the “centres”™ of these tetrahedral units. They
assumed the energetics of the hydrogen in the metal were independent of the temperature
and independent of the value of & in the composition. This distribution enabled Harris «f «l.
to predict the total hydrogen con entration for Nij_,.7Zr,. alloys with an accuracy between
0 and 15% when compared to experimental results.

McDowell (1993) followed the same reasoning as Harris «f «l. when considering the way
in which hyvdrogen was stored in amorphous Nigasy Zroesrll,. As nickel is a much poorer
hydrogen absorber than zirconium MeDowell suggested that the interstitial hvdrogen would
prefer sites with four zirconium nrarest neighbours over those with more nickel as nearest
neighbours. The probability that any site chosen at random in the amorphous Niy_, 7Zr, 11,

svstem had n nearest zirconium 1 eighbours was then given by the binomial theorem
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]
P(Nij_,r,) = -—'—-—l-'—A—'(] — )Ty (2.22)
(-l —n)!

This disorder would then lead to s te energies that varied from site to site in the system,
Kirchheim (1982) used a Gaus: ian distribution to model the density of states of hyvdro-
gen in an amorphous system and derived an expression for the hydrogen chemical potential
as a function of the mean free enthalpy of solution in terms of an error function. e verified
this by making e.m.f measurements of the chemical potential of hydrogen of different con-
centrations in the metallic glass Pilr7.55116.5Cug and NiggZrss. He found the experimental
data fitted the error function form of the hydrogen chemical potential very well. A rectan-
gular function for the density of stites was also tried. but this failed to fit the experimental
data. Kirchheim concluded that tl e measurements of the chemical potential of hyvdrogen in

amorphous systems were very sensitive to the kind of density function used.

2.4.2 Data Interpretation ind Curve Fitting

A large amount of experimental work has been done on nuclear spin relaxation due to
diffusion in disordered systems. In an effort to understand the processes behind the diffusion
and to explain the features of tle observed relaxation rates researchers have examined
specific parameters ol the diffusior and fitted curves to the experimental relaxation rates
curves. IFor example, Bowman, At alla, Maeland and Johnson (1983) studied NMR data for
amorphous ZryPdH, as well as crystalline hvdrides. They calculated correlation times over
a wide range of temperatures for both systems from the minimum value of experimental
relaxation rates in the rotating frame using an expression for 77, that had been found
previously {Bowman. Rosker and Johnson, 1982). The amorphous system did not obey an
Arrhenius plot: instead it appeare 1 to be made np of three distinct straight line segments.
This was interpreted as indicating three separate jump processes. perhaps along different
diffusion pathways. The slope of jart of the amorphous correlation time curves was similar
to that for the crystalline system:. which suggested that there were some gimilar diffusion
pathwavs. This reasoning was in -orrect since if data were taken at a different frequency
for the sarne sample then the analysis would indicate that there were two different hopping
rates for the same temperature. Fowman «f «l. had used the theory for an ordered system
to analyse their data, which led to the incorrect interpretation of the results.

Majer, Renz and Barnes (1991) used pulsed-field-gradient NMR 1o study the diffusion
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ol hydrogen in zirconium hydrides  The concentrations ol Zrll, studied were for v x 1.5
to & & 2. They found that the jun p rate departed from an Arrhenius hehaviour at higher
concentrations, a result that they nterpre ed as being due to a dillusion mechanism more
complex than a simple diffusion mdel. They proposed that as @ — 2 the hvdrogen began
to occupy higher energy interstitia sites other than the tetrahedral sites occupied at lower
concentrations. Their theory allov ed the calculation of the diffusion constant in terms of
jumps between the tetrahedral sites and the other higher energy sites, labelled X sites.
When these were taken into account the diffusion constants calculated by the theory and
the experimental values agreed qiite well.  Although they found that the percentage of
X sites occupied was very small (less than 1% at 1000 K for @+ = 1.93), they plaved an
important role in the diffusion process. This effect could account for the non-Arrhenius
behaviour seen by Bowman el al. as their amorphous Zr,PdH, svstem had a hvdrogen
concentration of » = 2.88.

Markert, Cotts and Cotts (1987) took NMR data from an amorphous Zr-Rh hydride and
attempted two different curve fittit g procedures. Their experiments involved measuring the
second moment of the lineshape V., and using this value in their calculations. Their initial
curve fitting involved a single activation enargy curve, which corresponded to the crystalline
single jump rate model. As expectad, this did not fit the data, giving peaks in the relaxation
rates that were too high and slope: in the low temperature region that were too steep. The
second model tried had a normalised distribution of activation energies, independent of
temperature. The distribution us»d was Caussian for values of the activation energy I,
less than 0.47eV and Lorentzian for £, > 0.47eV with a maximum cnergy cut-oll set at
0.67eV. By varying the width and peak va ue of the distribution used, and by using a value
ol the Korringa constant of 170 s, a quite reasonable fit to the data was possible. The
peak heights were well matched. I owever the narrowness of the relaxation rate maxima in
the rotating frame 77, was not woll fitted, and Markert ¢/ al. could offer no explanation
for this narrowness.

McDowell (1993) carried out a large number of NMR studies of amorphons nickel-
zirconium hydride for a range of livdrogen concentrations. e found the NMR relaxation
peak positions and widths displayed a nor-monotonic behaviour as a function of hvdrogen
concentration, a phenomenon not previously observed. He found that his samples were of
good quality across the range of hydrogen concentrations and so eliminated the possibility

of contaminated samples causing the non-monotonic behaviour.
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As is universally found in relaxation rates for disordered systems MceDowell's experi-
mental relaxation curves were asy:nmetric, with the low temperature slope shallower than
the high temperature slope. The peak positions were shifted and lowered when compared
to the crystalline theory. Similar 1esults were found by Walstedt «f ol (1977) who studied
NMR data for Na j-alumina comy ounds.

The peak widths showed non-110notonic dependence on concentration, as did the peak
positions. In a later paper in colaboration with Cotts (1995), McDowell measured the
diffusion constant D. and from it found an estimate of the correlation time .. lor cach
hvdrogen concentration. when 7. 'vas plotted as a function of reciprocal temperature. the
data fell along straight lines, within experimental uncertainty. This indicated there was no
localised hopping of the hydrogen which conld have caused the non-monotonic behaviour
observed.

McDowell fitted a spectral density function as given by Beckmann called the IHavriliak-
Negami spectral density function to his experimental data. [t had the parameters o, the
degree to which the atomic motiois were correlated. and the combination de¢ which repre-
sented the barrier height distribut on. de = 1 corresponded to a unique barrier height and
d¢ = 0 was the “greatest allowed™ distribution. These parameters were varied arbitrarily
until the best fit to the experimen al data was obtained. This fitted the experimental data
much better than the crystalline tl eories, although the lower hydrogen concentrations could
not be fitted as well.

Iollowing a similar approach to Marke 't ¢t al. (1987), McDowell used a Gaussian distri-
bution of activation energies to p oduce theoretical relaxation curves. The peak positions
were first fitted. then the width pirameter o and mean jump rate 72 varied to best (it the
data. Again it was found that the lower hvdrogen concentrations could not be fitted by this
curve as well as the higher concen:rations.

It was thought that this poor f tting at low concentrations was caused by an overestima-
tion of the second moment of mag netisation Ay, The measured value at low temperatures
would be too large if the site energ es were distributed so that the low energy sites were clus-
tered together. This would mean t 1e spins would be evenly distributed at high temperatures
but clustered together at low temeratures causing an overestimate in the measurement of
M.

One of the problems with the modelling of the hydrogen diffusion in these ways is

interpreting the parameters used in the curve fitting. It can be assnumed that the fitting
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parameters (IZ,) and Gaussian wilth @ correspond to the average bar-ier energy and the
spread ol barrier heights respectively, vet such a simplistic analvsis does not give mueh of
an insight to the mechanics of the diffusicn. MeDowell found that the NMR data yielded
results that were dependent on th> hydrogen concentration. yet the fitting parameters he
used did not show a similar depen lence.

Such a fitting model does not dscribe whether or not the energy distributions are in the
saddle points or in the sites, or a :ombination of both. While it is known that both exist
simultanecously in real samples, cu ve fitting does not say which type of energy distribution
has the greatest effect on the diffusion through an amorphous system. A random distribution
of jump rates also does not take it to account possible correlations between the jump rates
ol neighbouring sites. The curve fitting procedures are phenomenological in nature only,
in that they can describe the relacation rates but give no fundamental information about
the diffusion processes. One approach to gaining more details about the diffusion process
involved in a disordered system i: by the use of Monte Carlo simulations, which will be

discussed in the next section.

2.4.3 Monte Carlo Simula.ions

In order to model the actual diffusion through disordered systems Moute Carlo simulations
have been performed extensively. ''hese allow greater examination of the physics behind the
motion of the diffusing spins, alloving insights into the mechanisms behind the diffusion.

Crouch. Havill and Titman (1)85) carried out NMR experiments on amorphous
NisgsTigsH | 5. By subtracting the hyperfine contribution of the conduction electrons from
the data they found a single activa ion energy for the sanple over the range of temperatures.
from which they argued that it vvas not necessary to assume a distribution of activation
energies or jump rates to give a sutisfactory account of the experimental data.

Crouch ¢t al. also ran Monte Clarlo =<imulations using a spatially disordered syvstem with
site energy disorder included in a :eparate run. The first simulation assumed that the jump
probability was dependent on the jump distauce, but that the overall jump probability was
the sanie from site to site. The second simulation assumed the jump probability varying
from site 10 site, but no particular jump direction was preferred. The model used was a
1000 site spatially disordered simple cubic lattice on which the spins were placed randomly
at a concentration of 0.1, with 10)0 jumps allowed for each simulation.

They found that the simulat on with site energy disorder caused broadening of the
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relaxation curves due to the variation of spin mobility [rom site to site. although this
broadening was much smaller than previously thought. They concluded that very accurate
measurements of the relaxation rete may be necessary to observe a distribution of jump
rates or activation energies.

Richards and Shinar (1987) cariied out Monte Carlo simulations on a simple cubic lattice
of 1000 sites. They simulated bot site and saddle point energy disorder, calculating the
autocorrelation function for a single particle as they assumed the correlation was reasonably
well destroved after a single jum . The diffusion was simulated by choosing a nearest
neighbour to a spin at random anc allocating it a random number r between 0 and . For
saddle point energy disorder the sac dle point was allocated a rate given by 1 = pexp(—rA.
where p was a constant, r a random number between 0 and 1 and A == In(100). representing
the width of the distribution. If r <V then the jump took place. otherwise a new nearest
neighbour was chosen at random ad the process was repeated. For site energy disorder the
energies were allocated in a similar manne~ and the same diffusion process was carried our.
The data were collected from an average over 10000 different trials and Fourier transformed
by fitting by a sum of exponential: .

They found that the saddle poiit energy disorder results differed litt.e from BPP results
while the site energy disorder displwved significant departure on the low temperature side of
the 77 minimum. They concluded that a distribution of site energies was far more effective
in broadening and distorting the shape of the relaxation curves from NMR data.

Both the work of C'rouch et al. and Richards ¢t al. gave results that seemed to indicate
that site energy disorder would car se greater broadening of the relaxation rates than saddle
point energy disorder. This contradicts later work carried out with other Monte Carlo
simulations. Both groups used ran lom placement of the spins on the lattice before tracking
the diffusion and calculating the correlation functions, rather thau allowing the system
to reach thermal equilibrium befcre making the calculations. This could account for the
broadened behaviour observed for site energy disorder.

Adnani, Havill and Titman (1€94) used a Monte Carlo simulation of 1000 traps situated
on a simple cubic lattice seeded w th spins at two concentrations of 0.1 and 0.9, Structural
disorder was introduced by allowing the sites to move randomly with the maximum shift
being 1/3 of a lattice spacing. This spatial disorder was kept constant for the entire simula-
tion. The distribution of trap enerzies was chosen from a constant distribution between two

limits so that the ratio between taie greatest jump rate to the least was, for four separate
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simulations. unity (no distribution), 10, 25 and 100. Data were collected after the system
had been allowed to reach thermal equililtinm. The correlation data were fitted by trial
and error by a sum of exponentials via minimising a sum ol the squares of the deviations.

They found that the presence « [a jump-rate distribution was only clearly discernible in
concentrated samples, and that the pattern of jumps was different in dilute and concentrated
systems. In the dilute system the spins mainly occupied the deeper traps and on diffusing
encountered several shallower traps before meeting another deep one. This meant the spins
took several hops to be decorrelatcd, whereas in the concentrated system the spins became
decorrelated after a single jump.

Adnani ¢f al. examined a mod | where the energy disorder was independent of temper-
ature but the jump rates were dependent on temperature. By developing a locus of curves
they were able to generate relaxa ion curves that were mostly symmetrical about the re-
laxation peak. a feature that was 1 ot expected from theoretical studies which said that the
temperature dependence on the low temperature sides of the peak is generally smaller.

Adnani (199:8) performed quisielastic neutron scattering and NNMR experiments on
amorphous ZryPdHg g and ZryPdH )¢ and attempted to fit a theoretical model to the results.
No details of the model were given. other than it was performed via Monte Carlo simulations
on a spatially and energetically disordered lattice initially at thermal equilibrinm.

The modelled curves did not (it the experimental data. which Adnani explained was
due to the way the hvdrogen wes distribnted in the alloy. In the model the hydrogen
was distributed randomly, where:s the alloy was a zirconium rich one which would have
hydrogen coordinated more stron:ly around the tetrahedral Zr sites. He applied Torrey’s
theory to the measured data and the results seemed to indicate two activation energies in
the samples at different temperatires.

McDowell (1993) used a Gaussian distribution of both site and saddle point energy
disorder in his Monte Carlo simul: tions. The rate for each possible hop event in the system

was given by

Uy =Toexp{—(Lsadare, — Esit) /K1) (2.23)

where I'; was the rate for the j”’ hop event. If,, was the initial site energy and /:'S,,,z,u,J
was the saddle point barrier energy for the j hop. 'y was the rate prefactor that set the
overall time scale of the simulaticn. The spins were placed on the lattice either by filling

sites at random. which correspor ded to infinite temperature. or by filling sites from the
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lowest energy upwards, which gave the initial condition as 1" = 0. In cither case the spins
were allowed to make a number o7 jumps so that thermal equilibrium was achieved. Lo
move the spins the total rate even . for the next event to occur somewhere in the system

was calculated using

=31, (2.21)

where jumps to blocked sites were not incl ided in the summation.

To find the spectral density fuictions from the correlation data of the simulations the
Fourier transform of a piece-wise constant function had to be evaluated. To calculate this
accurately McDowell used an averaged-rate approach which applies a probability density
function to the discrete time intervals in the correlation function. By choosing an accurate
value of this function the spectral d *nsity function could be obtained quickly and accurately.
MeDowell found that the simulatic ns with site energy disorder produced symmetric relax-
ation peaks, whereas the saddle point energy disorder gave asymmetric peaks, which was
consistent with his experimental d ta. By running the analysis for dilferent concentrations
on a 500 site FCC lattice he fourd that as the disorder was increased. the peaks in the
saddle point energy disorder systery were shifted to lower temperatures and the asymmetry
increased. For site energy disorde - the peaks were shifted slightly to higher temperatures
and no asymmetry was found. The explanation for this was that increasing the saddle
point energy disorder provided lov-er and lower energy pathways for atomic motion, while
increasing site energy disorder tenc ed to trap the spins in their sites more and more strongly.

The dwell time for saddle po'nt energy disorder showed a strong non-Arrhenius be-
haviour. which McDowell thought explair ed the asvmmetry seen in the relaxation plots.
The site energy disorder dwell times folloved an Arrhenius distribution exactiy.

There are several disadvantages with using the Monte Carlo simulation method. It
requires a large amount of compt ting titie to calculate the correlaticn functions for the
diffusion process, and very slowly diffusing spins can cause errors in the calculations. The
correlation data then must be Fouarier transformed to give the spectral density functions
and the methods employed to transform the data (for example, least squares fitting by a
sum of three exponentials (Richards and Shinar, 1987) ) may introduce further errors. As
can be seen from the above sum nary of previous work, the conclusions drawn from the
Monte C'arlo simulations may be ery different due to the different diffusion models.

The approach to be followed iu this thesis is quite diflerent to the curve fitting and
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Monte Carlo work that lias been doscribed. The spectral density functions for diffusion on
a disordered system will be found 1y modelling the diffusion exactly for a low concentration
of spins on a small, finite system. I he diffusion will be for two spins on a simple cubic lattice
with either site or saddle point en:rgy disorder. The advantage of this over Monte Carlo
simulations is that the computing time wil be very much reduced and the calculations of
the spectral density functions will be exact The theory, which will be described in the next
chapter, will be such that no nume ical Fourier transform methods will be needed to obtain
the spectral density functions. It vwill also provide information on the mechanisms behind

the diffusion process, something that the curve fitting procedures are not capable of doing.



Chapter 3

Spectral Density Functions in

Finite Systems

3.1 Introduction

As outlined in §2.1 of the previois chapter. the correlation function GU(t/7) and the

spectral density function J) (wr) may be written as (dropping the “av™ subscript)

)
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The purpose of this thesis is to evaluate the spectral density functions for disordered systems
bv modelling the diffusion exactly »n a small. finite system for a low concentration of spins.
It will be shown that the small system analvsis, when suitably scaled, is a good approxi-
mation to an finite syvstem, exceot in the high temperature limit, thus demonstrating the
validity of the procedure. The results from this approach may then be compared to other
systems 1o test the results obtaincd from them. The advantage of using a small system is
that the computing time required to calculate the relaxation rates would be quite small. as
compared to the large amount of ime required for Monte ('arlo simulations.

There are three important pcints to be noted. The first is that although structural

disorder. in terms of the variatiois in jump distances for the spins. does exist in a real

26
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system, it will be ignored in the model. Instead. a simple cubic lattice of varving size with
site or saddle point energy disorde only will be used. This is a simplification ol the real
system, although there is some evidlence that the presence of structural disorder has little
effect on the relaxation rates (Havl n and Avraham. 1987).

The second is that although the purpose of this thesis is to examine disordered systems.
the focus of this chapter will be »m an examination of an ordered system. one that is
characterised by a single jump time 7. This was done as the theory behind nuclear spin
relaxation in an ordered SC lattice is known to a high accuracy and so could be used to
provide a check on the validity of 1he smal finite system model. The simple cubice lattice
will also be used for the disordered system. with the disorder simulated by the inclusion of
site and saddle point energy disord »r only.

Thirdly. the thesis will model th > diffusion in the low concentration limit onlyv. By caleu-
lating the spectral density functions for two spins on the SC lattice the computations may
be done rapidlv and exactly. The results are therefore only valid in the low concentration
limit. The results could, however, i1 principle be extended to general concentrations.

This chapter will detail the theory behind the small finite system maodel, and it’s appli-
cation to a small system. The resu ts will “hen be compared to a known accurate analytic
expression for the diffusion on an infinite ordered SC lattice. The final section will detail
how a distribution of jump rates may be it cluded in the theory for the small finite system

model.

3.2 The Rate Equation for Populations

The term w{r,.r;.¢/7) in equation (3.1) represents the way in which the spius are diffusing
in the system and presents the main dilliculty in modelling ovdered aud disordered syvstems.
[t can be modelled in terms of the jump rates of the spins in the following way.

Since the mean time of residence of spins on the sites of the fattice is long compared with
the flight times between lattice sites. the jumps may be treated as occurring instantancously.
When considering like-spin or unlik-spin interactions, the spatial position of the spins i and
J will be referred to as the state «f the spins, indicated by the vector r;; or 7, where «
is the state of the system. lor lite-spin interactions the orientation of the spins is not
important. i.e. the state r;; is the ame as the state rj;. A jump of cither of the spins will

cause a transition from one state to another. T'he number of possible states N of a svstem
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for like-spin diffusion on a finite si nple cu»ic lattice with » sites is given by the number of

wayvs of choosing 2 sites regardless of orde from a set of u sites:

n!
A (Sf&t(?h‘) = ;)T(T——Z—)'

no =1 "2“ 2 (3.2)
The frequency of the transition fiom an initial state o to a final state ;3 mayv be defined
as w;3,. 1 is assumed that the transition requencies depend on the initial and final states
ounly. and are independent of the | revious history.

By defining the probability p, ) to be the time dependent probability that the system
is in a state a then the equation governing the evolution of p, (1) can be written as (Allnait
and Lidiard, 1993)

dp., o
(j;l' = — Z Witey P -+ Z WP (:3.3)

U';éu PFo

This is called the master equatior for populations. The first term on the right represents
the rate at which systems are leaving state o for other states, while the second term gives
the rate at which they are arriving in « from other states. This equation can be written in
matrix form as

dp

= - W 3.1
o p (3.1

where the matrix p is the matrix  f occupation probabilities. and the square matrix W has

elements

| joo =5 T U3y, ((‘l 75 tﬂ
W, = Z wa, . (3.3)
B

Several important characteristics of these equations should be noted. From the definition

of W it is clear that

ST =0 (alla) (3.6)

I
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which is equivalent to the statemer t that probability is conserved. The matrix W will then

always possess a left eigenvector ¢ such that

J::[l Lol (3.7)

where each element is unity and for which the corresponding eigenvalue is zero. [t follows
that the cigenvalues of W all have real parts greater than or equal to zero (Allnatt and
Lidiard, 1993).

FFurthermore, because any one 1ow ol W is equal to minus the sum ol all the others then
the determinant of W will be zerc, i.e. W is a singular matrix. Care must then be taken
in evaluating matrix equations cor taining W that have to be inverted.

The solution of equation (3.4) s of the form

pt) = exp(—Wit)p(0)
= G(t)p(0) (3.8)

where the matrix exp(—=W 1) is def ned by way of an exponential series. 'T'he matrix element
exp(—Wi) ., gives the probability that the svstem will be in a state ;3 at a time (if it was
initially in state « at time zero. This solution corresponds to the probability function
T(ra,rs.t). so a method for obt:ining G(t) enables the spectral density functions, and
hence the relaxation rates, to be calculated.

This theory is exact in the case of distinct eigenvalues. However, when there are de-
generate eigenvalues, this approach of caleulating the eigenvectors may no longer be valid.
The general method for determining if the solutions to equation (3.18) are valid is to check
whether or not the eigenvectors are linearly independent. The solution will be a linear com-
bination of exponentials if a comjlete set of eigenvectors can be found for the degenerate
cigenvalues, i.c., if for an eigenvalu with n level degeneracy there are n linearly independent
eigenvectors, then the solution wil be of the form 3=, ¢;exp(—=A;it). The way to determine
this is to calculate the determinant of the matrix of eigenvectors. If the determinant is
non-zero, then the eigenvectors will be linearly independent, and the solution is a linecar
combination of exponentials. If tle determinant is zero, then a polynomial solution must
be sought by the use of the methcd of undetermined coefficients.

Consider, for example, the casc where there is three-fold degeneracy in one of the cigen-

values in a system with n eigenvi lues. It may be assumed that Ay = Ay = Ay = A and
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all other eigenvalues are non-deger erate. In attempting to solve equation (3.1). assume a

solution of the form

P = (c1P1 + c2tpy + c3t™py) exp(—A) + Z Cnexp(=A,f). (3.9)
n>3

Substituting this into equation (3.) and equating like powers of t vields the following sets

ol matrix equations:

Aps = Wpy
\p2+2p3 = Wp,
Ap1+p2 = Wp,. (3.10)

These can then be solved sequentially to give the appropriate cigenvectors, and the constants
can be found from the initial cond tions.

There is a problem with attemy ting to solve this series ol matrix equations. Because the
matrix W is singular the solutions to equation (3.1) will not be linearly indepeudent. This
means that in attempting to solve cquations (3.10) an inconsistent solution will be abtained.

The problemn may be overcome in he following way. By the conservation of probability

Yopo=1 (3.11)
so that the nth probability functicn p,, mayv be written as

n—)

pa=1-3 p,. (3.12)

o=l
[Zach of the differential equations n the matrix form of the master equation (3.4) may be

written as

dp., .
e WL 3.13
dt Z—“] 13 ( )

where a ranges from | to n. Subs ituting equation (3.12) into this vields

([1)‘) n—1 = . n:‘l
- = > Woaps =W, (1 ~ L,),,>

A= a=]
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n—1

= =D (W= W) ps— 1V, (3.11)
=1

for a =110 n— 1. The steady sta e solution. or the equilibrium solution. p,,., is found by

setting the right hand side of this «quation to zero and solving for p. Defining p/, by

P = Dacq + 1, (3.15)
and substituting this back into equation (3.14) gives finally
n—ti

= =S (Way = W) (3.16)

J=1

dp,
dt

or in matrix form

dp'(1)
dt

. ’ot P
= =W (0) (3.17)
where the elements of W’ are giver by 117, — 1, .. The matrix W' is no longer singular,
resulting in a set of n — | linearly iidepencent solutions. By deflining the square matrix M
with columns which are the eigenv ctors o™ the square matrix W', the equation (3.17) can

be solved (Ixelly, 1991) by

Pt = exp(—Wp'(0)
= oxp(~MM " '"W'MM "1)p’(0)
= oexp(~-MDM~!1)p'(0)
= Mexp(-DHM™!p/(0)
= G'(t)p' (1) (3.1R)
where the final step follows when tl ¢ exponential is expressed as a Taylor series. T'he square

matrix D is a diagonal matrix cortaining the eigenvalues of the matrix W', Finallv. the

solutions to equation (3.1) may be recovernd by

Il

pa(t) P4 pae, a=1ton—1
n—1

L= po. (3.19)

a=1

I

pall)



CHAPTER 3. SPECTRAL DENSITY FUNCTIONS IN FINITE SYS'TISNS 32

This mean= that the solutions will be linear combinations of exponentials (or power series
times exponentials) plus a constan. term.

The matrix W’ is a square ma rix whese elements are calculated as shown in equation
(3.5) from the probabilitics of a pair of spins jumping from state a to state J in a single
jump of one of the spins. For an ordered svstem each site is at the same potential so the
jump probabilities are only modiled by site blocking effects. and there is a single jump
rate 7 for the system. In a disorcered system there will be site and saddle point energy
disorder, so the jump probabilities will be affected by the disorder. The effect of this will be
described in §3.5. Since p(0) is a olumn matrix containing the probabilities ol particular
states being occupied., then each column a of G(/) contains the probabilities of the system
being in a particular final state at time £ if it was initially in a state a.

Caleulating G/(1) using cquaton (3.13) will yield a matrix whose terms are a linear
combination of exponentials. Sin-e the lourier transform of the correlation function is
required to find the spectral density [unctions, the diagonal exponential matrix will, once

Fourier transformed. become a diagonal matrix of Lorentzians using

Flexp(=Dit)] = 2 / ’('os(wl) exp(—tD;t)d!
Jo

2D, 3.20)
D (w)? e

If the Fourier transform of equatio (3.19) is taken, then the constant term becomes a Dirac
Delta function. This may be ignord in the calculations of the spectral density unctions as
the functions are required for valuss of the {requency other than w = 0.

Consider. for example, the casc of two spins diffusing about a triangular. ordered lattice.

The W matrix. assuming nearest neighbour jumps only, is

L -2 =12
W= | 12 1 =12 (3.21)
L2 -2
This matrix is singular, with the eigenvalues being 0. 3/2 and 3/2. By reducing this matrix
W to W’ the matrix will no longer be sit gular. The result is

3/2 0
W' = / (33.22)
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which has the cigenvalues of 3/2 ard 3/2. By inspection, the solutions of this are

P = pi(0)exp(=3t/2)

P = pa(0) exp(—=31/2). (3.23)

With no disorder present the equil brium solution will be p,., = /3, 50 the full solutions

to two spins diffusing on a three pcint ordered lattice are

mt)y = m0)yexp(—-3t/2)+ 1/3

p2() = pa(0)exp(=3t/2) + 1/3
pst) = /3= (p(0) 4 p2(0)) exp(—31/2) (3.2:)

Despite having degencerate eigenva ues the solutions contain no terms such as ¢ exp(=At .
other than n = 0. In the case of tvvo spins on a triangular lattice, the eigenvectors for the

reduced matrix W' are

| 0
(3.25)
0 1
with the determinant of the matr x made up from these ecigenvectors heing 1. As stated
previously since the determinant o " the eigenvalue matrix is non-zero then the eigenvectors
are linearly independent and so equation (3.18) is a valid solution for two spins diffusing on
a triangular lattice.

There are a few special cases o be considered. If the matrix W in equation (3.1) s
Hermitian. then a complete set ol cigenvectors can always be found. no matter the level
of degeneracy of an ecigenvalue. ¢ince the matrices under consideration are always real,
then the relevant condition would be thar the matrix W must be real and syvmmetrical.
Il the matrix is not real and symuietrical, then it is still possible that a complete set of n
eigenvectors can be found for an ¢ genvector with n level degeneracy. The test in this case
is the calculation of the determinait of the cigenvector matrix.

By taking the determinant of “he matrix made up from the eigenvectors of the matrix
W it was possible to check the validity of the solutions of equation (3.18) for a matrix
of any size. This was done for or lered diffusion on lattices up to a 36 site. simple cubic

lattice, which in each case gave hon-zere determinants of the eigenvector matrix.  The
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conclusion was that the method en:ploved was valid for the systems under consideration as

the determinants of the matrices were never zero.

3.3 Comparison to Known Systems

As a final test before comparing the model to a known analytic solution for a diffusion on
an ordered. infinite system the modal was compared to an expression for the high frequency,
or low temperature limit (Barton wnd Shell, 1980). For two spins on a triangular lattice
the model was found to be accurate to 0. 145 when wr = 10. With this the stage was set to
compare the model to an infinite system. The next step was to evaluate the spectral density
functions and relaxation rates over the whole temperature range and compare these to the
results for the infinite system. It was important to test the model for a range of lattice
sizes 1o see how quickly the model vould approach the known infinite crvstal results. If the
approach was so slow as to require a very large lattice size then the computational method
would be unacceptably slow in terms of computing time required to evaluate the matrix
calculations. Since the size of tiie natrix W is proportional to n?. where 1 is the numier
of lattice sites in the model. the matrices rapidly increase in size as more sites are added
to the simulation. A reasonable asproximation for a small number of sites to the infinite
solution would validate the model ‘or further study.

The exact solution chosen to ompare with the model was the analytical expression

derived by Sholl (1938). It has the form

-
Jer) = Tgly)
S
gly) = T }
ap oy +asy' +agy' + y?
y = wr/2 (3.26)

where the values of 5. ). ag. as, ¢, 1w anc v were determined by fitting by known analytic
forms of .J{wT) for large and sial. values of y. The parameter « is the lattice parameter,
which for a simple cubic structure is set to one. This model was known to be accurate for
a wide range of hvdrogen concentrations and lattice structures.

Two different sized systems were tried with the program. The first was a single cube

structure. with eight sites, and the second a four cube structure, which had eighteen sites.
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The spectral density functions were caleula ted in cach case and compared to those of the
exact expression,

It was found that although the form of the modelled spectral density funetions was
similar to that of the exact infinit > solution, the magnitude of the modelled curves was
significantly smaller. In fact, as the size of the lattice modelled was increased. the magnitude
of the spectral density function dee eased further. This is caused by the lattice summations
over the finite system. A finite latti re structure will have edges, the atoms of which will not
have, for the SC structure, six near-st neighbour atoms. As the lattice size is increased. the
lattice sums will approach the infinite lattize sum of 8.4019.

In order to compare the results for the model with the infinite solution it was decided
to normalise the sets of data. Th» normalisation factor used was (/(0). the value of the
correlation function at time ¢ = 0. For an infinite crystal the value of this is well known.

being %.-1019. For the model the vilue was calculated for both systems by the summation

R % (cosé,, o
¢ (0) :Z*-_( 3,3 j)[)'u‘.rﬂ) (3.27)
it o tg

which for one cube has a value of 0. 18743, and for four cubes is 0.25550. After normalisation
the data for the infinite crystal, one cube model and four cube model were plotted together.
The original BPP distribution was also plotted as a comparison. The plots appear in figure

3.1, In ecach case the data are plot ed as a function of I'(wT). defined as
J(wr)
G0y

As expected, the BPP approxi nation was a poor representation of the spectral density

Plwr) = (3.2%)

functions as compared to the Sholl approximation. This is because it assumes the relaxation
is governed by a single exponential rather than a linear combination of exponentials. Phys-
icallv, the BPP model says that tle correlation between two spins is completely destroved
alter a single jump of either of the spins.

The two solid curves. which rcpresent the simulations for a one and four cube systen,
show 2ood agreement with the results for the infinite svstem. Appreciable difference is found
onlv for values of w7 less than oae. which represents the region of long range diffusion.
The model used here is not capable of rodelling this region. which represents the high
temperature side of the relaxation up to approximately the peak position. The model does

give a good approximation to the low temperature side of the relaxation.
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Figure 3.1: Comparison between 1 ormalised spectral density functions for known models
and computational method.

The inset figure represents the approach ol the models to the large wr limit. It shows
that the one and four cube simulatisn approach the analytic solution quite well for wr > I,
whereas the BPP model does not.

A poiut to note is that while th: slope of the inlinite approximation approaches infinity
as wt approaches zero, the computed values for the one and four cube svstem approach a
finite value. The approach of the in inite case 1o infinity is due to long range diffusion which
cannot be modelled by a small svs em. The value of F/(0) for any finite sum will be zero
because ['(.o7) is a sum of Lorentzins and. as the size of the finite system is increased, the
envelope of successive F'(wr) curves at smell wr will approach the function for the infinite
svstem, rellecting the approach to ong range diffusion.

On the basis of these results it ce n be sai ]l that a small finite system provides a reasonable
approximation for [I'(w7) for values of wr 2 . This region corresponds physically to the
high frequency or low temperaturc regime ol NMR experiments, an area of considerable

interest for disordered systems.
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The time taken to calculate the curves is dependent on the size of the lattice used and
the number or sub-intervals in the range of wr used. The four cube system took a long
time to model. so this system was the uppe lunit that could be practically used to generate
a range of spectral density functions. The one cube system gave quite reasonable results
with only a short calculation time Hf several minutes for the curve in ligure 3.1. leading to
the conclusion that this method o modelling a small finite system exactly vields a good

approximation to the infinite case or wr 2 |.

3.4 Eigenvalue and Ccefficient Analysis

The probability function 7(r,. 75, /7) that describes the time rate of change of the svstem
from a state a to a state ;3 in a time ¢/7 will be a matrix whose clements are linear
combination of exponentials plus ¢ constant. The correlation function (/({/7) can then be
expressed as a simple linear combiration of exponentials and a constant

Gtym) =C -+ Z a; exp(Ait/T) (13.29)

where A; are the eigenvalues of th matrix: W and «; are the coefficients formed from the
double summation in equation (3. ). The eigenvalues and coeflicients are characteristic of
each lattice structure.

The Fourier transform of equation (3.29) will then be

-

2N
./(.UT) = :L (If'p—m.

4

(3.30)

As noted in §3.2 the ordered case will often give results that include degenerate eigen-
values but which still result in a solution for the spectral density funetion that is a linear
combination of exponentials. For cxample. in the case of two spins diflusing abont a single
cube there are a total of 28 possil le eigenvalues, the degeneracies being as shown in tabie
3.1

As the size of the lattice is increased degeneracies are still evident in the ordered systeni.
however. the level of degeneracy fulls. For a 12 cube system. where there are 630 possibie
cigenvalues only one cigenvalue ha |l a degeneracy of I, while the others had degeneracies of
1 or 2, which resulted in 477 dist'net eigenvalues. It was also of interest to note that not

all of the coeflicients «; associatec with a particular A; were of appreciable magnitude. A
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Table 3.1: Eigenvalues and Degenervacy for Ordered Diffusion on One Cube

e'eenvalur  degeneracy

0 1

T 2.1009 L
T 0.899] I
01730 2
15270 2
0.3333 3
L6666 3
13333 3
T 0.7910 3
15393 3
[ 0.6666 6

significant number had values less than 107°. and so could be assumed 1o have little eflect
on the spectral densities if wr > A;. as is evident from equation (3.30). This could be
shown by rmnovilng all eigenvalues with coellicients less than 107" and plotting equation
(3.30) for this system as compared to the full set of eigenvalues and coefficients. LFor the
[2 cube system it was found that there was virtually no difference between the two despite
the number of terms in the summ: tion be ng reduced from 77 to 206.

Once a set of eigenvalues and coefficients had been generated for a particular lattice
structure they could then be used o generate the spectral density functions and relaxation
rates under any conditions requirc ] for the ordered case. This was because the W matrix
was unchanged by variations in t>mperature and changes in the value of w or 7 merely
affected the scaling of the curves.

The shape of the distribution of eigenvalues and coeflicients could be examined by
plotting the data as histograms, such as in figure 3.2, The coellicient sum was found by
adding together the values of the coefficients for each eigenvalue in the ranges specilied by
the x-axis.

This distribution was [airly tysical for an ordered system. Generally there was a peak
in the coefficients between eigenvalues of 0.5 and 0.9, with values of the coefficients falling
off to either side. The eigenvalues range in size from 0 up to around 2.1, although not all
had coefficients of magnitude 107" or greater.

A peak around A = 0.5 was tc be expected. [f the simple BPP model is considered. it
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Figure 3.2: Histogram of eigenva ues and coeflicients for a 12 cube, no disorder system.

assumes there will be a single jum ) rate aa1d the correlation function is

ti(t/T) == Cexp(—t/T). (3.31)

The 7 here is defined as %m, half the nean time between jumps of a single spin. This
corresponds, if plotted as a histogrium, to a delta function at A = 0.5. The extra information
contained in the histograms prodiced by the method ontlined in this thesis demonstrates
that while it shows similar behaviour to tie BPP model, it is more accurate in evaluating

the spectral density functions.

3.5 Modifications for 1 Disordered System

The calculation ol the spectral deasity functions hecomes more complicated when consid-
ering disordered systems as the disorder results in a spread of mean times between jumps
across the sample. The jump time 7 is no longer a single value. but will depend on the site

and saddle point energy disorder (and to a lesser extent the structural disorder) present in
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the sample,

The presence of the disorder will affect the rate equations. When there was no disorder
the rate equations were only depencent on temperature implicitly. The mean time 7 hetween
jumps is given by 7 = myexp(E /A7) which will be the same at all sites. When disorder is
introduced the temperature dependence becomes explicit in the calculations of the jump
probabilities w, ; from state 3 to ¢ ate a. This does not overly complicate the calculations
of the spectral density functions; t ey may be calculated at each temperature lor a specific
model of disorder. A plot of In B ersus 1/T then follows straightforwardly. or a sample
with site and saddle point energy cisorder only, the jump rate w;;. defined as the reciprocal
ol the mean time between jumps 7 ;. from site  to site j will be given by

| -
wij s —exp(— (L = 15;) kT (3.32)
0
where I is the energy ol site ¢ and Ej; is the energy of the saddle point between sites ¢ and
J

The question. then. is how to p esent the data concisely n a general form. In an ordered
svstem there is only the single indeendent parameter wr which is only implicitly dependent
on temperature. [ a disordered sy tem the explicit temperature dependence makes a choice
of 7 in this product more difficult. There are two possible choices. The first ix to use the
mean time between jumps of the lisorderad system 7, averaged over the whole spread of
jump times in the system. The p-oblem with using this mean jump time 7 is that it no
longer obeys an Arrhenius relation, and so In(w7) is no longer proportional to 1/7. In
order to produce theoretical plots equivalent to wln R versus 1/T it is therefore necessary
to separately calculate 7 as a func ion of temperature.

The other choice is to use the jump time 7, which corresponds to the average energy of

the distributions so that

Fy— 1
. < L 3.33
q = Tpexp < T ) ( )

where [V, and 7, are the average eaergies of the site and saddle point eunergies respectively,
This assumes that 79 does not var - from site to site.
The disorder and spread of jun p rates means that more than a single variable is needed

to describe the general relaxation n a disordered svstem. By defining
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I

then the combination of the two vaiiables wry and (19, = L) /T can be used to describe the

[T D
WT, = WT) XD (—-— > (3.31)

relaxation. Lor a specific value of «w 7y a set of universal relaxation curves can be generated.
and when a new value of wry Is chosen a dilferent set of nniversal curves can be drawn. 'T'his
means that, in the disordered syst . chaaging the frequency at which the experiment is
performed will produce new informition about the relaxation, unlike the ordered case where
a change in the frequency merely cianges 1he scaling of the curves. The same distribution
function for the disorder was used as the parameters wry and (17, — FL) /AT were varied
to produce the relaxation curves. Using a different distribution of site and saddle point
energies would result in a different set of relaxation curves being generated.

The nest chapter will extend he modelling to include site and saddle point energy
disorder in the lattice, examining he effects this has on the form of the spectral density

function and relaxation curves.



Chapter 4

Application to Disordered Systems

4.1 Introduction

The purpose of this Chapter is to apply the theory developed in Chapter 3 to some mod-
els of disordered systems. The fitst to be considered in §4.2 is a comparison with some
experimental results for the metallic glass a-ZrsRhH; 5. This example was chosen because
there is a good range of experimer tal data available and it has been thoronghly analysed
using a modified BPP expression for the spectral density functions. The results using the
analvsis of small systems can thercfore be obtained for a reasonably well characterised set
of disorder parameters and compa ed with the results of the BPP analysis.

In §1.3 a method for expressitg the spectral density function in terms ol general di-
mensionless parameters will be developed. This allows a set of general curves 1o be drawn
for the relaxation rates in a simila® manner to ordered systems. The presence of disorder.
however. introduces a second indenendent variable. so that a single set of universal curves
will not describe all possible relaxation rates. This section will detail the introduction of
this second independent variable and the way in which the data may he presented.

§-LL will examine the distributibn of eigenvalues and coeflicients for a disordered system
and the features of the relaxation -urves that may be inferred from such distributions.

5.5 will describe an attempt t¢ combine a distribution of jump rates with a curve fitted
to the eigenvalue and coefficient h stograms for an ordered svstem as shown in Chapter 3.
Such a model for disordered systen s would have the advantages of being much quicker than

detailed analysis and being derivec from an exact analysis of an ordered system.
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4.2 The Metallic Glas: a-Zr,RhH; ;

An extensive set of proton spin-lattice relaxation rates. in both the laboratory and ro-
tating frames, have been made by Markert. Cotts and Cotts (1987) on the metallic glass
a-Zr3Rhil; 5. The second moment Hf the lineshape Al was also measured at T = 77K and
was found to be My = 7.8 4 0.8 < 10%sec™2. The spin lattice relaxation times 7 were
measured at (wy/2m) = 38.9MHz, 15.8MHz and 6.14MHz. The rotating frame times 74,
were measured at (wo/27) = 38.9N Hz with (w;/27) = 15kHz and 25kHz.

The relaxation rate curves from the experiments were asvmmetric, with the slopes on the
low temperature side of the maxin um being shallower than on the high temperature side.
At low temperatures and for an operating frequency of (wy/27) = 38.9 Mz, the decrease in
T,—1 was secn to be limited by the conduction electron mechanism 7" = (T/ K, ). where K
is the Korringa constant, estimated to be about 170410 sK. This mechanism is independent
of the NMR frequency.

Markert ¢l al. calculated the naximum relaxation rates based on the work of Faux.
Ross and Sholl (1986) which had ¢onsidered only crystalline svstems. They Tound that the
experimental peak dipolar rates were less than the calculated rates for a given frequency
and frame of reference. The diffetence between the two increased as the lrequency (and
therefore temperature) decreased. \larkert «f «l. argued that this could be expected when
there was a distribution of hydrogen hopping rates because the ratio (Al /k,T). where
ALY, is the width of the distributicn function. increases as 1" decreases.

Markert et al. attempted two curve fitting procedures for their data. The first was
for a single activation energy 4, ndependent of temperature, and the second was for a
distribution of activation energies (/(F,) independent of temperature. For the single /7, or
BPP model. both £, and the jump rate 7y were varied until the best fit to the temperatures
of the rate maxima were obtained. This resulted in curves that were too steep and where
the maxima values were too great >y a factor that increased as (1000/7) increased.

The sccond model used a modified BPP expression to fit a distribution of activation
energies to model the relaxation. The distribution was a normalised combination of a

Gaussian and a Lorentzian with a maximum energy cut-offl:
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Nexo(=(F, =11, 2/(20?) < I,
Gl =28 N[U+ (1, = E)2 )™ 1, < b, < I (1.1)
0 Iy > I,

where [£, = 0.17eV, I7. = 0.67cV, 7y = 0.L65eV. 0, = 0.01 eV and NV was a normalisation
constant. The relaxation rates in the laboratory and rotating frame were calculated by

evaluating the integral

7ol = / CENT (E)E,. (1.2)

where n represents either the labcratory frame rate '['l_] or the rotating [rame rate 'l‘fpl.
T7Y(E,) is the relaxation rate in cither the laboratory or rotating frame at the energy /7,
chosen from the distribution.

This distribution allowed Marlert ¢f al. 1o model their experimental data fairlv well.
There was good agreement betweer experimental and model maxima in the laboratory and
rotating frames, althongh the expe -imental narrowness of the rotating frame peaks was not
well fitted.

The equation (4.2) assumes a BPP function at each site and that the BPP function
for each of these can be weighted by the probability distribution. These assumptions are
not well justified. The weighting »f the BIPP functions by the probability distribution is
arbitrary and gives no insight int) the mechanisms behind the diffusion. The approach
of the analysis of small finite systems has a much more rigorous basis. The choice of the

‘

meaning of the G/(I),) function is important. as it can be used to model either site or saddle
point encrgies. or both together. T'he small system model of this thesis will consider site
and saddle point energies separate v.

To compare the results of Markert ¢f al. to the model used in this thesis. the energy
distribution (-1.1) was used to sel»ct a random set of energies for the simulations.  For
the first simulation the random energies were allocated to the sites of the lattice so that
there was no deliberate correlation between the site energies. For the second simulation the
random energies were allocated to the saddle points of the lattice, again with no deliberate
attempt at correlating the spread of encrgies. Simulating the diffusion for site and saddle
point euergy disorder separately s an approximation to the real system but allows the

examination of the effects of the t vo classos of disorder on the relaxation rates.
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For site or saddle point energy disorder the barrier energies 19, 5 for diffusing [rom site
a to site 3 were chosen from the cistribution (/(19,). The mean time between jumps was

then defined as

T = Toexo (I, /1T

= Toexo{lo /R ) exp((En s — 150,) /KT) (1.3)

where £, was set at 0.10eV. Th» overall jump times were then scaled by the product
Toexpi L, /kT) so that the jump t mes in these units are of order unity.

Several runs for cach type of disorder were carried out so that a wide range ol random
distributions of energies were simulated. l'or cach choice of jump rates. and at each tem-
perature, the matrix W from equation (3.1) was calculated and the rate equations solved.
This vielded the probability function 7 (r,.r;.w7). The equilibrium coucentration 1%, (r,,)
was also calculated at cach temper: ture. This had a different form for site and saddle point
energy disorder. For saddle point e1ergy disorder, each site was at the same energy level, so
the normalised equilibrium distribution probability for saddle point energy disorder was the
same regardless of temperature or lisorder. or site energy disorder the equilibrivm distri-
bution was dependent on the temperature and the disorder present. The spectral density
functions were calculated by sumn ing over all initial and final states a and 3 respectively.
with the second Legendre polvnon ial 12 (cosé,,;) calculated in each case. The results for
both site and saddle point energy distributions, averaged over 10 simulations on an eight
site lattice, are shown in figure 1. . The curves have been superimposed so they may be
more easily compared.

The site energy disorder prodices syninetric curves, whereas the saddle point energy
distribution gives relaxation curves with appreciable asyvmmetry. Such asymmetry is often
a characteristic of experimental relaxation curves, which would seem to indicate that saddle
point energy disorder. at least for low concentration systems, is more significant than site
cnergy disorder. Similar results we e found by MeDowell (1993) who used a Gaussian distri-
bution of site and saddle point encrgy in NMonte Carlo simulations. Interestinglv, Richards
and Shinar (1987) found the opposite was the case in their Nonte Carlo simulations. They
found that site energy disorder cau: ed the relaxation curves to be broadened and that saddle
point energy disorder had no such effect.

The a-Zr3RhHs 5 svstem is not a low hyvdrogen concentration systent. s the hvdrogen
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Figure 1.1 Clalculated relaxation ates 2y (lower group of curves) and Ry, (upper group)
for site energy disorder (dashed curves) and saddle point energy disorder (solid curves).

concentration increases the lower ¢nergy s'tes will be filled first. leaving the remaining hy-
drogen to diffuse over relatively sl allow site energies. This could change the behaviour of
the relaxation rates. A way to app oximate high concentration effects using the present low
concentration limit theory is to replace the calculated P, (7)) for site energy disorder by
Pry(r,) = I/N.where N is the nuniber of sites in the system. The assumption ol a constant
equilibrivm distribution of spins a any temperature corresponds physically to a high cou-
centration of spins where the majority of deep potential sites are filled. The simulations for
site energy disorder using this substitution produced curves that were asymmetric, similar
to those produced by the saddle phoint energy disorder. These can be seen in figure 1.2,
This would indicate that a knov ledge of the equilibrium distribution of spins is important
in understanding the diffusion process. In the work done by Richards and Shinar. they
seeded their Monte Carlo lattice 1andomly regardless of temperature and lound that site
energy diserder caused asymmetry in the relaxation curves rather than saddle point energy
disorder. This random seeding cor espouds to setting P, = 1/N. It is possible that if they

had used a thermal equilibrium for the initial distribution of spins that they would have
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Figure 4.2: Calculated relaxation 1ates Ry {lower group of curves) and Ry, (upper group)
for site energy disorder with 12, (r, ) = I/N.

observed results similar 1o those in figure <.1.

The difference in the sets of curves for site and saddle point energy disorder in the small
finite system model may be explair ed in the following way. As the temperature decreases.,
the jump rate out of a particular ¢ te will also decrease. For site energy disorder, il a spin
jumps into a deep potential well then it will see the same large energy barrier in any possible
jump direction. At lower temperatures the spin will not have the energy to jump over the
barrier and so will become trapped. slowing the relaxation rates. With saddle point energy
disorder at lower temperatures a s»in mmay see a large barrier energy in one direction, but
there may be a much smaller barr er energy in another allowed jump direction. The spin
can then jump over this smaller brrier and continue to diffuse through the svstem. thus
enhancing the relaxation rate and eading to the asymmetric curves observed.

To compare the present results « nd those of Markert et al. calculated from their modilied
BPP model the two sets of data arc plottec together in figure 4.3. The small system model.
shown in the solid curves in the figure, is for saddle point energv disorder on a single cube

system with the equilibrium term 1%, (v, ) calculated as normal at each temperature. It can
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be seen that the qualitative shapes of the curves are similar although there are differences

in detail.
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Figure 4.3: Comparison between NCC fitted curve (dashed lines) and small, finite svstem
model (solid lines). The lower grot p of curves are for Ry, the upper for Ry,.

From this it can be concludec that the present approach can. in principle, explain
experimentally observed asymmetiic data. To fit the calculated curves 1o the experimental
data would require adjustment of he paramecters in the energy distribution G/{F,) such as
the Gaussian and Loventzian widtis oy and gy respectively, the peak energy position and
the cut-off energy.

The results for the small syste n model show significant differences in detail compared
with those from the modified BPP model: the peak heights and positions do not matceh and
the relaxation curves in the rotatig frame have a different shape. This indicates that the
modified BPPP procedure is not a particularly accurate method of modelling the relaxation
rates in disordered systems.

The energy distribution used v Markert et al. used a width of o7 = 0.065 eV [or the
Gaussian part of the distribution wnd a width of ay = 0.04 eV for the Lorentzian part. [t

is of interest to examine the sens tivity of the results to the choice of these widths since
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the effect of increasing the level of disorder in a system has been noted to cause increased
broadening of the relaxation curves and shilting of the peak positions (Adnani. Havill and
Titman, 1991). By using a Gaussicn distribution of width ¢ = 0.01,0.03.0.05 and 0.07 for
saddle point encrgy disorder, the 1:laxation rates for a single frequency in the fixed frame
of reference were found to be as shown in figure 1.1, These results are for diffusion between
the sites of a single cube. Similar hehaviour was observed for systems with larger numbers

of sites.
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IMigure 4.4: Calculated relaxation rates Ry for four Gaussian widths

As can be seen. as the width of he distribution is increased the relaxation curves become
more asvimmetrical, and the peak positions are lowered and moved towards lower temper-
atures. For small values of wr, wlich corresponds to high temperatures, the hehaviour of
the curves is virtually identical. A: the temperature decreases the curves begin to show dif-
ferent behaviour in line with a slover approach to the large wr limit. The behaviour of the
positions and heights can be more clearly seen in figure 1.5, A width of & = 0 corresponds
to the ordered crystalline system.

The variation in peak height and posit'on is not very great when going from an ordered

system to none with a Ganssian w'dth of o = 0.01. but as the distribution becomes wider
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Figure -1.5: Position of peak height.. (crosses) and positions (dots) as a function of the width
of the Gaussian distribution.

the change is more rapid. The change is not quite linear. with the variations in peak
positions curving slightly upwards. The degree of asymmetry in the asvmmetric slopes is
quite sensitive to the choice of o vrhich suggests that the observed asvmmetry could yield
reasonably accurate values of the degree of disorder.

For an ordered system it is poss ble to generate a set of universal curves for the relaxation
for a particular value of w7 such tat char ging wr only results in a rescaling of the curves.
This is possible because there is on y a single 7 for the whole system. In a disordered system
there is a spread of 7 values, so it is no longer possible to generate a single set of universal
curves. In this section the choice of varialles corresponded to specific numerical values for
a particular system. The next sec ion considers the general question of how the relaxation

rates depend on particular variabls and 1 ow theoretical results can be presented.
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4.3 Variation of Parameters in a Disordered System

As has been noted in §3.5 an ordere | svstem may be characterised by a single independent

parameter wr, defined as

w - =wrpexp(l,/kT). (1)

When relaxation rates are plotted s In R versus ln(wr), which is equivalent to a plot of
In i versus 1 /7. results for different experin.ental frequencies correspond to a scaling of the
relaxation curves, giving no new infrrmation about the relaxation. Siuch a set of curves is
shown in figure 4.6. The peak of the relaxation curves for the laboratory frame is found at
- wr = ', where (" is of the order of unity, and the relaxation curves at any [requency may

be found by a simple scaling of the <mown set of curves.

10° = LR S RALIL B AL B AL I R AL IR
$10™ = /’/”\\k:
.5 E /// \\1,0 \E
e - ya v A
= / 7
0107 =— /
D = 7 s
« - 4 -
4 [ - a
= - - 7
(glo-a? - =
= \\& -
— \\ \\ —
1oLl SR T S RATIY R REIIT B AR
1072 107 10 10! 10? 10° 10

W T

I'igure 4.6: Relaxation rates f2; anc 7y, (arbitrary units) as a function of wr for the simple
cubic lattice and for two different resonant frequencies wy (solid lines) and 2.y (broken
lines).

For an ordered system the prod et of 7 aud exp (15, /kT) determines the overall rate at

which diffusion proceeds because it is the same at all sites and therefore the single variable
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wt is suflicient to specify the depenience o relaxation on both 7y and temperature. There
is no such single parameter for disordered svstems, as there is no single activation energy
E., and <o 7 varies from site to site In practice 7 could also vary between sites because of
variations in 7y but this has not be n included in this theory.

One way of presenting the resulis for disordered systems was deseribed in §3.5. Delining
wT, such that

Iy — I
WT, = WTy 2XP <~——~) (-1.5)

K
where I/, and Ej are the average encrgies ol the site and saddle point distributions respec-
tively, the results of relaxation cal -ulations can be presented as Iu I? versus In(wr,) plots
for various choices of wry. Such plcts correspond to experimental plots of In IR versus | /T

To demonstrate the set of relaxation rat> curves produced by this inethod, the relaxation
rates were calculated using the small finite system model for two spins on a twelve point
lattice arranged as two adjacent ¢ ibes. A distribution of saddle point energies only was
included as this has been shown peviousl to cause broadening of the relaxation rates in
line with observed results. The ditribution used was Gaussian with a width of ¢ = 0.06
and a peak energy of /7, = 0.40eV The ratio between w and the Larmor frequency in the
rotating frame wo was kept at w/ug = 107 in each case and the data generated for values
of wry = 10711077 and 107", The results appear in figure 1.7,

The relaxation curves are asyminetric it each case and depend on the value of wry, unlike
those for ordered systems. These results show that measurements for different frequencies
provide new information and do 1ot simply correspond to translations of the results for
a particular frequency as is the cise in o'dered systems. The value of wr, at which the
maximum occurs also depends on wry. It is not therefore possible to deduce directly the
value of 7, at the temperature at which the maximum occurs from a relation of the form
wT, = constant at the maximum, : s can be done for an ordered system.

The next section will examine some of the properties of the distribution ol eigenvalues
and coefficients for a disordered system. as compared to an ordered system. The distribution

will be used to explain some of the features of the simulated relaxation rates.
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4.4 Eigenvalues and Coefficients

The correlation functions and spectial density functions for disordered systems may also be
written as a linear combination of e ¢ponentials and Lorentzians respectively. involving the
eigenvalues and coefficients in a sim lar manner to that for ordered systems. as was shown
in §3.4. The form of the distributior. of the eigenvalues and coeflicients. however. is rather
different 1o that for ordered syvsten s. The presence of disorder. even at a single sive or
saddle point. is suflicient to remove wny degeneracy from the calculated cigenvalues, While
it is possible in principle for a spreal of jump rates to cause degeneracy to be [onnd in the
eigenvalues this was not observed i1 the sinulations. The lack of degeneracy means the
solution to equation (3.18) was automaticallv valid. leading to a spectral density function
that was a linear combination of e: ponent als without having to consider the method of
undetermined coefficients.

The inclusion of disorder resulted in a different set of eigenvalues and coeflicients for

each temperature and random set [ site or saddle point energies allocated. The disorder
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Figure -1.8: Histogram of eigenvali es and cocfficients for a 4 cube disordered syvstem, ¢ =
0.03 and ¢ = 0.07.

was included by choosing a rando n set ol site or saddle point energies {rom a particular
weighted distribution of energy val ies. The width of the distribution and the peak, or most
probable energy value, position cotld be varied to examine the effect of such changes on the
relaxation rates. A typical set of cigenvalues and coefficients for a four cube model with a
Gaussian distribution of saddle pcint energies of width ¢ = 0.03 and o = (.07 appears in
figure 4.8,

In general there tends to be a w der selection of eigenvalues than is evident in the ordered
case. As can be seen the distribu ion of eigenvalues is much wider for the o = 0.07 case

than for the o = 0.03 case. The nagnitudes of the coeflicient summations 7, a; for the
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ranges of eigenvalues specilied in fi:sure 4.8 for the more disordered system are also greater
than those ol the less disordered sy stem.

Some details of the behaviour H»f the ralaxation rates can be found by examining the
histograms in the limit of large ard small values of wr,. The spectral density functions

behave as

- 2N )

.](wru) —Z‘ 411F:m. (!())

where wr, is defined as in §L.3. For small values of wr, such that wr, < A; for all i, this
can be simplified to

2a; _

J(wr, = : Y (1.7)

In this small w7, limit the summation terns will become negligible when A; > a;. Fxam-

ination of this ratio for the ¢ = 0 03 and o = 0.07 systems shows that the behaviour of

the two is very similar. Both show large peaks in the coellicient sum for small eigenvalues

(zero to six for @ = 0.07, zero to t vo for ¢ = 0.03), and negligible values otherwise. This

indicates that the behaviour of the relaxation rates for the two distributions will be similar

for small values of wr.

For large values of wr, such thet wr » A; for all ¢, equation (1.6) simplifies to

.](u'T,;) = ZZ‘(-——L

WT, )2

2

= -)72(1,1;. (1.8)

(W,

As can be seen from the histogram for o = 0.03 the condition that w7, > A; is satisfied
for wr, > 10 whereas in the ¢ = (.07 casc this is not satisfied until w7, > 170. Also the
summation term in the above equi tion wil be different for different energy distributions.
For the & = 0.03 distribution the summation over the coeflicients has a value of 1157,
while for the ¢ = 0.07 distributior the summation value is 18.458. The conclusion {rom
both of these is that the relaxation curves will behave differently as the width ol the energy
distribution is increased. This can been verified by examining figure [0 which shows the

relaxation rates for four Gaussian distributions of jump rates with different widths. lor
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small values of wr,. or high tempe -atures, the four curves are very similar. For large wr,
or low temperatures the behaviour changes as the width of the distribution changes.
The next section will detail a method ol using the cigenvalue and coefficient distribution

for an ordered system to model a disordered one.

4.5 Analytical Approximation

The exact analysis outlined above ¢ wn be time consuming as several runs for different energy
distributions need to be performed o achieve good results for a disordered svstem. It would
be useful to have a simple method to achiove the results. The following is an attempt to
develop such a scheme. [t is based on comlining the results for an ordered system with the
distribution of activation energies niore directly, analogously to the modified BPP model in
§4.2.

The autocorrelation function fo - the ordered system was defined as a sum ol terms, and

for an infinite system becomes an iitegral:

Coall) = /U T A () exp(=Awol)dN (1.9)

where £ is the actual (dimensional) time, X is dimensionless and corresponds to the eigen-
values of the ordered system, and wy is the thermally activated hopping rate given by
wo = (/7o) exp(—=L/kT), with th» dimensions ol 1/t. A,.;(\) is the weighting ol cacl

eigenvalue. An attempt was made o fit the function A,.;(A) by

Ao 1(A) == a X exp(—3A™). (1.10)

The variables 1, m, and # were used to fit the form of the curve, with a being a normalisatior
constant. This curve was fitted to the distribution of eigenvalues and coeflicients for two
spins diffusing on a twelve cube (or 36 site) simple cubic lattice. This structure was chosen
because the shape of the distributicn was regular enough to be modelled by a fitted curve.

To reduce the number of indej endent variables it was decided 1o mateh the peak in
the histogram with the peak in the fitted curve. Differentiating equation (41.10) and sctting
A = 0.6 as the peak gives n = #m 0.6)™. Values of m and 3 were varied to fit the curve
and the values 4 = 1.5 and m = 3.2 obtained. The fit is shown in figure 1.9. The spectral

density functions calculated with tiis function using equation (-1.9) agreed well with those
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calculated using equation (-1.6) wit the eigenvalues and coeflicients for the 36 site system,

as can be seen in figure -1.10.
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Figure 4.9: Comparison of histo sram of eigenvalues and coeflicients and fitted curve.

The next step was to extend this model to include disorder. The attempt used was to
integrate equation (4.9) over the cistribut.on of jump rates as a function of w. given by

P(w), as

G = / | P(w) / J Aord (A) exp(—Awt)dAdw (.11
J0O 0

where w has the dimensions of a ra e, and / is actual time. The distribution Tunction P(w)
may be calculated in the following wayv. If there is a normalised distribution of energies

given by, for example, a Gaussian [ inction

I 2 2
Pi(E) = = cxp(—(F = Ey)*/207%) (1.12)

a\2n

then each value of E obtained from this distribution corresponds to a jump rate w given by
w = Aexp{—FE/kT). The probabili v function Py (F) needs to be expressed in terms of the

distribution function P(w) for the -ate w. Since the probability function is normalised,
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/” P (IYdE = 1. (1.13)

~C

Changing the variable by using w == Aexp(-—-F/kT) vields

V] l[‘
/ I’l(lf{u'))(——-(lw =1 (4.1.0
Jo dw
i.e.
BN
/ Plw)ydwe =1 (-1.15)
Ju

where Plw) = P](Iz'(w))%. The correlation function (1) can then be calculated.
It is more appropriate to plot the correlation functions and spectral density functions

in terms of the dimensionless pararnicter . To achieve this define ¢/ == @, where

T = Aexp(— (LY /kT). (116

Then the jump rate w can be writt °n as
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woo= exp(=1/hT)
= dexp(- () /IT) xexp(=( = () /K1)
= wexp(-(F— U /KT). (117)

Substituting this into equation (1. 1) gives

(Y = / TP w) / Aot (A) exp(=Awt' /w)dNdw

Jo Jo

w / h P(ww') / B Ao (N) exp(—=Aw't"ydNd v’ (-1.18)
Jo 0

where w’ = w/®. So by using equations (1.12) and (1.18) the disordered system may be
modelled.

The system modelled was one of saddle point energy disorder, with a Gaussian distri-
bution ol cuergy with width ¢ = 0 01 and a peak energy of 0..10eV. The relaxation curves
generated by the function in equaticn (1.18) and a comparison with the exact theory appears
in figure 4. 11.

The curves have a similar form although there are significant differences. The modelled
curves for the rotating frame (upper curves) are hroader than for the exact system. and
both modelled curves are below thcse of the exact curves. It is possible that by varyving the
parameters of the fitted curve that a better fit could be obtained.

Although this method did not 1eproduce the more accurate results of the small system

model particularly well, some functional procedure along these lines would be useful.
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ation on a single cube,



Chapter 5

Conclusion

Nuclear spin relaxation of spins due to diffusion through a disordered systeny is quite com-
plex and a large amount of work 1as gone into attempting to understand the processes
involved. Previous work has involved Monte Carlo simulations of the diffusion process to
calculate the speetral density funct ons or itting curves to the relaxation data. The curve
fitting usually involves fitting a dist-ibution of activation energies to a BPP-like expression.
While these have given some insigh into disordered systems, they do have their drawbacks
as was outlined in Chapter 2. For Monte Carlo systems the computing time can be very
long, slowly diffusing spins can intryduce rounding errors into the calculation ol the corre-
lation rates, and numerical Fourier transforms can introduce further errors. Curve fitting.
while able to fit the experimental cata reasonably well, gives no insight into the processes
that effect the diffusion and the fi ting quality can degrade at lower spin concentrations
(MeDowell, 1993). It is questionabl» whethor fitting a distribution of activation energies to
a BPP-ype expression is a valid m thod fcr examining the relaxation rates.

The purpose of this thesis was tc determine whether or not the spectral density functions
for a disordered system could be nodelled accurately using the exact analysis for a low
concentration of spins on a small, f nite system. Chapter 3 outlined the theory behind the
calculation of the spectral density [t nctions which was based on the matrix form of the rate
equation

dp

— = —Whp. 5.
dt P (5-1)

The matrix W was calculated fro n the probability of a pair of spins moving from one

orientation, or state. to another in a jump of either of the two spins. The matrix W is

Gl
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singular, meaning that the solutions to equation (5.1) will not be lincarly independent. By
reducing the matrix W to W’ an in lependent set of n— 1 solutions could he generated. witl
the »t" solution caleulated from th others. It was found that despite the ordered systen,
producing a W’ matrix with degencrate eigonvalues, a congistent solution to equation (5.1).
which gives the time dependence of the spectral density functions, could be Tound that was
a linear combination of exponentials. This theory is exact only in the low concentration
limit, which in this case was two sp ns on the lattice structure. A disordered system is very
complex, so some assumptions on th» syvsten were made to simplify the modelling procedure.
A simple cubic lattice structure wes assumed. rather than a system with different nearest
neighbour atomic spacings. The energy disorder on the system was modelled with either site
or saddle point energy disorder. These were simplifications of a real system which would
involve structural disorder as well as site and saddle point energy disorder, but allowed
the effects of the two classes of erergy disorder on the spectral density functions to be
examined. Structural disorder coull be readily included in the model if so desired. Tt was
further assumed that in the definit'on of the mean time between jumps that the prefactor
1o was constant throughout the sariple.

The theory was initially appliec to modelling an ordered system to check the validity
of the model. as the ordered systen is well understood and accurate analvtic forms for the
diffusion in ordered systems exist. The mcdel used was two spins diffusing on an ordered
simple cubic lattice consisting of ~ight lartice sites. With appropriate normalisation it
was found that the small, finite system model was a good approximation to the infinite
simple cubic syvstem for values of or7 2 1. In comparison, the BPP model (Bloembergen.
Purcell and Pound, 19-18) was a poor fit for all values of wr, as expected. The small. linite
system model was a poor fit for values of wr less than one as this corresponds to the high
temperature, or long range diffusior . region of the NMR experiment. A small system model
cannotl be expected to model this -egion accurately, and this is one of the limitations of
the model. A larger lattice size cotld be wsed. however the computing time required soon
becomes prohibitive. The region in which the model is accurate corresponds (o a range of
values of w7 from the peak at wr 2 | out to lower temperatures. that is. large values of wr.

As modelling a small system exactly was working well for an ordered syvstem the next
step was to include disorder in the model. This complicated the calculations as there was
no longer a single jump rate for te entire sample but a spread of jump rates [rom site

to site and from jump direction to jump direction. Chapter | detailed this application
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of disorder to the svstem. The ¢ mulaticus for a disordered svstem were compared to
the experimental and curve fitting work ol Markert «f «l. (1987). It was Tound that by
simulating the diffusion of two spine on a single cube with disorder in the saddle points that
similar behaviour to experimental esults could be obtained. Saddle point energy disorder
lead to the relaxation curves being asvmn etrical about the peaks. with the peak heights
lowered and the peak positions shited. Site energy disorder did not cause the relaxation
curves to become asymmetrical. To compare the theoretical results of Markert ¢f al. to
the small system model the energy distrioution G(1,) used in fitting the curve to the
experimental results was used to al ocate siddle point energy disorder to the model. It was
found that the two sets of curves dic not agree verv well. From this it can be concluded that
the modified BPP model, as used >v Markert et al. does not model the spectral density
functions accurately.

Richards and Shinar (1987) had found that site energy disorder caused asymmetry in the
relaxation rate curves for disordered systems. rather than saddle point energy disorder. This
inconsistency can be explained fronm the manner in which Richards et al. set up their NMonte
Carlo simulations. They seeded their lattice randomly with spins, allowed them to diffuse
and then calculated the correlation functions. This did not allow the system to achieve
thermal equilibrium before the similations were run. Other Monte Carlo simulations, such
as those performed by McDowell (1)93). began with the system at thermal equilibrium and
found that saddle point energy disorder had the greatest effect on the relaxation rate curves.

The method of modelling the : pectral density functions by the usze of a small, finite
system accurately has been shown to be valid in the limit of low concentrations aud rea-
sonably short times. Lor longer tires, whon long-range diffusion is the dominant feature
of the system this model is no longer applicable. By combining this theorv with Monte
C'arlo analysis. which is useful for long time analysis but fails when considering the motion
of slow spins. a better picture of the spectral density functions may be developed. The
concentration effects can, in theory, be examined, by the use of the mean field theory to
simulate the inclusion of more spins in the lattice. By replacing the equilibrium distribution
of spins £, (r,) by a constant the cffect of a high concentration of spins can be simulated.
This corresponds to a situation waere most of the deep potential wells have been filled.
leaving shallower barriers over which the remaining spins can diffuse. The relaxation rates
for such a model with site energy d sorder were asvimmetric, leading to the conclusion that

the knowledee of the equilibrinm conditions for a system can be important when trving to
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understand the processes involved.

In conclusion, the method of analysing small finite systems has been shown to be an
effective alternate approach to understanding nuclear spin relaxation in disordered systemns
which has a firm theoretical basis .nd is relatively straightforward to apply. This method
should prove useful in further wor < aimed at interpreting nuclear spin relaxation data in

disordered systems.
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