IN TRODUCTION

This study focused on adult learners’ responses to fraction questions. Previous
research by Hart (1981) and Ker:lake (1986) indicated that younger students had
considerable difficulty with fraction questions. They also identified several problems
that young children face. However, there was little evidence to indicate if adult
learners experienced similar problems noted in the child studies, or whether there
were fundamental differences betwzen adults’ perceptions of fractions and those of
younger children.

Plausible explanations for childrens™ difficulties with fractions were inconclusive. For
example, there were several, often conflicting, interpretations and hypotheses with
respect to students’ understandings of fractions. Some authors, such as Streefland
(1991), suggested that this was due to a lack of ‘connectedness’ between the historical
development of fractions and th¢ methodologies used to teach fractions in the
classroom. Hunting (1986) argued that students’ difficulties with fractions could be
traced to a delayed introduction to them. In contrast, other writers (Dickson, Brown
& Gibson, 1984; Freudenthal, 1373; Hart, 1981; Kerslake, 1986) argued that
fractions should not be introduced 00 early, but should be delayed until the child is
cognitively ready. None of these ¢pproaches addressed adult learners’ interpretations
of fraction questions.

Given this, it became important to extend the range of theoretical frameworks within
which a plausible explanation of acult learners’ responses to fraction questions could
be interpreted. Clearly, any such framework should be age independent. As a result,
a framework, which focused on the students’ responses within an acknowledged
theoretical position, was deemed t> be an essential part of the design. One such
framework was the SOLO (Structu-e of the Observed Learning Outcome) Taxonomy
of Biggs and Collis (1982, 1991:.. This framework together with the literature
surrounding childrens’ difficulties vith respect to fraction understanding are discussed
in Chapters One and Two.

Chapter Three describes the design for the first investigation of the study. Initially, a
test was administered to 103 adult learners in a TAFE (Technical and Further
Education) college at the start of th: academic year. This study consisted of a sub-set
of items from the Kerslake (1986) <tudy, and it was divided into three themes. These
themes were: (i) models of fractions; (ii) fractions as numbers; and, (iii) equivalence
of fractions.

Chapter Four outlines the data analysis plan for the main study. This involved the
development of a fraction quiz which was administered to 106 TAFE students at the



start of the academic year. The students were divided into two broad groups,
Associate Diploma (AD) and Teriary Preparation (TP) classes, because it was a
convenient platform with which to idminister the quiz. The questions on the fraction
quiz were divided into four mair research themes. These were: understanding
fractions, comparison of fractions, operations on fractions and description of fractions.
In addition, the questions relating to each theme were presented in two ways, namely,
typical school textbook questions (referred to as context-free problems) were used,
and, second, fractions placed inio familiar situations (referred to as in-context
problems). Each of the themes are analysed throughout Chapters Five to Eight.

The understanding fractions theme focused on adult learners’ responses to fraction
questions that involved equivalence and sharing techniques. These two concepts are
deemed to be fundamental to undeistanding fractions. Traditional textbook questions
were presented to provide student; with the opportunity of addressing equivalence
questions in ways they may have scen previously. These questions form the basis of
the context-free questions. In addiion, students were given several similar situations
in which pizzas (and cakes or witermelons) were to be shared between a certain

number of people. These questions formed the basis of the in-context questions.

The comparison of fractions theme asked students to rank two or three fractions. All
fractions chosen would be expectec to be found in traditional mathematics textbooks,
and one question contained fractions with numerators equal to ‘1’. These questions
are referred to as the context-free (uestions. The in-context questions asked students
to compare fractions by placing them into two real-life situations. The first situation
asked students to compare the varidus strengths of two different drink recipes. The
second situation required students t> compare the amount of money two people, who
have different salaries, are able to sive.

The operations on fractions thene required students to perform the four basic
operations (+, -, X, +) on fraction questions. Again, this provided students with the
opportunity of addressing this the ne using traditional textbook examples, i.e., by
addressing the context-free questions. In addition, each of the four operations were
also placed into a context. In some cases, the context may have been unfamiliar and
non-routine to the students.

The description of fractions theine was designed to provide students with an
opportunity to describe fractions. The research indicated that, perhaps apart from
Kerslake (1986), students are given very little opportunity of describing fractions.
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Finally, an overview of fractions is provided in Chapter Nine. The aim of this
chapter is to provide an holistic description to the learning of fractions.

Throughout all of the above five chapters, the adult learners’ responses to the
questions on the fraction quiz are analysed both qualitatively and quantitatively.
Typical responses and summary tables are presented on a question-by-question basis.
The Quest package, a computer prcgram designed to perform Rasch analysis, (Adams
& Khoo, 1993) has been utilised for the quantitative analysis. In the Quest package,
Thurstonian Threshold values enable comparisons to be made between different items
and cases (students). Overall Difficulty and Step Difficulties can be calculated using
the Tau option and these provide measures of (i) the overall complexity of a question,
and (ii) the comparative difficulties involved in reaching each response category of a
complex problem. Where appropriite, more specific information has been included in
Appendices. An overview for e:ch question is presented, while a more detailed
discussion, which draws together iny similarities across various questions within a
theme, is included.

Finally, Chapter Ten discusses the main conclusions of the study and presents a
comparison between the responses to one of the questions and a similar question noted
in the recent work of Watson e al. (in press).



CHAPTER ONE

A REVIEW OF THE LITERATURE

A common error for these students was the so-called freshman error
of adding numerators and adding denominators. For example, when
asked to find the sum of 1/2 + 1/3, these students commonly
answered 2/5 [obtained as (I + 1)/(2 + 3)]. Although this error has
a great deal of intuitive apoeal and is common among students who
are first learning the subject, it is striking that the error had persisted
Jor so long with these stud:nts, despite many attempts by teachers to
eradicate the error. ... The usual explanations for this error seemed
inadequate in the face of the fact that for at least 5 school years these
young adults had received instruction designed to correct the error.

Silver (1986, p. 189)

INTRODUCTION AND ORGANISATION OF THE CHAPTER

The above quote says quite a lct about how adults perceive fractions, and, in
particular, how some adults persist with errors long after their original introduction to
fractions. Often this is despite repcated intervention programs. Although the reasons
for this remain unclear, the difficul.y of trying to reconcile and incorporate new ideas
with ones that a student has previously established may be a major contribution to the
confusion identified (Payne, 1976). Clearly, "certain ‘standard’ wrong answers given
by many different people - should certainly be explained by any adequate theory of
human mathematical thought" (Davis, 1984, p. 97). Notwithstanding this, very little
research appears to have been carried out investigating mature-age students’
understandings of mathematical concepts. Such research would seem to have many
benefits; two stand out. First, it would allow a perspective on what understandings
are retained after formal schooling. Second, it would provide a firmer basis on which
to structure bridging or support programs to help older students in their move to

tertiary education.

However, there is considerable :vidence regarding younger learners, and their
understandings of fractions (Behr, Harel, Post, & Lesh, 1992; Dickson, Brown, &
Gibson, 1984; Hart, 1981; Hunting, 1984, 1986; Kerslake, 1986; Post, 1988;



Streefland, 1982; Watson, Campbell, & Collis, 1993; Watson, Collis, & Campbell,
1991ab, 1992ab). The findings ind cate that fractions is a difficult topic to teach, and
a difficult topic to learn.

A major investigation into fractions was undertaken as part of The Concepts in
Secondary Mathematics and Science (CSMS) project (Hart, 1981). This study was
carried out between 1974 and 1979 where almost 10 000 children between the ages of
12-to-15 years were tested. Aporoximately 30 students were also interviewed,
typically for one hour (Hart, 1981, pp. 1-2). In the case of the fractions topic, 246
first-year (12 years), 309 second-y:ar (13 years), 308 third-year (14 years) and 215
fourth-year (15 years) students were surveyed (Hart, 1981, p. 1). Part of its sequel,
the Strategies and Errors in Secordary School Mathematics (SESM) research, also
examined fractions. The findings of this investigation were presented in Fractions:
Children’s Strategies and Errors (Kerslake, 1986). This latter study consisted of two
phases of testing and interviewing, followed by a teaching experiment. In the first
phase, 23 students aged from 12-to-14 years were interviewed. The interviews, which
were taped, lasted for approximately 30 minutes (Kerslake, 1986, pp. 8-9). In the
second phase, fourteen 13-year-old; were interviewed for between 30-to-40 minutes.
Fifty-nine students completed all scssions of the teaching experiment, and they were
used in the overall evaluation of the program. Subsequently, class trials were
administered in six schools on 81 stidents across a similar age range.

Results consistent with the research carried out by the above authors has also been
noted by other researchers in diffcrent countries, e.g., Bourke, Mills, Stanyon and
Holzer (1981) in Australia; Hasemann (1981) in Germany; Post (1988), as part of the
National Assessment of Educational Progress (NAEP), in the United States; and
Streefland (1991) in The Netherlands. In general, the findings indicate that many
students have considerable difficul:y with fractions, primarily because they do not

understand basic fraction concepts.

The main aim of this chapter is to investigate the literature regarding fractions and the
different approaches used by learners. The following four questions serve to structure
the analysis:

6] What evidence is there that students have difficulty manipulating fractions?

(i1) What similarities or differer ces are there among different studies or different
age groups?

(ili)  What reasons, if any, does the literature suggest for student errors?



(iv)  Is there evidence to suggest .1 cognitive hierarchy?

To provide a focus for the existiig work, this chapter is divided into two broad
sections which relate to the founda:ions of fractional understanding and the treatment
of fractions as numbers. The rationale for this decision was based loosely on
evidence accumulated throughout th: literature search. For example, both Hart (1981)
and Kerslake (1986) identified three main problem areas of fractions. These were:
fractions as numbers, the use of diagrams to illustrate fractions, and equivalence of
fractions. However, to encompass contributions from other authors, such as the
historical insights of Kieren (1988) and Streefland (1991), the decision to divide the
literature review into two broad secions appeared feasible and desirable.

FOUNDATIONS TO UNDERSTANDING FRACTIONS

This section of the work investiga'es four main areas which relate to understanding
fractions. First, an historical perspective on fractions is presented. This establishes
the basis on which the need for fractions developed. This is followed by a discussion
of typical models used in schools :0 demonstrate the part-whole construct. Finally,
since the fraction one-half is the Jominate fraction used by many (including adult)
learners, special attention has also teen given to this.

HISTORICAL PERSPECTIVES ON FRACTIONS

An old Arab, Anwar his neme, decreed before he died that his eldest
son inherit one-half, his second son one-fourth and his youngest son
one-fifth of all his camels. He died leaving 19 camels and his three
sons could not agree on how to divide them. A dervish - passing by on
his camel - observed the disagreement, dismounted and stated helpfully:
‘I will loan you my camel." Each son now took his share of the 20
camels. The dervish then remounted his beast of burden and continued
along his way, leaving all tiree heirs contented. And so did come to
pass the last will of Anwar.

Streefland (1991, p. 5)

While humanity may not have alwiys used fraction arithmetic as we know it today,
fractions, in some form, are found among the earliest permanent records known to
exist (Kieren, 1976; National Couicil of Teachers of Mathematics (NCTM), 1964;
Streefland, 1991). Fractions were invented when the need arose to ensure equality
and fairness in agriculture and >usiness transactions between early traders and
merchants. In addition, there is :ome evidence to suggest that early scholars also
pursued them for their intellectual ¢njoyment, e.g., the above problem and the Rhind
(Ahmes) papyrus (c. 1700 BC). The ancient Babylonians (c. 2000 BC), for example,
devised a sexagesimal system whicli enabled fractions to be expressed as a mixture of



sexagesimal and decimal parts. 1. is worth noting that this system is still used in
expressions, such as 167 degrees, 35 minutes and 15.5 seconds (Kieren, 1976, p.
101).

The best example of ancient ‘success’ with manipulation of fractions can be seen in
the Rhind (Ahmes) papyrus of ancient Egypt which contains "a table of quotients
resulting when 2 is divided by an odd number greater than 1 and less than 103"
(NCTM, 1964, p. 215). Today thzse fractions would be expressed as 2/3, 2/5, 2/7,
etc. However, the ancient Egyptians only had symbols for unit fractions, such as 1/2,
1/3, 1/4, etc. The only notable exception to this was the symbol for 2/3. Despite
this, fractions with numerators greuter than one, were able to be written as a sum of
the unit fractions (Kieren, 1976; NCTM, 1964). For example, 47/60 could be
expressed as 1/3 + 1/4 + 1/5.

The next major contribution to fraction arithmetic was not until the sixteenth century,
when "an anonymous author, probably Christianus van Varenbrajen, deals with first
the arithmetic theory and thereafter with its applications" (Streefland, 1991, p. 7). It
is worth noting that this approach 1s still the dominant method of instruction in many
common textbooks. This is desp te the advent of the pocket calculator and other
technological advancements which have minimised the use of fractions as a basic
mathematical skill required by many adults. However, both Kieren (1976) and
Streefland (1991) argued that students have lost touch with the ‘primitive’ or ‘realistic’
approach to fractions that our ancestors sought. This leads to a lack of fundamental
understanding of fractions, such as -he part-whole comparison or associated models.

THE PART-WHOLE COMPARISON

The part-whole comparison is the most fundamental concept of a fraction and forms
the basis of all further work on f-actions (Behr & Post, 1988; Davis, 1984). The
part-whole construct is that atpect of fractions that deals with geometric
representations of fractions. The notion that a whole can be divided at all is critical to
the development of fractional understanding, e.g., some two-year-old children refuse
to cut shapes at all (Piaget, Inhelder, & Szeminska, 1960, p. 277). However, once
the idea that the whole can be sub-divided into any number of parts is established,
there would appear to be two subscquent, but distinct, conditions which are necessary
for further development of fractional understanding. These are: (i) the idea that the
parts have to be equal; and, (ii) tha. the sum of all the parts equals the whole.

However, the literature does no: support the notion that these two conditions
necessarily develop logically nor simultaneously. Research undertaken by Davis and



Hunting (1990) suggested that the act of ‘partitioning’ did not occur naturally for four-
year-old children sharing jelly beans in the absence of a teacher, i.e., partitioning is a
"learned mechanism" (Kieren, 198 , p. 71). The findings of another experiment, by
Watson er al. (1991a, p. 18) would also appear to confirm the above assertion. In
their experiment, chocolate bar wreppers were glued to pieces of cardboard, and then
some cut lengthways, while others were cut widthways. Although some children in
the study recognised that the ‘halves’ were fair, many respondents indicated that this
was not the case, or requested a re-arrangement of the pieces before agreeing that the
two halves were equal. The important point here is that it is the synergy of the above
two conditions that is crucial to further partitioning, since the new parts then become
wholes, and so the process of subdivision can be continued. For example, 1/6 could
be obtained by dividing 1/3 into half. These premises have been referred to by many
authors including Piaget, Inhelder und Szeminska (1960, p. 277), who included them
as a set of criteria for understanding; the part-whole aspect of fractions.

Since it has been "hypothesised th:t one of the higher level concepts associated with
dealing with fractions is the recogn tion of the necessity to know the whole in relation
to the fractional part being considered" (Watson er al., 1991a, p. 16), then it seems
plausible that there should exist broad well-structured models and manipulatives which
teachers should be able to apply to teaching fractions. However, it is worth noting
that in addition to fulfilling both of the above conditions, there is the complication of
relating the physical act of partitioning to its ‘geometrical’ or ‘logical’ pencil and
paper representation. To date, there are only three major representations of the part-
whole construct, namely, area diagrams, such as with circles or rectangles; subset of a
whole representation; and, the use of the number line. While the area model has
achieved widespread acceptance, the literature indicates that there are important
concerns with each of the models. For example, it has been suggested that "counting
the number of shaded parts and the total number of parts and reporting this pair of
numbers ... does not relate the act of partitioning to the fractional number" (Kieren,
1980, p. 74). Further research in o this area would seem crucial, since it has been
postulated that it is not possible for students to undertake effective problem solving
until they relate their informal partitioning knowledge to formal symbols (Mack,
1990).

MODELS OF THE PART-WHOILE CONSTRUCT

There are three main models which describe the part-whole construct associated with
the geometric representation of fractions. These are: the area model; the subset of a
set of discrete-objects model; and the number line model. A discussion of each
model is now presented.



The area model

Of all the part-whole models, the area model has become synonymous with the part-
whole construct. The area model has received disproportionate attention in the
literature. It is the most prevalent model found in textbooks, and is often the sole
model presented to demonstrate fractions. Although the reasons for the widespread
use of the area model are difficult to determine, the main attribute of the part-whole
model is that it attempts to enable learners to identify the whole and hence
conceptualise fractions as parts of the whole. Hence, it seems plausible that area
diagrams should provide obvious clues to use to describe fractions. However, several
writers (Davis, 1984; Kieren, 1991; Watson er al., 1991a) acknowledged that this is
not always apparent to students. For example, the choice of whether the shaded area
or the unshaded area should represent the fraction is often not consistent between
teachers or textbooks, and frequently it is left to the learner to decipher, perhaps
erroneously, the ‘real” meaning of the model.

In addition, the area model is limited by both the choice of shape and the variety of
fractions that can be represented adequately. Circles and rectangles are usually the
only shapes used to represent fractions that occur in textbooks or as typical
manipulatives, and the number of different fractions that can be adequately
represented by such shapes is limited to only simple fractions, such as 1/2 and 1/4.

In addition, both Hart (1981, p. 69) and Watson et al. (1992a) noted that many
students appeared to be misled or easily confused by perceptual distracters in
representations of the part-whole model. For example, when Hart (1981, p. 74)
administered the following question:

(P20) 1 am putting tiles on the floor, they are shown shaded. What fraction of the
floor has been tiled? A diagram similar to that shown was provided.




the results indicated that many students preferred to use "a square rather than a
triangle as the unit for counting parts" (Hart, 1981, p. 74). Table 1.1 summarises
the results to this question. The table indicates that a sizeable number of students
across a wide age group had difficulties with interpreting and addressing the question.

TABLE 1.1

Percentage of replies to P20 in Hart (1981, p. 74)

Student Ages Replies to P20
9/24 or 3/8 4'4/12
12 years 30.5 18.7
13 years 28.8 22.0
14 years 37.0 21.4
15 years 42.3 20.5

Some authors (Dickson er al., 1984; Kieren, 1980) have suggested that this model
may limit the development of the idea that fractions can be greater than one, i.e., the
difficulty of representing improper fractions using geometric shapes. For example,
many children deciphered a similar diagram to that shown in Figure 1.1, below, as
7/10 rather than 7/5 (Dickson et al., 1984, p. 279).

FIGURE 1.1

Representation of part-whole area model of 7/5

Despite these misgivings, Kerslake (1986, p. 89) reported that subjects in her study
accepted the part-whole model without reservation. For example, when Kerslake
(1986, p. 9) asked the following question:

Which of the following cards would help someone to understand what the fraction 3/4
is?

] eee)
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N . _ 3+4
O00O0 | o 30




the results indicated a high acceptance of the area model, and, unlike other
representations of the part-whole model, no rejection of it. The findings of this
question are summarised in Table 1.2. However, it is unclear if this widespread
acceptance of the area model is due to its ‘familiarity’, frequent occurrence in
textbooks, or if it was the ‘easiest’ model to choose. In either case, the model would
appear to be of limited use, since it does not adequately provide a basis which enables
further exploration of fractions (Dickson er al., 1984, p. 279), including the four
operations. For example, 3/5 + 2/7 is not enhanced by a diagram indicating these
two fractions.

TABLE 1.2

Representation of children’s choice of models
of the fraction 3/4 (Kerslake, 1986, p. 12)

Model Accepted by Rejected by
&

00 15 8
eece 8 15
0000

i 19 4

o Ya

354 3 20

The subset of a set of discrete-objects model

The ‘subset of a set of discrete-objects’ model is similar to the area model and has the
same deficiencies as the area model. For example, 7/5 would be represented by the
diagram in Fig. 1.2. Here, the left hand shape represents 5/5 or one whole, and the

right hand shape indicates 2/5. When viewed together, these two structures represent
7/5.



FIGURE 1.2
Representation of sutset of discrete-objects model of 7/5

Investigations into the subset of a discrete-objects model (Novillis, 1976; Payne, 1976)
were inconclusive. For example, Novillis (1976) found no significant difference
between this structure and the area model. However, Dickson et al. (1984, p. 280)
noted that "it appeared to cause confusion among children in their understanding of
the other models" and was removed from the teaching course as a result of the Payne
study. However, caution must be :xercised in drawing conclusions from this report
since Payne (1976) dealt with yourger children than Novillis (1976), and this could
explain the increased difficulty identified. A typical problem associated with this
model is described in Post (1988, p. 200):

for the discrete set of 12 apples, each equal-sized part (equivalent
subset) consists of four separate, nonconnected objects. Nevertheless,
in the process of partitioning and conceptualizing 2/3 of 12 apples, the
child must conceptually think of twelve apples as one whole unit. That
is, the 12 objects must become a conceptual entity. Similarly, it is
difficult for the child becausz each of the three parts has four objects,
so now the child must mentally think of four objects as one part. .
Some children will pick out wo of twelve, thinking that that’s what the
numerator means, two parts. It is difficult for some children to
understand initially that each part has four subparts in it.

The advantage of the subset of a discrete-objects model is that it relates well to the
idea of a ratio and percentage, which is better than the traditional, geometric-area
model. However, the ‘area’ model is considered to be a better model than either the
subset model or the number line representation, since it provides a more reasonable
explanation for multiplication of fr:ctions by using the area of a rectangle to justify
the process.
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The number line model

The use of the number line as a1 adequate representation of a fraction presented
students with difficulties (Bright, Behr, Post, & Wachsmuth, 1988; Kerslake, 1986;
Novillis-Larson, 1980). The stude1ts’ problems were exacerbated if the number line
was not of unit length or if the length was not divided into exactly the same
proportions as the denominator of the given fraction. For example, some students
could not locate 3/8 if the number 1 ne was divided into quarters, halves or sixteenths.

Kerslake (1986) noted problems that many children would have when they were asked
to locate 3/5 on a number line. She: posed the question:

Where would the number 4 go on ‘his number line? And the number 3/5? And the
number 1 1/5?

I [ [ 1 I !
0 1 2 3 4 5

Kerslake (1986, p. 33) concluded: "how much more successful the children were
with 1 1/5 than 3/5. In the case >f the mixed number, the interpretation of finding
that fraction of the whole line wa; abandoned, and the children appeared to switch
methods depending on whether the fraction was more or less than one". This would
indicate that ‘1’ is some sort of a vardstick which the children need in order to draw

together all the other information in order to make a comparison.

Similar difficulties were confirmed by the work of Novillis (1976) and Payne (1976).
Furthermore, Dickson er al. (1584, p. 282) noted that "unlike the two other
representations, the number line dozs not incorporate the notion that a fraction can be
thought of as a part of a concrete o»yject, or as a part of a set of objects, but reduces it
to an abstract number". This is an 'mportant point. Until the utilisation of the number
line approach, fractions are identifizd as parts of areas and are not necessarily viewed

as numbers.

Streefland (1978, p. 63) and Kerslake (1986, p. 91) noted that many children found it
difficult to accept fractions as numters. This may explain why many children became
confused over what constituted the 'unit’ in the previous studies. Although Dickson er
al. (1984) argued that children were not as familiar with the number-line approach as
other part-whole models, they still 1eeded more experience in reading scales involving
fractions, such as rulers or barometers or thermometers, before moving on to this
model. However, much of this type of equipment is becoming digitised, and the
traditional ‘reading of scales’ apparitus soon may be no longer readily available.
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Irrespective of which model is prererred, the simplicity, familiarity and dominance of
one fraction over all others makes t worthy of special mention in a section devoted to
the fundamentals of understanding iractions. This fraction is, of course, one-half.

ONE-HALF

The simplest subdivision of all is 1/2, followed by successive halving, such as 1/4,
1/8, etc (Post, 1988, p. 199). IHowever, the term ‘a half’ as used in everyday
language is not always the mathen atical equivalent to 1/2. To be able to say ‘one-
half’ is very different to being able to work with the symbol ‘%2’ (Gunderson &
Gunderson, 1961, p. 250). For example, the first encounter with the part-whole
notion for many children is via ‘1/Z. a glass of drink’ or they ask for the ‘biggest 1/2’
of an edible item. In many everylay terms, a half is merely somewhere between a
whole and nothing, e.g., half way home. A further example of students

misconceptions of 1/2 can be seen by the following question, first posed by Hart in
1981.

Has this circle been split into 2

Why do you think this?

Dickson et al. (1984, p. 277), when commenting on this item, reported that: "While
89 per cent answered correctly that the circle had not been split into halve because the
pieces were unequal, 6 per cent tiought that the circle had been split into halves
because there were ‘two pieces’”. This observation, and others (e.g., Watson et al.,
1991a), confirms that children’s perceptions of ‘sharing’ do not equate to the adult
notion of ‘equal sharing’. Insteacd, the idea of ‘fairness’ appears to be acquired
separately and at some later time in their development (Watson er al., 1991a). Recall,
that it is this concept of fairness that is subsumed in the notion of equal sharing that
forms the first step towards understanding fractions.
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Historically, the need to extract a ‘fair deal’ developed in precisely the same manner.
Currency exchanges between traders and merchants sanctioned the need for the
formalisation of equal shares (Streeland, 1991), and, hence, hastened the formation of
fractions. However, according to Streefland (1991), this rudimentary requirement of
fractions has been progressively and systematically eroded through the generations - to
be replaced by theoretical persrectives and out of context prcblems. As a
consequence, Streefland (1991) :rgued, many of the problems associated with
fractions could be minimised, if not avoided altogether, if a return to ‘realistic’

mathematics was sanctioned.

Notwithstanding the above, the not on of one-half, once established, was considerably
“"easier to deal with than any other fraction” (Hart, 1981, p. 69). One-half is the
predominant fraction used by many individuals (Streefland, 1978) well into adult life
(Kieren, 1981, p. 71). Other fractions such as 1/3 were not ‘self-evident’ (Streefland,
1978, p. 53). Lesh, Behr and Pos. (1987, pp. 53-54) have "shown ‘halfness’ to be a
cognitively primitive concept; youngsters typically show earlier proficiency for tasks
involving one-half than for any other fraction items (Kieren, 1976)". Hunting
(1984a), for example, noted that one student (Sean), in an attempt to demonstrate 3/5
of a ribbon, used a strategy that involved ‘halving’. The student folded the ribbon in
half and then in half again to m:ke four sections. Although the student was not
totally satisfied with the result he did not attempt an alternative strategy. In another
experiment, Hunting (1986, p. 53 concluded that a nine-year-old girl (Rachel) was
operating "with two distinct schemis for interpreting fractions. One was a partition-
based scheme restricted mainly to tie fraction 1/2. The other was an intuitive scheme
whereby fraction information was assimilated into already well-established whole
number structures”. Interestingly, the repeated use of the ‘halving strategy’ was also
the way ancient Egyptians solved many ‘fraction’ problems.

SUMMARY

There are three main findings from this section of the work. First, historically,
fractions were invented (discovered?) to aid trade and other merchandising
negotiations. Without them it wou'd have been difficult to convert different monetary
values and hence to achieve agreement between traders of what was fair and equal.
For example, "One el of linen cos's 18 stuivers. A pound of sugar costs 3 stuivers.
How much sugar will one get for 43 els of linen?" (Kool, (1984 part 2, p. 63 and
p. 183) as quoted in Streefland (19¢1, p. 13)).

Second, the answer to the question: "what is the fundamental notion of a fraction?" is
difficult to determine. Clearly, it r:lies on the notion that a whole can be sub-divided,
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and encompasses the idea that such partitions are equal and contribute to make up the
whole. However, evidence from th: literature suggests that neither of these conditions
may occur spontaneously and synchronously. In addition, some authors (e.g., Kieren,
1984) have argued that the act of partitioning, and the pen and paper representations
that often occur in the classroom, may actually mislead or confuse students new to
understanding fractions. Notwithstinding this, these perceptions of fractions must be
firmly entrenched into the learners’ cognisance before further developments in fraction
understanding can occur.

Finally, fraction arithmetic may al:o be inhibited until learners become aware of the
limitations of natural numbers, i.e they must be able to conceptualise the need for
arithmetic other than that applied to natural numbers. This may invoke a ‘need’ in
many students to resort to other methods, such as learning by rote, rather than
learning for understanding. This would be particularly prominent when fractions must
be treated as numbers. This issue is now taken up in the next section.

FRACTIONS AS NUMBERS

Rational numbers are the fi-st set of numbers children experience that
are not based on a countinz algorithm of some type. To this point,
counting in one form or another (forward, backward, skip,
combination) could be used to solve all of the problems encountered.
Now with the introduction >f rational numbers the counting algorithm
falters (that is, there is no next rational number, fractions are added
differently, and so forth). This shift in thinking causes difficulty for
many students.

Post (1988, p. 190)

The German word for fraction (Bruchzahl) means "broken number" (Kieren, 1980, p.
74). However, treating fraction: as numbers is fundamentally and qualitatively
different to the part-whole construct as noted in the previous section. For example,
there are some aspects of fractiors which necessitate the treatment of fractions as
possessors of number properties. These include decimals, percentages, ratios, an
operator approach, and an indicated division. In addition, fractions can be ordered
and compared (by utilising equivalznt fractions), and operated upon. Each of these
issues is now discussed.
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DECIMALS

The relationship between friactions and decimal fractions is not unlike
that between the system of Roman numerals and the Arabic system
which we normally use; in both cases the underlying concepts, whether
of whole numbers or ratioral numbers, are the same. The essential
difference between the systems lies in the particular conventions
according to which the numters are recorded

Dickson er al. (1984, p. 284)

Clearly, there is value in converting fractions to decimals to aid in solving a lengthy
or complex problem, a calculation that is particularly tedious or repetitive, or a
question which involves the use of a calculator or computer. Given this, and the
increased use of technology in socicty, decimals have become the dominant method by
which fraction problems are solved This does not, however, mean that learners find
decimals any easier to interpret or understand. For example, some learners often
perceive that the longer a number i;, the greater its value. For example, Hart (1981,
p. 52) asked students which number was the bigger of 0.75 or 0.8. The results are
presented in Table 1.3.

TABLE 1.3

Results comparing ).75 and 0.8 in Hart (1981, p. 52)

" Student Ages 12 13 14 15
" Facility (%) 57 65 69 75

When interviewed, Hart noted that one student (Jane, aged 12, 2nd year) selected 0.75
because: "This is nothing before and seventy-five; this is nothing before and just
eight" (Hart, 1981, p. 52), possib y indicating that the student did not relate place
value concepts to decimals, and therefore chose the longest number to mean the
biggest number, as if dealing with v/hole numbers.

Other learners apparently believe ‘hat the tenths and hundredths columns after the
decimal point are repetitions or mirror images of the units and tens columns, i.e.,
some children think that the number after the decimal point is a ‘different’ number,
which also contains tens and hundreds (Hart, 1981, p. 51). For example, Hart (1981,
p. 52), asked students to say the number 0.29. The results are presented in Table
1.4.
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TABLE 1.4

Verbalisation >f 0.29 in Hart (1981, p. 52)

Student Ages 12 years | 13 years | 14 years [ 15 years
(Nought) point two nine 26 32 41 41
(Nought) point twenty-nine 25 32 30 27
twenty-nine 19 13 8 10

The table indicates that some chiliren do not understand the significance of place
value with respect to decimals. This confusion may in part be due to digital clocks
and the decimal system of money where it 1s acceptable to read 6.15 as six fifteen.

‘Tenths’ were significantly easier to work with than subsequent decimals. For
example, the findings of Brown (1981b) and Dickson er al. (1984, p. 290) indicated
that while 65 percent of 12 year o ds and 85 percent of 15 year olds can work with
‘tenths’ in a similar way to the friction models presented previously; approximately
25-t0-30 percent of 12 year olds and 55-to-70 percent of 15 year olds were able to
deal with hundredths in a concrete way. As Hart (1981, p. 64) wrote: "It was clear
that many children still needed visual models of tenths, hundredths and so on, to bring
out the relationships in a more conc-ete way".

Finally, the wuse of calculators may not necessarily overcome children’s
misunderstanding of decimals (Hart, 1981, p. 64). Many children "who did rely
blindly on rules more often misapplied thern than not" (Hart, 1981, p. 64). It appears
that calculators will not significartly promote understanding of decimals by these
children, and "without careful structuring of the work it [a calculator] may just be
used to produce meaningless answ:rs which can be copied down faithfully to eight
decimal places" (Hart, 1981, p. 64).

PERCENTAGES

Although considered a third method of representing fractions, the only difference
between this representation and the above method, is that it is based on the concept of
hundredths. Dickson et al. (1984, p. 291) claimed that conversion of decimals to
percentages or vice versa, "in the case of familiar numbers only, was carried out
correctly by about 50 percent of 11 year olds". A plausible explanation is that the
more common conversions could be: easily ‘memorised’ or ‘rote learned’. This could
at least, in part, explain the persisience of the common error of many students who
write 1/3 as 30% consistently.
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RATIOS

A ratio is said to convey the noticn of relative magnitude, and, as such, is the first
time that rational numbers are usel in absence of a ‘whole’ for reference. Novillis
(1976) found that this aspect was one of the last to be developed in students aged 10-
to-12 years, and implies that this riodel of fractions may be acquired at a much later
stage than any of the previous models.

This observation would appear to be partially confirmed by other authors, such as
Piaget er al. (1960), Karplus, Kaplus and Wollman (1974) and Hart (1981), who
have shown that children rarely use the rule a/b = c/d. Instead, many children resort
to ‘primitive’ adding or doubling (or halving) techniques when dealing with ratios
almost irrespective of the ratio. FEart (1981, p. 97) reported that many students still
select the adding strategy when atked to enlarge a rectangle in the ratio 3:5, even
when the final figure showed litlle similarity to the original, and could not be
compared to it.

There are several problems associa.ed with expressing fractions as ratios. The major
difficulty is that, while all fractions are ratios, not all ratios are fractions. For
example, ratios can express different units, such as four passionfruits for 70 cents etc.
Other examples include liquidity ratios and the Consumer Price Index. It is also
acceptable for ratios to have O in the second place. For example, it is possible, to

represent 5 lollies to zero chocolates as a ratio.

Fractions can only be used to represent parts of one object, e.g., 2/3 is two out of
three parts. Rates can also be expressed as ratios, although the term is frequently
used to compare two unrelated >r different quantities, e.g., 5 laps/24 minutes,
(Heller, Post, Behr, & Lesh, 199() and usually only require a single number. For
example, although 60 kmph is really representing two units - the 60 km and the 1 hr,
it is redundant to express this relationship as a fraction.

However, in dealing with the rate aspect of fractions, it is possible to ask directional
questions to "determine the qualitat ve direction of change in the value of a fraction or
rate, given specified qualitative chaiges in the numerator/denominator” (Heller et al.,
1990, p. 390). For example, what will happen to a fraction if the numerator is
increased (or the denominator is decreased)?

Ratios are not always rational. For example, = represents the ratio of the

circumference of a circle to its dianeter and is an irrational number. However, it is
used to represent the division > two numbers (circumference and diameter).
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Similarly, "in a square, the ratio of the side length to the diagonal is 1: v2, and since
V2 is not equal to the ratio of two integers, it is [also] not a rational number.
Fractions, on the other hand, by their very nature are rational numbers because every
fraction is equal to the division of two integers" (Hoffer, 1988, p. 289).

Ratios and fractions are not alway: dealt with consistently or combined in the same
way. For example, 1 mark out o 2 on a test is frequently written as 1/2. If this
score is then combined with a further 3 out of 4 marks (3/4) then the total score 4 is
out of 6, i.e., 1/2 + 3/4 = 4/6 is i nplied. However, the addition of the fractions 1/2
+ 3/4 # 4/6. A further example also helps to illustrate this point. If there are 17
girls in a class of 30 students, the corresponding fraction is written as 17/30. This
may seem confusing to many stucents who use ratios as a comparison and would
expect to compare the number of females to the number of males, e.g., 17:13. This
can be further complicated when siudents are taught to incorrectly write 1:3 = 1/3,
when there are really 4 parts present in the original statement (1:3 means 1 part
compared to 3 parts, i.e., there are 4 parts altogether).

Discrepancies with the ratio aspect of fractions are further exacerbated by the use of
dy/dx terminology in the Chain Ruile in differentiation of composite functions, e.g.,
despite the fact that dy/dx does not -epresent a fraction, many high school children are
presented with the following ‘proof’: dy/dx = dy/du x du/dx.

AN OPERATOR APPROACH

This is a relatively new (c. 1966) aspect of fractions (Streefland, 1982, p. 234).
Fractions are treated as an ‘operatcr’ so that when applied to a particular problem, a
transformation occurs (Behr er al., 1992). Fractions are functions that are capable of
shrinking or stretching the original construct or number. For example, the numerator
part of 2/3 is considered to multiply the original construct, followed by the application
of 3, which is considered to d.vide it, i.e., the numerator stretches and the
denominator contracts. The advan ages of this approach are that the order does not
change the original problem, and that "no special status is given to fractional numbers
less than one; a ‘2/3 operator’ and a ‘3/2 operator’ function in the same way"
(Kieren, 1981, p. 73). This mode can also be applied equally well to both discrete
and continuous quantities. The m:in disadvantage with this approach is that it may
require students to have been exjosed to the notion of operators prior to their
introduction to fractions.
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AN INDICATED DIVISION (QUOTIENT)

This aspect of fractions deals with the equivalent statements a/b = a + b and
appeared to be the most difficult asyect for learners to assimilate. This is despite the
fact that division is clearly related o partitioning (Dickson et al., 1984; Post, 1988).
Kerslake (1986) reported that this niodel was the one that was most strongly rejected,
even among the teachers of the stud:nts interviewed.

This is not an isolated incident. A significant number of respondents in many studies
when faced with situations when division is unavoidable, often chose the biggest
number first, i.e, the biggest number was also chosen to be the numerator (Dickson er
al., 1984, p. 283; Hart, 1981, p. 68; Kerslake, 1986, p. 91). One plausible
explanation for this observation ma/ be the mistaken idea that ‘you can’t divide by a
bigger number’. For example, in a similar item regarding 3 =+ 4 in the Kerslake
study, many children believed tha: "‘you always divide the larger number by the
smaller number’ or ‘fours into 3 won’t go so you bring down the nought’" (Kerslake,
1986, p. 91). It is also worth noting that even when this strategy was used, many
children still preferred to acknowledge a remainder rather than give the remainder in
fraction form. "It seems that sorie children fail to appreciate that although these
general ‘principles’ were acceptable when dealing only with integers, they are no
longer valid when working with the set of rationals" (Kerslake, 1986, p. 91). When
students were asked to cut a piece of ribbon 17 cm long into 4 equal pieces, many
children preferred to select the ansv/er "4 ¢m remainder 1 cm" from a short list, i.e.,
they chose an answer with two v/hole numbers in it in preference to an answer
containing fractions, such as 4% (kart, 1981, p. 68). Dickson er al. (1984, p. 283)
concluded: "only one third of childien in the first two years of secondary school have
appreciated that any whole number :an be divided by any other to give an exact result
expressible as a fraction".

EQUIVALENT FRACTIONS

The notion of understanding equivalence is essential to being able to add, subtract and
compare fractions. The first notion of equivalence is typically represented by the
part-whole model. As highlighted in the carlier sections of this work, it is the link
between the physical act of partitioning and the diagrammatic representation that is
important to understanding fractions, rather than the use of the part-whole construct
per se. In the case of equival:nt fractions, in particular, it is of paramount
importance that any diagrammatic representations and algorithmic utilisation also be
linked if fractions are to be understood in terms of their number properties. If this
idea has not been integrated in the learner’s mind, then it is unlikely that further
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developments (such as operations) i1 fractions will be forthcoming or understood. For
example, Dickson er al. (1984, p. 2.06) concluded that "many children find the idea of
equivalence difficult unless a concr:te context (e.g., a diagram) was provided. Many
children may therefore be taught he procedures for adding fractions by rote, with
little basis of understanding". This result would appear to be exacerbated when
combined with the findings of th¢ chocolate wrapper experiment of Watson et al.
(1991a, p. 18) and experiments of Hart (1981, p. 69), which indicated that some
children were distracted or confus:d by erroneous information when presented with
‘diagrammatically equivalent’ shapes.

In essence, it is this lack of ‘coinectedness’ (Streefland, 1982) in many learners
understandings of fraction concepts (Kerslake, 1986; Streefland, 1982) that contribute
to the learning of certain standard algorithms by rote by students. This is usually
evident by the continual occurrence of typical standard errors (Dickson er al., 1984,
p. 306). For example, Kerslake (1986, p. 94) noted that many children could write
equivalent fractions, but were unable to utilise them in any form whatsoever. This
included the ability to add even simple fractions. Many children in the Kerslake study
were aware that 2/3 and 10/15 were the ‘same’, but also maintained that because 2/3
was ‘multiplied by 5’ that 10/15 was now ‘bigger’ than 2/3. Kerslake’s explanation
for this inconsistency was:

the idea that successive mul:iplication and division, ... leaves the value
of the fraction unaltered is cjuite sophisticated, and it seems likely that,
for many children, it is obscured by the algorithmic approach of

‘multiply top and bottom’ ... . The algorithm, having no basis in
meaning, leads children to believe that the whole fraction has been
multiplied

Kerslake (1986, p. 93)

However, the literature is largely inconclusive with respect to how equivalent fractions
should be taught. For example, it has been argued that the "isolated use of models
and patterns, ... never seems © serve the processes of algorithmization or
mathematization" (Streefland, 198., p. 135). However, to teach children, to an
acceptable level of proficiency, multiple approaches to fractions, would require an
inordinate amount of class time to consolidate children’s understanding of equivalence.
In addition, many teaching strategies do not take into account the pre-existing, and
often robust, schema of learners. One attempt to address this issue and develop the
notion of equivalent fractions utilised situations which were familiar to children.
Streefland (1982, p. 244) devised a process by which children progressively developed
equivalent fractions based on a patterning approach that relied almost exclusively on
the ratio construct. For example, consider 3/4 of a pancake. A typical pattern
response may resemble that providel in Table 1.5.
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TABLE 1.5

Patterns showing 3/4 of a pancake in Streefland (1982, p. 244)

ll Pancakes 3161912 "
" Children 4 | 6|12 16 "

Streefland (1982, p. 244) argued that this approach "does justice to the children’s
inclination to algorithmizing and ‘heir need for building on personal algorithms".
Eventually, Streefland (1982, p. 244) stated, children could successfully answer
questions, such as "16 pancakes arc ordered for 24 children. Does this example fit?"
Streefland (1982) also acknowledged that students could invent ‘shortcuts’ by
comparing tables directly, such as locating 24 children in the other table first. This
approach now made subtraction po:sible. However, there are problems inherent with
this approach. For example, minor calculational errors meant that a child may
continue to reproduce redundant and repetitive solutions via tables or give up
completely.

The literature also noted that som: students did not take up standard or acceptable
patterns when dealing with equivalznce of fractions. Instead, they invented different
approaches which appeared to wo 'k, although in some cases, this was only on an
intermittent basis. For example, Funting (1984a) identified seven different strategies
children use in completing equivalence tasks. In essence, all of these strategies relied

on ‘competing a pattern’ concepts. The strategies were:

1. Common factorisation, e.g., 2/6 = /3 can be ‘solved’ by dividing 6 by two to
get 3 and then by dividing 2 by two to get 1. This approach works if one
denominator is a factor of the other.

2. Cross multiplication, e.g., 3’12 = /8 can be ‘solved’ by first multiplying 3 by
8 to get 24, and then by div-ding 24 by 12 to get the numerator.

3. Recalled knowledge, e.g., students ‘know’ that two quarters equals a half
because they have remembered it.

4. Invented algorithm, e.g., Hunting (1984a, p. 27) reported that 2/6 = /3 could
be ‘solved’ by multiplyiny the numerator of the first fraction with its
denominator to obtain 12. ‘The missing numerator could then be calculated by
dividing 12 by 3.

5. Use of ratios, e.g., 1/4 = /8 could be ‘solved’ by arguing that because 8 had
increased by 4 (the original denominator), then the unknown numerator should
also be obtained by increasir g the original numerator by 1 to give 2.



6. Intermediate fraction, e.g., 1.4 = /8 is solved by arguing that: "four-eighths is
one-half and one-forth is one-half of one-half* Hunting (1984a, p. 27).

7. Guess and see, e.g., a paricular number is chosen, and then accepted or
rejected when additional info ‘mation either confirms or contradicts the original
choice.

In general, the various approaches used by students to solve problems involving
equivalent fractions, can be divided into two main categories (Dickson et al., 1984;
Hart, 1981; Kerslake, 1986; Streefland, 1982). As Streefland (1978, p. 56) wrote:
"One has to distinguish ‘the concept of subdivision into equivalent parts’ and its
technical performance". This implies that unless students are fully aware of the
implications of the symbols associaed with fractions, then they may be unaware of
any ‘apparent’ conflict in their ansviers. This would appear to be particularly so in
the operations performed on fractions.

OPERATIONS ON FRACTIONS

Operations on fractions includes aidition, subtraction, multiplication and division,
and, like equivalence, can be divided into two main categories (Dickson et al., 1984,
Hart, 1981; Kerslake, 1986; Streefland, 1582). Dickson er al. (1984) differentiated
between the two approaches as ‘meaning’ and ‘computation’.  However, the
identification or separation of these two different approaches to fractions may be too
simplistic as the following example 'tom Hasemann (1981, p. 79) illustrates. Students
were given a circle diagram divided into 12 equal sectors and asked tc shade 1/4 and
then shade 1/6. They were then asked how much of the circle was shaded in
altogether, i.e., the students were atked to represent 1/4 + 1/6 = 5/12. One student
drew a diagram (see Fig. 1.3).

FIGURE [.3

Circle showing five-twelfths
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The student then wrote 1/10 next tc the diagram. This would indicate that the student
could represent 1/4 and 1/6 but could not relate the addition of the two to 5/12,
preferring instead to apply whole number arithmetic to the written or symbolic version
of 1/4 + 1/6. Hasemann (1981, p. 79) commented that many of the students were:
"not unduly concerned at getting dJifferent answers through using different ways of
solving problems (as here by calculition and by a diagram)".

Despite the above observation, addition and subtraction of fractions is best related to
the area or geometric model discussed in the first section of this paper. Typical
problems, such as 1/2 hour + 1/} hour, can be shown comparatively easily using
circles and rectangles. However, cther operations on fractions, in particular division,
which do not rely on equivalent frictions, are not adequately explained by use of the
same model. Instead, multiplication and division are more closely aligned to the
operator aspect, such as 1/2 of 1/3 This implies that if the only model to be used is
based on the part-whole construct to establish ‘connectedness’ between meaning and
computation of addition and subt-action problems, then it may be inadequate to
explain multiplication and division. Hart (1981, p. 81) concluded:

Concrete embodiments us:d when multiplication of fractions is
introduced are usually restricted to the area of rectangles when the
dimensions are no more complicated than wholes and halves because
the diagrams become so complicated when further divisions are made.
Very soon the rule is intrcduced but probably not in the context of
problems and so the child dces not recognise the need for its use.

As a result, rote learned algorithm; may become the dominant method used to solve
multiplication and division of fractions. The danger with this approach is that
techniques performed by rote are unlikely to be consistent, accurate, or retained.
Without recourse to earlier understanding of the fundamentals of these algorithms,
successful problem solving cannot usually occur. For example, a typical error in
response to the question, 10 + ‘4, is 5. The literature (Hart, 1981; Kerslake, 1986)
revealed that many students, when faced with a multiplication or division of fractions
that required thought, and not just computational accuracy, could not answer the
problem successfully. For example, Hart (1981, p. 73) asked: "1/17 + 2/5 = 5/34
then 1/17 + 4/5 is: (a) twice 5/34 (b) 4/5 of 5/34 (c) 5/4 of 5/34 (d) half of 5/34"
and reported that approximately cnly 20% of her sample of 14 and 15 year old
students selected the correct answer.  Further research (Bourke, Mills, Stanyon, &
Holzer, 1981; Hart, 1981; Hunting, 1984; Post, 1988) confirmed that many students
use a variety of often inappropriate methods in seeking solutions to problems
involving fractions.  For examrle, some students apply the rule of common
denominators, which suits addition «ind subrraction, to multiplication.
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SUMMARY

There are three main findings from this section of the work. First, fractions,
decimals, percentages, ratios, ojerators and division are all interchangeable.
However, despite this repertoire of alternatives, students appear to have difficulties
operating both within and between 1ill the different constructs of fractions as numbers.
In many cases, operating in an alt:rnative context only serves to compound existing
errors. In addition, when faced with a different construct, many children refrain from
using fractions, preferring instead 0 treat the numbers as if they were dealing with
whole numbers, e.g., place value is confused in decimals, and studies reveal that
students would prefer to have a whole number remainder rather than a fractional part
when treating fractions as an indicared division.

Second, the research indicated that both students and some teachers found the concept
of a/b = a =+ b to be the most difficult to assimilate. The reasons for this are
unclear, especially since the act of partitioning would appear to readily relate to this
aspect of fractions.

Finally, there is substantial evidence (Hart, 1981; Kerslake, 1986; Streefland, 1991;
Watson et al., 1991a) to indicate that when learners do not understand the
fundamentals of fractions (the lack of ‘connectedness’ (Streefland, 1982)), a plethora
of predicable, standard errors flourish. For example, students will state that one
fraction is larger (or smaller) than its equivalent fraction and proceed to solve
operations on fractions questions as if dealing with whole numbers.

CONCLUSION

To be able to understand and operate with fractions appears to relate to four main
premises. These are:

i. wholes can be partitioned into subparts;

ii. the subparts are equal;

1ii. the subparts add to g:nerate the whole; and,
iv. fractions are number:.

However, there is sufficient eviden:e to suggest that each of these conditions may not
occur spontaneously, simultaneously or naturally. If one of these constraints is
absent, fundamental understanding >f fractions cannot yet be said to have taken place.
Despite this, the development of th: first three points is typically presented to students

as a fait accompli and is clearly w:Il suited to the geometric model of the part-whole
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construct. This observation may explain the prevalence of this model in mainstream
education, although the reasons for this are blurred. For example, although the
literature acknowledged its limitations, Silver (1981, p. 156) noted that, in a study
involving young adults, 15 out of .0 students, when asked to think about the fraction
3/4, reported a "‘pie’ or circle subcivided into four congruent parts, with three shaded
parts". This image of a fraction was so strong that one subject is reported as saying:
"I just keep seeing that pie in four pieces. I can’t shake that picture", when asked to
"think about it in a different way Tom the way you first ‘saw’ it" (Silver, 1981, p.
156).

Clearly, a majority of early developmental work in fractions relies on the
substantiation of the first three poirts mentioned above. However, the realisation that
fractions are numbers (point (iv) ibove) involves a considerable paradigm shift on
behalf of the learner, and marks an important step to mathematical maturity with
respect to fractional understanding This is an important point, since all fractional
numbers can now be considered. FP'rior to this stage, only very simple fractions could
be compared, ordered or operated upon. Although it is unclear if the above points
occur chronologically, the research suggested that many students and some adults do
not treat fractions as numbers, or, when they do, rely almost exclusively on only one
fraction, namely one-half. The lterature indicated that many children (and some
adults) appeared to avoid fractions altogether if given a choice, preferring instead to
depend on whole number concepts. This was particularly evident in the aspects of
fractions that treated fractions as rumbers, e.g., decimals, percentages and division.
For example, Kerslake (1986, p. 9 ) found that only one-quarter of the children in the
sample, when asked to express their views about fractions, made any reference to
numbers. The children in her sttdy frequently referred to fractions as ‘broken up
numbers’ or ‘not quite whole numbers’ or ‘split from other numbers’ or ‘two numbers
just put on top of each other’. Of greater concern, is that one in eight teachers in the
study, said they thought of a fraction as ‘not a number at all’ when given the option
between ‘one number’ or ‘two numboers’ or ‘not a number at all’.

Given the above, understanding frictions would appear to involve considerably more
than the ability to describe all the different aspects of fractions as noted by a majority
of the literature. Despite this, there is little evidence in the literature which suggests
that learners have been asked to dzscribe a fraction. The most notable exception to
this occurred in the Kerslake study (1986) who asked the following question:

How would you explain to someone. who didn’t know, what a fraction was?

The results are presented in Table = .6
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TABLE 1.6

Children’s definition f a fraction in Kerslake (1986, p. 11)

Choice of Model Number of children
Part of a whole 10
Part of a number 3
One number over another 6
Don’t know, or couldn’t say 4

Typical responses in the first category included examples, such as cakes or pies, as
well as references to "‘whole ones’ or ‘whole things’" Kerslake (1986, p. 11). There
were no examples presented for the second classification and the third category
consisted of responses, such as ttat offered by one student (GP) who said: "I'd
probably say it was two numbers v’ith a line through the middle" (Kerslake, 1986, p.
11). As Kerslake concluded:

It can be seen that many of the responses consisted of giving
instructions for a procedure - either of splitting up a whole, or writing
one number over another. Some children found it difficult to produce
any explanation, ... the only model produced was the ‘part of a whole’
one, although the response ‘part of a whole’ might suggest that some of
those children see a connection between fractions and numbers. Those
who said ‘one number over another number’ show that they recognize
the way fractions are writien, but do not give any evidence as to
whether they understand whiit they represent.

Kerslake (1986, p. 11)

In many cases, the use of the woird ‘number’ has become interchanged with that of
‘whole number’. As Kerslake (1986, p. 92) wrote: "it appears that they are not able
to detach themselves from the ide:. of numbers as counting numbers which describe
actual groups of objects and so to move to the more abstract mathematical system of
which counting numbers are but a part". Other authors, such as Behr and Post
(1988), Post (1988), and Ohlsson (1988) have compared and contrasted the rational
numbers with whole number concepts. Clearly, a rational number, such as 2/3, can
be represented concretely in many ways. In contrast, the whole numbers are
primarily used for counting (Behr ¢¢ Post, 1988), and are not, in general, ambiguous.
As Ohlsson (1988, p. 53) wrote: "How is the meaning of 2 combined with the
meaning of 3 to generate a mearing for 2/3?". This issue is compounded when
fractions are combined with operations. For example, many students habitually
answer 2/3 + 3/5 as 5/8, ie., 2 + 3 = 5)/(3 + 5 = 8) as in whole number
arithmetic.



WHY DO STUDENTS HAVE DIFFICULTIES WITH FRACTIONS?

The literature is divided on the issue of why fractions cause such concern to the
general student population. However, in general, there were three main attempts to
explain students’ difficulties with frections.

The first reason revolves about the perceived value of fractions in modern society (van
Hiele 1986), and the subsequent loss of ‘connectedness’ between the historical
development of fractions and the methodologies used to teach fractions in the
classroom (Streefland, 1982). With the increased use of calculators and computers,
there is little scope for the traditional use of fractions. Despite this, fractions remain
an integral part of most school curricula. This is contrary to the fact that "there are
not many realistic contexts wher: any except very simple fractions are used"
(Queensland Education Department Year 7 Sourcebook, 1990, p. 59). Other authors,
such as van Hiele (1986, p. 211), urgued for the abandonment of fractions altogether
in schools, believing that they have no practical use, and that this is the main reason
many adult learners forget the techniques learned in childhood.

In addition, aspects of ‘connectedn:ss’ also raise the issue of the validity of placing
questions in-context and context-frec situations. Although some authors (Heller ef al.,
1990, p. 389) denote the word frac’ion as a context-free situation whose elements are
integers (e.g., 3/12), there is considerable debate regarding placing fraction questions
into both in-school and out-of-schcol situations. Some authors (Hart, 1981; Mack,
1990) saw this distinction as having severe implications with respect to fraction
understanding. For example, Hart (1981, p. 68) noted that "between 25 and 30 per
cent of each year divided the smaller number into the larger in some way" when given
a problem free of context. More dctailed information is provided in Table 1.7. Here
the results of dividing 3 by 5 is provided for 12 and 13 year old students.
Significantly only 35% of 12 yeir olds and 31% of 13 year olds were correct
(percentages do not add to 100%).

TABLE 1.7

Percentages of responses to 3 + 5 in Hart (1981, p. 68)

Student Ages 3/50r .6 12/5 1 rem 2 S5/3or12/3
12 years 35 5.3 18.3 3.3
13 years 31 9.4 17.5 8.7
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Notwithstanding all of the above, fractions are an important tool in developing
mathematical maturity. A thorough understanding of fractions would seem to be vital

for students who wish to pursue further studies in Mathematics or related areas.

A second reason identified by some writers (e.g., Hunting, 1986) is that the
difficulties students face with fracions can be traced to a delayed introduction to
them. This argument has some validity, since, if the teaching of fractions is delayed
for too long, then whole-number arithmetic becomes the dominant method of problem
solving. However, Behr and Post (1988, p. 190) argued that children have difficulties
with fractions since it is the first time that simple ‘counting on’ or ‘complete the
pattern’ type problem solving straiegies do not always lead to successful problem
solution. For example, "counting n one form or another (forward, backward, skip,
combination) could be used to solv: all of the problems encountered. Now with the
introduction of rational numbers the counting algorithm falters (that is, there is no
next rational number, fractions are :idded differently ...)".

Finally, the third reason is in a way the opposite of the second. Many authors
(Dickson et al., 1984; Freudenthal, 1973. Hart, 1981; Kerslake, 1986) argued that
fractions should not be introduced too early. This means that the topic should not be
attempted until the child is cognitively ‘ready’, i.e, the computational algorithms for
manipulating fractions had been introduced before the student had gained a sufficient
understanding, at least at a concrete level, of fractions (Dickson et al., 1984, p. 304).
For example, "about one-third of children may have no clear concept of a fraction,
even in a very concrete sense, at entry to secondary school” (Dickson et al., 1984, p.
280). Kieren (1984) argued that inless the fundamental notion of a fraction, which
relies on partitioning or the notion that the whole can be subdivided at all, is firmly
entrenched, then it is unlikely that further developments in fraction arithmetic can
occur successfully. For example:

teaching an algorithm such as a/b = c/d is of little value unless the
child understands the need ‘or it and is capable of using it. Children
who are not at a level suitzble to the understanding of a/b = c/d will
just forget the formula

Hart (1981, p. 101)

This would imply that it is not unti a student is aware of the limitations of the natural
numbers, that they may be able to conceptualise the need for arithmetic other than that
applied to natural numbers. This nay invoke a ‘need’ in many students to resort to
other methods, such as learning by rote, rather than learning for understanding.
Dickson’s interpretation of Freudenthal (1973) views argued that "fractions should not
be introduced until children are able to view the rational numbers abstractly as an
example of a formal number syster1 with specific algebraic properties; it seems likely
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that this would involve a delay until late in the secondary school for most children,
and many might not reach it at all" (Dickson et al., 1984, p. 305).

Clearly, the effects of these conclusions must be monitored, and appropriate
intervention programmes instigated if these problems are to be addressed and
rectified. Of interest, is the question of how many of these learners view or
understand fractions in later life - jarticularly if their problems in this area have not
been dealt with in previous schoolir g.

Finally, although the literature reported above investigated specific details of
instruction and methods of dealing with fractions, there did not appear to be a global
approach to the understanding of iractions. Given this, it is prudent to discuss the
established mathematical hierarchies since they may be able to enhance the
understanding of the learning of fractions from a philosophical point of view. Several
authors, Hart (1981), Novillis (1976), Ohlsson (1988) and Skemp (1986), as well as
Piaget, have proposed mathematicel hierarchies with respect to fractions. However,
there would appear to be a need to broaden the literature review to encompass more
general approaches to mathematicil hierarchies which are readily applicable to the
learning of fractions, although they may not have been previously applied to adult
learning (Hart, 1981; Kieren, 19¢1, 1992; Skemp, 1986), or fractions specifically
(Biggs & Collis, 1982; van Hiele 1986). One model of particular interest is that
postulated by Watson ef al. (1991:b, 1992ab, 1993). These issues are developed in
the next chapter.



CHAPTER TWO
THEORETICAL FOUNDATIONS

... the research found that children frequently tackle mathematics
problems with little or nothing to do with what has been taught. This
may be because mathematics teaching is often seen as an initiation
into rules and procedures which, though very powerful (and therefore
attractive to teachers), are coften seen by children as meaningless. It
Jollows that children’s meth)ds and their levels of understanding need
to be taken into account, however difficult this may be in practice.

Kiichemann (1981, p. 118)

INTRODUCTION AND ORGANISATION OF THE CHAPTER

One of the major conclusions reach:d in the previous chapter, and one that is echoed
in the above quote, is that many children perform fraction tasks with little if any
understanding. While some observitions noted in Chapter One may be explained by
students learning rules by ‘rote’, rether than understanding, it is clear that a number
of children’s errors cannot be explained this easily. Clearly, a sizeable number of
students’ errors are consistent, predictable and appear to be confined to a
comparatively limited selection of answers or ‘groupings’. However, despite these
observations, the research was unable to provide reasons for, or rectification of,
childrens’ errors. In addition, there did not appear to be a global approach to
understanding fractions. Instead, only a variety of, often conflicting, reasons were
suggested for the difficulties children have with fractions. These suggestions ranged
across the spectrum of possibilitiec - from an earlier introduction, to delaying their
introduction.

There has been little research which has focused on adults’ understandings of
fractions. It is feasible that as ch Idren mature into adulthood, their conceptions of
fractions may evolve or alter with their intellectual maturity and experience. Of
course, it is also possible that certa n ‘rote learned’ responses may corrupt or impinge
upon further mathematical development if such misinterpretations are not identified,
acknowledged and rectified by providers of adult education. Given these conclusions,
it is relevant to discuss established mathematical hierarchies since they may be able to
enhance the understanding of the leirning of fractions.



To aid in the analysis, the aims of tais chapter are to:

6] investigate the attributes of riathematical hierarchies with respect to fractions;

(i)  determine the feasibility of interpreting adult responses in terms of an existing
theoretical framework.

Several authors, such as Hart (1981, 1985), Kieren (1988), Novillis (1976) and Skemp
(1976, 1986), as well as Piaget, have proposed mathematical hierarchies with respect
to fractions. A discussion of each of these hierarchies forms the basis of the first part
of this chapter. However, any thcoretical framework that is to be applied to adult
learners, must offer more to adult learners than an interpretation of fractions, i.e., any
theoretical framework that has the jotential to be applied to adult learners must not be
specifically dependent upon age. One way to address this issue is to move the focus
of attention away from the perso:1 and focus on the response. For this reason,
particular attention is drawn to the SOLO (Structure of the Observed Learning
Outcome) Taxonomy by Biggs and Collis (1982, 1991). This framework is presented
in detail in the second section of th¢. chapter.

FRACTION HIERARCHIES

The first part of this chapter investigates several authors’ attempts to classify fractions
into a mathematical hierarchy.  The authors selected postulate mathematical
hierarchies from a variety of viewpoints. For example, some authors have based their
conclusions on empirical informati»n while others have taken a more psychological
approach to the establishment of a fraction hierarchy. Where possible, typical
examples at each level are presented, however, it was sometimes difficult to determine
if the authors had classified students’ responses, the items themselves, individual
students, or if they have presented taeoretical possibilities.

THE HART (1981) HIERARCHY

As previously stated, Hart’s work in Children’s Understanding of Mathematics: 11-16
(1981), was based on the results of five years of research into children’s
understanding of mathematics. Tlis involved testing and interviewing over 10 000
children across ten different mathzmatical topics, including fractions. The results
indicated that several ‘levels of understanding’ could be identified throughout the
various topics. The selection criteria which differentiated between levels was based
on: "Attainment at any level was cefined as successfully solving about two-thirds of
the items in that level and about tv/o-thirds or more of the items in all easier levels.
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The two-thirds criterion was arbitiary and in some cases the nearest fraction was
taken" (Hart, 1985, p. 2). In general, the levels were allocated values 1 to 4.
However, those students who did not obtain the pass criteria were assigned Level 0.
It was assumed that the students in the sample were familiar with numbers up to 20,
could recognise numbers up to 10(10 and could find the length or area of a simple
object. As part of the Chelsea Diagnostic Mathematics Tests, two fraction tests -
Incorporating Fractions 1 (Computation) and Incorporating Fractions 2 (Computation)
(Hart, 1985) - were designed which ecnabled teachers to ascertain children’s
understanding of fractions as designited by the Hart hierarchy.

When combined across topics, the levels formed four stages and produced a more
general Mathematical hierarchy. Major aitributes of the four stages with particular
reference to fractions are presented Helow.

Stage 1 fraction questions involved shading part-whole area constructs, simple
equivalent fractions that could be obtained easily by doubling and the addition of two
fractions with the same denominato- (Hart, 1985), e.g., "In a bakers shop 3/8 of the
flour is used for bread and 2/8 of the flour is used for cakes. What fraction of the
flour has been used?" (Hart, 1985, p. 189).

Stage 2 was concerned primarily with the application of equivalent fractions, e.g.,
simple equivalent fraction questions such as "2/3 = ?/15 or ... A relay race is run in
stages of 1/8 km each. Each runner runs one stage. How many runners would be
required to run a total distance of 3,4 km?" (Hart, 1981, p. 195).

Stage 3 is where abstraction and the introduction of problem-solving strategies first
appeared, e.g., "questions are not always tied to a diagram or the child is asked to
hypothesise about situations which are not shown. ... in Fractions the child has to
cope with 2/7 = /14 = 10/7? anc see that 10/??7 is connected to the 2/7 as well as
4/14" (Hart, 1981, p. 199). Students in stage 3 should also be able to calculate
compound problems involving tiling floors or calculating how much carpet is required
to cover a room. Hart, however, concluded: "The hardest Stage 3 items are
successfully solved by 20-30 percent of the sample. If mathematics teaching is
designed to enable a child to face a new problem and invent a method of solution then
a majority of secondary school children have evidently not reached this stage" (Hart,
1981, p. 200).

Stage 4 responses noted the contirued use of abstraction but also included evidence
that respondents were accessing other knowledge from outside the immediate problem
to obtain the correct solution, e.g, "In Decimals and Fractions the questions require
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the child to appreciate the nature oy these new numbers and not be firmly fixed with
the set of whole numbers" (Hart, 1681, p. 203). To be operating at stage 4, a student
must have an overview of fractions. They must be able to see that there is an answer
to questions such as 15 + 20, and rot be restricted to the idea of having only a whole
number answer.

In general, "Stage 1 and 2 items in “ractions are very often of the type ‘what name do
we give to this’, Stage 3 items recuire rather more, in that the connection between
elements is needed. Stage 4 items need a departure from concrete referents, in
particular, they need a recognition that multiplication or division is needed and an
ability to carry out the operation" (Hart, 1981, p. 204). In addition, Hart (1981, p.
190) also related the use of the language of Mathematics to the stages. This provides
an important clue to the level at which a student may be responding, since it is
difficult to use and interpret correctly language at a higher level if the child is not
operating at that level. For exampe: "Many of the items are testing the knowledge
of a new mathematical vocabulary ¢.g., tenths ... Children capable of solving Stage 1
items could be regarded as knowiig ‘meanings’ in the mathematical language, but
nearly thirty per cent of our child population (even at age 15) can go no further i.e.,
cannot apply this language" (Hart, 1981, p. 190).

A brief description of each level, ard the appropriate age group to which it applies, as
defined in Hart (1985), is presented in Table 2.1.
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TABLE 2.1

Summary of levels of fractions
(adapted fron: Hart, 1985, p. 26 & p. 38)

LEVEL FRACTIONS 1 FRACTIONS 2
(AGE 11+ TO 13+) (AGE 13+ TO 15+)

1 The meaning of a fraction using The meaning of fraction, seen as

pieces 1/2, 1/5, 2/3 part of a whole, no equivalence
needed. Equivalent fractions
obtained by doubling. Addition
of fractions with same
denominator.

2 The meaning of a fraction as a Equivalent fractions not obtained
subset of a set, or naming given by doubling. Using equivalence
configuration of pieces. to name parts, with familiar
Equivalent fractions ot tained by fractions or when diagram
doubling. Addition of two fractions | provided. Ordering unit
with the same denomir ator. fractions.

3 Using equivalence to name parts, Questions where more than one
with familiar fractions. or when operation is required, e.g.,
diagram provided. Equivalent equivalence followed by addition
fractions not obtained by doubling or subtraction.
or less familiar fractions, e.g., 2/7
= 7/14. Ordering uni. fractions.

4 Questions where more than one Division and multiplication of
operation is needed, e.g., an fractions. Generalisation.
equivalence followed ty addition or
subtraction.

Although Hart (1985, p. 2) stated that the above levels were ‘levels of understanding’,
O’Reilly, (1991, p. 86) queried whether the ‘hierarchy of understanding’ was a
"hierarchy of questions or a cogni:ive hierarchy of children". This issue is further
confused, since, in some cases, it i:. clear that the classification relates to the item and
not the response. Irrespective ot this, the findings of the CSMS have achieved
widespread acceptance, and formed the basis of the follow-up study by Kerslake
(1986) as part of the SESM (Stratezies and Errors in Secondary School Mathematics)
project. Despite the foundations formed by Hart (1981), and, although Kerslake
(1986) reported on several aspects of fractions, which clearly indicated a mathematical
hierarchy, little interpretation with respect to a mathematical hierarchy was indicated
in the sequel.
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THE SKEMP (1971, 1986) HIERARCHY

In his book The Psychology of Leaining Mathematics (1971, 1986 (2nd ed.)), Skemp
attempted to explain how students learn mathematics from a psychological point of
view. Skemp developed a schema approach which distinguishes between ‘everyday’
or ‘intuitive’ learning and ‘reflective’ learning, i.e., "being able to do something is
one thing; knowing how one does it is quite another” (Skemp, 1986, p. 53).

The main tenet of Skemp’s work is that almost all learning depends on the existence
and maintenance of conceptual structures or schemas (Skemp, 1986, p. 37). Initial
schemas develop from infancy when children are conditioned into defining things from
a very early age. For example, prcvided a child already has an existing schema for a
‘chair’, then it is possible to identify a ‘peanut chair’ as a chair even if it does not
immediately look like one. Skemp argued that this transference of knowledge is
possible since human beings poss:ss an innate ability to ‘abstract’ ideas and to
‘classify’ things. This ability to at.stract and classify are the foundations of concept
formation, as Skemp (1986, p. 21) wrote:

Abstracting is an activity by which we become aware of similarities (in
the everyday, not the mathematical, sense) among our experiences.
Classifying means collecting, together our experiences on the basis of
these similarities. An abstraction is some kind of lasting mental
change, the result of abstracting, which enables us to recognize new
experiences as having the sinilarities of an already formed class. ... to
distinguish between abstracting as an activity and an abstraction as its
end-product, we shall hereafier call the latter a concept.

Since concept formation requires ":ii number of experiences which have something in
common" (Skemp, 1986, p. 21), intellectual growth is dependent upon "knowing
something else already" (Skemp, 1986, p. 38). This implies that subsequent schemas
either complement or supplement cxisting schemas, i.e, new material is assimilated
into an existing schema, or a new schema containing new information comes into
existence. However, both of these conditions rely on the consistency and proficiency
of existing schema remaining reliab e and valid. If the existing schema fails under the
new schema’s premises, then the existing schema must be altered or abandoned
altogether in order to acquire or essimilate new concepts. Contradictions or minor
inadequacies in a pre-existing scheria cannot be avoided or overlooked if learners are
to grow cognitively. For example, Skemp (1986) argued that fractions should be seen
as an extension of the natural nuriber system, since this schema should already be
established. By building on the similaritics that already exist between fractions and
natural numbers means that the same nurnerals are used for both systems and "the



same methods for adding as those which we have already learnt for natural numbers"
(Skemp, 1986, p. 174). Figure 2.1 -epresents the Skemp hierarchy for fractions.

mond numbers have
ive properties of
4_>

a number system
Adding and multiplying <———
fractional numbers l
Fractional (The five properties
numbers of the natural
T number system)
Equivalence
Yp classes
’ of
fractions

‘Equivalence Mathematical Fractional units
models T
Measurement
Natural Units
numbers
FIGURE 2.1

Skemp’s hierarchy for fractions
(Skemp, 1986, p. 283)

It is worth noting that Skemp’s hierarchy is based almost entirely on the geometric
part-whole construct (pp. 174-182) Hence, equivalence (p. 177) and addition of
fractions (p. 179) are presented to :he reader via this model. The previous chapter
has already acknowledged the deficiencies with this approach. Skemp also utilises a
‘new’ symbol (D) for addition of fiactions as a reminder "that adding does not mean
quite the same for fractional numters as for natural numbers" (Skemp, 1986, p.
179). The development of an addition of fractions schema, based on a previous
addition of whole numbers schema, could therefore develop as follows:

i the learner becomes aware of the need for an additional schema (addition of
fractions)
ii. the learner must then alter cr abandon a now faulty schema (e.g., you don’t

add fractions in the same way that whole numbers are added)

iil. the learner then assimilates the new schema in conjunction with the pre-
existing one (e.g., fractions :re added in a certain way, and whole numbers in
a different way)
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Although Skemp (1986) acknowlecged "just how we are able to make deliberate
changes in our schemas ... is still unknown" (p. 54), the author claimed that "we can
certainly do so" (p. 54). Clearly, ttis does not happen easily for some students. This
suggests that the mechanics of the schema-adapting and schema-adopting approach
advocated by Skemp is a difficult and complex process. For example, a learner must
first acknowledge that an existiny schema must be altered or abandoned, and
subsequently replaced with a more appropriate schema. Evidence from the previous
chapter would suggest that this ma,; be an unrealistic expectation for some learners,
e.g., some learners did not realise that an additional (fraction) schema was required
since some students did not relat: fractions to numbers at all. In addition, an
experiment conducted by Hunting (1986) indicated that an existing, although incorrect,
schema was proving to be extremely robust.

Rachel showed time and aga n that she preferred her intuitive scheme to
the schemes which the investigators sought to establish. The
investigators were in fact engaged in a process of precipitating scheme
displacement of one schenie by another. In this experiment the
beginning of that replaceinent process was initiated, though not
completed.

Hunting (1986, p. 63)

Finally, additional schemas did nct always appear to be consistent or permanent.
Clearly, learners can be in a transition stage in which two conflicting schemas appear
to occur simultaneously. For exaniple, some children are aware that two equivalent
fractions are that ‘same’, such a; 2/3 and 10/15, but have a "feeling that the
multiplication by 5 had made 10/15 bigger than 2/3" (Kerslake, 1986, p. 93).

THE NOVILLIS (1976) MODELS HIERARCHY

Novillis (1976), basing her work on that of Gagné (1965), developed a hierarchy of
the various models associated with fractions. This was based on the notion that
complex concepts could be relattd to a number of dependent subconcepts. A
simplified version of the fractions h erarchy is presented in Table 2.2.



TABLE 2.2

Representation of Novillis (1976) hierarchy of fractions

LEVEL DESCRIPTION

1 the student associates /b in terms of one of the part-whole constructs,
e.g., part-whole geom:tric diagrams or subsets of sets, provided that
the objects are congruent.

2 the student associates /b in terms of the part-whole constructs,
however, the objects co not need to be congruent. The number line is
also located at this lev:l.

3 the student compares two or rore fractions or correctly associates two
or more models representing the fractions, i.e., equivalence is partially
observed, however, re-arrangements of the parts or objects may
confuse the student.

4 the student compares two or more fractions, however, the visual re-
arrangement of the paits or objects does not confuse the student, i.e.,
equivalence is possible with the part-whole and subset of a set aspects.

5 the student associates cquivalence with a number line.

6 the student associates :Vb with many models, e.g., part-whole, subsets
of a set, number line or comparison. The models may be both visual
and non-visual.

Novillis (1976) also identified a series of subordinate subconcepts. For example,
although level 1 is associated with the part-whole model, level 1a specifies the subset
of a set model, while level 1b is associated with the geometric model. This hierarchy
then formed the basis of the Fraction Concept Test which was administered to a total
of 279 students across grades four o0 six. The criterion level was established at 75%
for each subconcept.

The findings from the study particlly confirmed the above notional hierarchy. For
example, Novillis (1976, p. 143) concluded that certain subconcepts were
prerequisites to other concepts, e.g., the part-whole models precede both the ability to
associate fractions on a number lire (level 1-2) and the ability to compare fractions
involving the same model (level 2-3). However, the results from the investigation
were inconclusive. Further work by Payne (1976) indicated that the sets model was
considerably more difficult than the part-whole construct.  This implies that
understanding the connections between the different aspects of fractions is as
important as understanding the difierent aspects independently and subsequently. In
addition, this new insight implies that understanding fractions may be more complex
than Table 2.2 suggests. The presznt research did not consider ratios or division as
other aspects of fractions. Currently, there is no evidence, and little research, to
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suggest that the removal of any aspect of fractions may not effect the further
understanding of fractions, i.e., ".Are all the sub-constructs necessary? Do some
subsume others?" (Kieren, 1980, 1. 146). Finally, the current model does not take
into account operations on fractions, which are an essential part of students’ fractional
maturity.

THE KIEREN (1988) MODEL OF KNOWLEDGE BUILDING

Kieren (1988) postulated a mod:l of intuitive mathematical knowledge which
attempted to “account for personal and mathematical features of such knowledge
building" (Kieren, 1988, p. 162). Rather than a series of discrete linear levels,
Kieren postulated a series of layers (usually represented as circles or semi-circles)
much like the growth rings associatc:d with tree development. A simplified version of
the model is presented in Figure 2.2.

Analytic
Demotic  Evalustion |
N /
/ —
N\
Validation "
/_-r "
Analogical Metaphoric al
Metonymic Hieratic \
A« roglyphic

FIGURE 2.2

Kieren’s (1988’ model of knowledge building

A brief description of the features «f this model, including the meanings of the layers
is provided below.

The core of this model consists of mathematics typically associated with
ethnomathematical knowledge (designated E in the above diagram), i.e.,
"knowledge, quantitative, spatial, a1d/or pattern oriented in nature, which one builds
up because one lives in a particular environment ... this is not ‘schooled’ knowledge"
(Kieren, 1988, p. 169). ‘Fractions’ at this level barely exist and consist only of a
half, quarter or third. A typical re:ponse at this level to a ‘pizza’ question would be:
"Cut the pizza into pieces and leave the rest".
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The Intuitive Level (I) is associated with "schooled or taught knowledge which
involves the deliberate conjoining of image, thought tool, and informal use of
language" (Kieren, 1988, p. 170). Kieren claimed that: "patterns of actions which
generalize real-life sharing and allow a person to develop mental objects and actions
(hundredths, thousandths, or repeaed division by 2 or 10) which are dependent of,
although analogous to, real-life act ons" (p. 170) occurred at this level. Fractions at
this level are based in ‘everyday’ s tuations, such as partitioning a pizza, although the
distribution may not always be a rathematically fair and equitable distribution, e.g.,
"Person A gets a third and a quartzr of a quarter" (Kieren, 1988, p. 172). Typical
fractions are more abstract than the previous level and include fifths and sixths.

Technical Symbolic (TS) knowledye is associated with "standard language, notations,
and algorithms ... it should be testable against some form of ‘reality’ or represent a
local logical sequence which can be evaluated in terms of axioms for rational numbers
(Kieren, 1988, p. 170). Typical fractions at this level involved the use of standard
language and symbolism.

Axiomatic (A) knowledge is the fo ‘malisation of rational number knowledge including
the "relationships about rational nuinbers, seen and described ... at inner levels, in the
axiomatic structure" (Kieren, 1988, p. 170).

In addition, Kieren (1988) acknowl:dged that the boundaries between the layers of the
above model become blurred and 1e adapted the model to include ‘transition’ levels
which were designated EI (e.g., "each gets a third and a bite more" (p. 172)) or ITS
(e.g., symbols were used but always treated the situation as if dealing with real pizzas

(p. 193)).

These ideas were developed furthe- in later work by Kieren and Pirie (1989). They
produced a more general model of knowledge which incorporated the notion of
understanding "‘in many ways at once’ and at the dynamics of how that comes to be
and how it grows over various periods of time" (Kieren, 1991, p. 170). The
modified model consisted of eight ayers of understanding. Figure 2.3 represents the
new model.
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FIGURE 2.3
Kieren and )irie’s model of knowledge

A brief description of five of the eight layers of the new model, as it relates to
fractions, is now presented. Typical examples are based on the analysis of one 12-
year-old girl (Tanya) presented in Kieren (1992).

Primitive Knowing marks the beginning of fraction understanding, i.e., fraction
‘language’ is first used.

Image Making consists of single, independent ‘image making’ activities and
discovery of the relationships between the individual pieces of information, such as
physically combining fraction shapes and describing the results (Kieren, 1992).
Addition of fractions at this level is therefore possible, if the result can be arranged to
cover a known fraction shape. Correct results for addition problems can only be
obtained if all fractions involved can be represented by concrete objects, such as
fraction shapes (Kieren, 1992).

This level, like all the remaining levels require both action and expression, i.e.,
record keeping, reflection and description of the activities give rise to entrance into
the next higher level.

Image Having concerns the generelisation of the above level, i.e., any two or more
‘fractions’ are seen to be equal if they cover the same amount of space. However,
there is a fundamental shift from the previous level in that learners are now able to
imagine the fraction shapes, and they do not necessarily require the physical shapes to
be present to perform the calculation. [t is enough that they can imagine them.
Learners actively ‘seek out’ the r:quired ‘fractions’ they need in order to solve a
problem. This may require ‘folding back’ (Kieren, 1992) to the context-bound level
for additional information not obtained previously.
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Property noticing is the ‘discovery’ of patterns of numbers when dealing with
fraction pieces. It marks the entrance to the next level in which fractions can be dealt
with independently of fraction shape:s.

Formalizing consists of the deliberate and appropriate selection of a common
denominator, independent of concrete shapes - either real or imaged as in the previous
levels. For example, sevenths are able to be dealt with at this level. Fractions should
now be able to be perceived in their equivalent symbolic forms.

Little information is available with ‘espect to the remaining 3 layers. These are seen
to pave the way for the outermost level in which questions are asked that ‘break away’
from the traditional view of fractions. This tends to create ‘new’ areas of
mathematics. It is not envisaged thit a majority of students would need to progress to
this degree of fraction understanding.

A major innovation of the new mocel was that student understanding was not seen as
a direct, linear progression from on: level to the next. Instead, learners were seen to
‘weave’ through the various levels as they constructed their own knowledge base of
fractions. ‘Folding back’ or revisng and re-visiting existing knowledge in lower
levels, was viewed as an essential part of growth, i.e, knowledge discovered in one
level could require similar knowledge-type skills that were encountered previously at
an earlier level. This process chaiges beth the dynamics and didactics of both the
learner and the levels re-visited; and perpetuates both ‘growth’ and movement in both
learner and levels. Students may return time and again to earlier levels as they
conceptualise their own personal unlerstanding of fractions. As a consequence of this
‘folding back’, teachers were encou -aged to take an active part in their students’ paths
of understandings by making apprcpriate interventions as required, i.e., "the answer
determines the question" (Kieren & Pirie, 1992, pp. 2-8).

SUMMARY

In this section, five models have been presented. Clearly, there is a degree of
commonality between the models. For example, all acknowledge that the foundations
of fraction understanding is relatel to partitioning, such as sharing pizzas, or its
representation, such as the geomet-ic part-whole model. In addition, the individual
models promulgate the overall existence and advantages of acknowledging learning as
a hierarchy. A summary table irdicating the main attributes, and advantages and
disadvantages is presented in Table 2.3
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While some of the models presented have strong empirical bases, others have
approached fractions from a more philosophical point of view. Ideally, any
theoretical interpretation that has the potential to be applied to adult learners and
fractions must have the following attributes:

i. the hierarchy must be indepedent of age;

ii. the hierarchy must attempt to explain all major aspects of fractions that adult
learners are likely to have encountered, including operations on fractions; and

iii. from the researcher’s philosophical viewpoint, the hierarchy must attempt to

analyse the students’ respons:s.

Given these constraints, it is necessury to broaden the search to encompass other more
general theories of mathematical hicrarchies. In addition, it is hoped that some of the
individual and independent advantages offered by some of the above hierarchies may
be encompassed into a broader mathematical hierarchy. The Structure of the
Observed Learning Outcome (SOLO) Taxonomy of Biggs and Collis (1986, 1991) is
one such hierarchy which appears to have the potential to meet the above criteria.
Although the SOLO Taxonomy has achieved widespread acceptance and credibility in
the previous decade, it has only recently been applied to adult learners in the area of
algebra (Coady, 1994), and to fractions (Watson e al., 1991ab, 1992ab, 1993). 1t is
therefore appropriate to discuss the major attributes of the SOLO Taxonomy in detail.
Where relevant, typical examples rclated to interpreting fractions using this structure
have been included.

THE 50LO TAXONOMY

The SOLO Taxonomy of Biggs anc Collis (1982) arose out of dissatisfaction with the
accepted Piagetian paradigm when conflict arose between theory and practice. Early
research undertaken by Biggs and (Collis observed that the fundamental assumption of
Piaget’s décalage was found to occur, not rarely as Piaget postulated, but frequently in
the classroom, i.e., in a classroom situation students did not respond in characteristic
ways within or across subjects. "There are ‘natural’ stages in the growth of learning
any complex material or skill and that in certain important respects these stages are
similar to, but not identical with, the development stages in thinking described by
Piaget and his co-workers" (Biggs & Collis, 1982, p. 15). A further major difference
between the work of Piaget and the SOLO Taxonomy was that Biggs and Collis’ work
focused on analysing and classifying students’ responses to stimuli. The SOLO
Taxonomy recognises that a student, when re-tested at a later date, may respond at a
higher or lower level, i.e., "SOLO levels are equivalent to test results; they describe a
particular performance at a partictlar time. They are not meant as labels or to tag
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students ... It carries with it a warning not to overgeneralise" (Biggs & Collis, 1982,
p. 23). As a consequence, this attribute makes the SOLO Taxonomy a viable

framework with which to interpret : . dult learners’ responses to fraction questions.

One of the main strengths of the SOLO Taxonomy is that it accounts for both the type
of thinking the student demonstrates (the rodes) and the extent of understanding (the
levels). A brief discussion of each of these two aspects is now presented.

MODES OF LEARNING

Collis and Biggs (1986) used the term mode to distinguish between fundamentally
different types of cognitive development. They identified five modes. The names of
the modes (which are Piagetian n nature) are Sensory Motor, Ikonic, Concrete
Symbolic, Formal and Post-formal The modes exhibit one major difference to the
work of Piaget. Piaget argued tha each stage of learning was subsumed in the prior
stage. In the SOLO model, learnirg in each mode is not replaced by the next mode,
instead modes co-exist. The SCLO model acknowledges that different types of
thinking could exist concurrently ind simultaneously in two or more modes. This
issue is taken up in more detail in a later section on multi-modal learning. A

summary of the characteristics of tte different modes is provided below.

Sensory motor This mode is char:cterised by the ability to co-ordinate motor skills.
This is learning of the most ‘undamental type, and would appear to occur
‘spontaneously’ from early childhood, although adults continue to develop in this
mode throughout their lives. This s the only mode in which very young children, up
until about eighteen months, are ible to utilise. Knowledge in this mode is best
described as ‘tacit’.

Ikonic This mode is characterised hy the ability to internalise a picture or ‘ikon’, and
marks the first abstraction from ac:ual ‘doing’. Imaging and imagining occur in this
mode. Knowledge in this mode is best described as intuitive.

Concrete symbolic This mode is based on representing and symbolising concrete
experiences, e.g., numerals represent numbers and pronumerals represent algebraic
expressions. Typical school mathzmatics occurs in this mode. Knowledge in this
mode is best described as declarative.

Formal This mode is based on the generalisation of principles and the meaning of
theories.
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Post-formal This mode marks the challenging of existing theories and the generation

of new ones. Knowledge in this mode is best described as theoretical.

Clearly, mature-age learners have a wider variety of, and greater exposure to, life
experiences, and hence, modes. Adult students should therefore be able to access and
utilise additional modes which may have been unavailable to them as children (Biggs
& Collis, 1989, p. 10). However, :here is little evidence to suggest that adult learners
‘take advantage’ of this situation, :ind utilise other modes available to them. Nor is
there any evidence to suggest that 1zarners always operate at the highest possible level
available to them, e.g., "the lates: developing stage represents a current ceiling to
abstraction, not the level to which all performances must conform" (Biggs & Collis,
1989, p. 8).

If the ability to think differently churacterises the differences between the modes, then
the increasing ability to deal with thifts in structural complexity indicates progress or
growth within a mode.

It is not just a matter of geting students to give the ‘correct’ response
to an item: many response; can be ‘correct’ in some sense, but some
responses are clearly of bettzr quality than others ... the better response
has a more complex structurz.

Collis and Biggs (1979, pp. 13-14)

This notion leads to the question of how is development within modes best
characterised. The SOLO Taxonony uses the term ‘levels’ to address this issue.

LEVELS OF LEARNING

Although the existence of ‘levels’ has found general agreement within the literature,
there is considerable debate with -espect to both the number of sub-stages and the
definitions associated with each lev:l (Biggs & Collis, 1982, 1986, 1989, 1991; Case,
1985; Fischer & Silvern, 1985). karly work on the SOLO Taxonomy, for example,
suggested that there were five broad levels. A brief description of each is now
presented.

Prestructural In the case of the tirget mode being concrete-symbolic then a typical
response simply repeats or re-phrases the question.  Responses classified as
prestructural indicate that the resfonse is below the current or target mode under

investigation.
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Unistructural Responses in which the subject has focused on one aspect or piece of
information typify this level. Responses at this level have not utilised any further

information.

Multistructural Although response: at this level now take into account more than one
aspect of a problem, there is no overview evident in the response. Typical responses
usually consist of ‘lists’ of severzl different aspects of a problem, but do not yet
indicate any relationships or links etween the different properties listed. Individual
elements of a problem are seen to cperate independently.

Relational The main component o1 this level is that of ‘control’. All aspects of the
problem that are within the real-world referent are under the control and direction of
the problem solver. A response at :his level indicates that the student has an overview
of the situation. This concept is lacking in the earlier levels. Elements that were
stated in the multistructural level are now seen as crucially interrelated and
interdependent at this level, i.e., the solution to the problem is presented as an
integrated package which acknow edges all the relationships between the relevant
properties presented in the problemn. Solutions are the result of a determined and
deliberate act.

Extended abstract A response at this level indicates that the student questions the
original assumption of the situation, i.e., the student goes ‘outside’ the original
problem. In the case of the target mode being concrete-symbolic then an extended
abstract response sees a general principle.

The criteria for determining how to classify a particular response is based on several
factors. Of these, the use of language plays a most important role in determining the
classification of a response. A res»onse which either ‘closes’ too soon or provides a
quick response to a question, would be ranked lower than a response which provided
greater depth and complexity in adressing the question. As Biggs and Collis (1980,
p. 20) stated: "Lower level resporses are either dogmatically ‘closed’, or indecisive.
At the highest end, extended abstr:ct responses are often qualified, leaving room for
different interpretations and mitigiting circumstances”. Responses which have an
overview of integrated information and/or suggest possible alternatives or refinements,
not originally included in a question are classified at high SOLO levels. It has been
suggested (Biggs & Collis, 1982, p. 67) that such information can be used
successfully to trace a child’s thinking. However, caution should be exercised in
applying this interpretation since tte amount of available working memory (that part
of the consciousness that is directly working or thinking at a given time) a student has
available, can have a significant impact on a student’s responses. In addition,
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experience and familiarity may enuble "more space [to become] available for higher
level responses. Experience is tken necessary but not sufficient condition of high
SOLQO’s" (Collis & Biggs, 1979, p. 37).

Of significance is that these levels are seen to re-occur in each mode. This implies
the same structure to development (i.e., that unistructural, multistructural, and
relational growth) occurs within ea:h mode. Hence, in the case of the sensory motor
mode, a unistructural response may contain a single physical aspect, a multistructural
response a series of independent aspects, while a relational response indicates some
coordination of the different relevant aspects. Figure 2.4 takes up this point and
illustrates how the unistructural-mu Itistructural-relational (UMR) cycle can be seen to

re-occur in each mode.

Since a question frequently has a particular mode as the target mode, two types of
level descriptors (addressed above) may be redundant. For example, a pre-structural
response in the concrete symbolic mode may in reality represent a different type of
thinking to concrete symbolic. This implies the answer is better suited to a
classification in the ikonic mode. Similarly, an extended abstract answer in the
concrete symbolic mode, may be more representative of growth in the next mode,
i.e., unistructural in the formal mode. For these reasons, the labels ‘prestructural’
and ‘extended abstract’ are frequently omitted from analyses involving the SOLO
Taxonomy, since a greater understinding of knowledge seeking is better obtained by

classifying responses in their most : ppropriate mode as well as level.
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MODE FORM OF KNOWLEDGE
Postformal Theoretical
Formal R Theoretical

M
U
Concrete R Declarative
symbolic M
U
Ikonic R Intuitive
M
U
Sensory R Tacit
motor M
U
Age (Years) O 14 6 16 21
FIGURE 2.4

The SOLO Taxonomy
(adapted from Biggs & Collis, 1991)

The above table demonstrates an important feature of the SOLO Taxonomy, i.e.,
typical growth develops via progressing through a unistructural, multistructural and
relational (UMR) cycle before mov ng on to a similar cycle within a different mode.
However, human nature is unlikely to progress quite so uniformly and linearly, i.e.,
as the major diagonal across the table suggests. This is where the SOLO Taxonomy
has a unique advantage with respect to mathematical hierarchies. It has several
additional ‘in-built’ features which have the potential to account for a greater variety
of interpretations of responses wittout jeopardising the basic integrity of the model.
The additional attributes of the SOLO Taxonomy have particular appeal when adult
learners are under investigation. For example, Biggs and Collis (1982) acknowledged
the possibility of transition levels. Transition stages occur between levels where
students appear to be operating s>mewhere between two distinct levels (Biggs &
Collis, 1982). Transition levels ar¢ unstable, temporary and transient. However, the
greatest assets to interpretation of adult learners’ responses would appear to rely in
two comparatively new additions tc the Taxonomy. They are cycles of levels within
modes and multi-modal functioning. These issues are now explored in detail.

MULTIPLE UMR CYCLES WITHIN MODES

An extension to the single cycle of levels in a mode model was suggested by several
writers (Campbell, Watson, & Col is, 1992; Pegg, 1992; Watson et al., 1992a). In
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particular, they have identified two cycles of levels within the concrete symbolic
mode. The cycles, which consist of unistructural, multistructural and relational
levels, interact in such a way that the first cycle becomes a fundamental element at the
unistructural level in the next cycle, while still remaining an integral part of the
concrete symbolic mode. A simple analogy to help better explain the cycles is
illustrated by considering chaos theory and fractals. The ability to describe a ‘fractal’
will depend on the size of the ‘m croscope’ in use. While still retaining essentially
the same features, the greater the magnification, the more detail is present.
Conversely, the further you stand back, the less detail is seen, however, a better
overview is gained. As Pegg (1997, p. 384) wrote:

the identification of cycles of learning allows a clearer perspective of
the useful skills needed for students to grow. While these skills might
be known in a general way by teachers, there would be few teachers
who could state them emphatically. ... Knowing when student
responses, are either in early or late cycles, is an important skill for
teachers: it not only helps tie formative assessments that teachers need
to make but it allows the focus on instruction to be directed more
accurately at the students’ nceds.

While current research has found only two cycles within a mode, there is nothing
intrinsic in the SOLO model to suggest that the number of cycles be confined to only
two. "Further research is required to establish whether the number of such sequential
UMR learning cycles discovered w thin a single mode is determined by the size of the
microscope used to analyse the incividual components of skill acquisition.” (Watson
et al., 1992a, p. 16).

In their study on fractions, Watscn et al. (1992a) hypothesised a two cycle UMR
approach based in the concrete symbolic mode. This conclusion was reached after
testing and interviewing over five-hundred school-age children from infant school
(Prep) to high school (Year 10). A summary of the two-cycles within the concrete
symbolic mode, including examples from the study, is presented below.

Unistructural 1 This marks the start of fraction understanding. At this level,
children’s understanding of ‘sharirg’ is based on the idea that an equal number of
pieces is enough to satisfy the condition of ‘fairness’. Watson er al. (1992a, p. 14)
gave the example of a child (Yvonne) who divided a pancake into four to distribute it
equally between three dolls. The ciild gave two pieces to one doll and one piece each
to the other two dolls. When she realised that this was not equable, she split the
single pieces into two. This meant that each doll now had two pieces, irrespective of
size. The child, however, accordinz to the study, was satisfied that this was fair.



Multistructural 1 This is where the idea that the same number of parts is not enough
to establish fairness. However, this notion is limited. For example, Watson et al.
(1992a, p. 15) stated that when students were asked to distribute twice as many dog
biscuits to one dog, many gave two more and not twice as many. However, it is
plausible that the students may not have understood the use of the word ‘twice’

appropriately.

Relational 1 This is characterised by "a more complex notion of sharing (i.e.,
fractional parts)" (Watson et al., 1¢92a, p. 15). Students were "now aware that both
the number of parts and their equivalence were significant, at least in a practical
situation” (Watson et al., 1992a, ;. 15). Although it is the highest level in the first
UMR cycle, it is firmly entrenched with reality. "The internalisation of the common
fraction construct as developed in UMR cycle 1 became the unistructural element
from which responses to more co nplex tasks were built for the next UMR cycle"
(Watson et al., 1992a, p. 16).

The second cycle is dominated by the relationship between equivalence and area
diagrams. Children who had not y¢t been exposed to area problems would not usually
be able to provide relational level r¢sponses.

Unistructural 2 This is characteriszd by students closing on an answer without fully
considering all aspects of a problem. Watson er al. (1992a, p. 17) identified this level
as where the focus on the denomir ator becomes prevalent. For example, Watson et
al. (1992a, 17) quoted one of the sibjects in their study as saying: "3/4’s is one piece
less than a whole and 7/9’s is two lz2ss than a whole". Learners at this level would be
able to compare successfully two s mple fractions, but only if the denominators were
the same.

Multistructural 2 This is similar to the above level, except that students were able to
focus on more than one aspect of the problem. However, learners were easily misled
by re-arrangements. For example, in the chocolate bar question, in which the bar was
cut lengthwise or widthwise, the siudents whose responses indicated that they had to
physically rearrange the chocolate bar to test for equality were classified into this
level.

Relational 2 This is where studcnts would not be tricked or mislead by visual
distracters.

Watson et al. (1992a, p.20) concluced:



In the present study, the 1elational responses at the end of the first
UMR cycle (involving an accurate understanding of fractional parts and
their equivalences) would rot provide a sufficient precursor for entry
into the formal mode. Fowever, completion of the second UMR
learning cycle involving work on ratios, and flexible performance of the
four operations on common fractions probably requires sufficient
dissociation from the empirical to pave the way for formal modes of
thought.

Clearly, the above classification :ystem provides considerable detail in describing
students’ growth in fractions. However, it is feasible that some of the descriptions
may not be observed with respect 0 adult learners’ understandings of fractions. For
example, it would seem that most of the first cycle, which depends on the
development of a notion of shariig, may not be applicable with respect to adult
learners.

In the second cycle, it would be valuable to have further evidence to help establish,
more broadly, the level descripiions. As they stand, the jump between the
multistructural 2 and relational 2 le'els seems quite large.

Finally, the cycles approach does not offer a complete explanation to some of the
results to the experiments, such as the one involving the chocolate bar. Later work by
the same authors has attempted to consider the two UMR cycles within the context of

multi-modal learning. This issue is now taken up in more detail.

MULTI-MODAL FUNCTIONINC:

Another new feature which has extended the 1982 model of SOLO concerns multi-
modal functioning. This is the a»yility to access a different type of learning from
another mode to support or enhance learning that is usually considered to be based
primarily in the current or target mode. As the number of modes available to a
learner accrues, such as would be expected on reaching adulthood, the more likely the
availability of multi-modal learninz (Collis & Romberg, 1991, p. 87). Although
multi-modal functioning is desiratle in certain situations, it is essential in many
problem-solving activities. For ¢xample, it is feasible that a concrete symbolic
response may require visual suppor.. However, such images are generally considered
to be indicative of the ikonic mode. Collis and Romberg (1991, p. 103) have mapped
a detailed schema which is presentel in Table 2.4.
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TABLE 2.4

Multi-modal interactions and decision making points
(adapted from Collis & Romberg, 1991, p. 103)

THE STUDENT READS THE QUESTION AND DECIDES TO CHOOSE:

R

A Translation to ikonic mode Translation to concrete symbolic
mode

B Creation of images or intuitions Creation of statements or symbols
Precedes in Precedes using | Precedes with typical concrete
absence of ‘ever /day’ symbolic manipulation. This may
relevant mathematics, involve utilising other modes,
information which may be | particularly the ikonic mode
pertaining to inade juate for

the problem the p ‘oblem

The solution will be reflected in the
steps developed by the student.

The <olution
may He
reinte rpreted
with -espect to
the current
problzm,
however, the
steps are
usual y
developed ad
hoc.

D Solution is
irrelevant

Students may progress directly down the left hand column (L) or the right had column
(R). Typically, the right hand column is associated with problem-solving skills.
However, the research indicated that this ‘streamlined’ approach could disadvantage
Instead, the
research suggested that it was advintageous for students to move sideways (probably

students, particularly when asked t> solve new or unfamiliar problems.

at row B or C or both), irrespectiv: of which route (L or R) was the original starting
point (Collis & Romberg, 1991, p. 103).

Watson et al. (1992b, p. 6) adapted the above table and directly related the left
column to the ikonic mode and the right column to the concrete symbolic mode. The
authors then produced an elaborate structure that combined both the two UMR cycles
noted previously and the multi-nodal effects advocated above.  This is best
demonstrated by an example.

An experiment was designed (Watson et al., 1992b, p. 10) in which children were
asked to share a large number of silver, cake-decoration ballbearings between two
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dolls and a student. The results showed that young children (below Year 3) were
unable to complete the task. For example, one child responded with "a triangle".
The authors coded this I, which inlicated an ikonic response, i.e., one that was based
on intuition, but prestructural in the concrete symbolic mode since this response did
not contribute to the solution of the problem. By contrast, another child in the
experiment, chose to give one ballearing to one doll, three to another, and keep the
remainder for herself. The authors coded this response I in the ikonic mode, and U,
in the concrete symbolic mode, since it indicated that the child had only a
unistructural notion of fractions in the concrete symbolic mode, although the child
could conserve number. An I., M, response was noted by one student who could
approximate both 1/2 and 1/4 of the cake decorations. However, the child could only
answer ‘not much’ when asked to -dentify what part was left, indicating that the child
was using visual support to decide the answer. Finally, the authors noted that there
were two different approaches usel by students who identified 1/4 as the remaining
ballbearings after the initial distribttion. In the first case, the student said they "saw"
the cake decorations "in their head:. and imagined the sharing to obtain what was left"
(Watson et al., 1992b, p. 11). Tais was coded I, R, since it relied on imagery to
visually re-arrange the ballbearing;. The students who just used mental arithmetic,
i.e., in absence of the context that the problem was presented in, were coded R, since
no imagery was required. A summary of this information is presented in Table 2.5.

TABLE 2.5

Summary of ccdings for ballbearings problem
(Watscn et al., 1992b, p. 11)

Type of Ikonic response Level of response

Ikonic Concrete-symbolic
Intuition based on an I, (‘e triangle’) Prestructural
inappropriate image
Intuition based on I; (1-3-remainder) U,
patterns
Intuition based on visual I (‘rot much’) M,
appearance
Correct visual imagery I, (inagined correct R,
manipulation sharing)
No Ikonic support - R,

Once students had mastered the ca culations required in the concrete symbolic mode,
the use of the ikonic mode was nc longer needed and fell away accordingly (Watson
et al. 1992, p. 12). For example, students were required to solve 1/2 + 1/3 and
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accompany their solutions by diagrems. Although this type of problem was aimed at
the R, level, results indicated that over half of the students attempted to draw some
sort of diagram. However, this may be an overestimate, due to the obvious
prompting in the question, and :aution should be exercised in interpreting the
significance of this result. Table 2.6 presents a summary of typical responses and

classifications to 1/2 + 1/3 problemr .

TABLE 2.6

Summary of codings for 1/2 + 1/3 problem
(Watso1 et al.. 1992b, p. 17)

Type of Ikonic response Level of response
Ikonic Concrete-symbolic

Incorrect drawing of 1/2 | I, (drew two triangles) U,
and 1/3
Correct drawing of 1/2 I; (draw boxes of raisins U,
and 1/3, no combining indic: ting 1/2 and 1/3)
Correct visualisation of I. (estimated answer to be U,
approximate combination | between 3/4 and 3/3)
Correct diagram I, (divided rectangle into R,

sixths)
No ikonic support - U,
No ikonic support - M,
No ikonic support - R,

Clearly, this type of interpretation offers an intricate explanation to some complex
issues raised by responses to the experiments. It attempts to isolate ikonic and
concrete symbolic aspects within a response and highlights that more than one type of
thinking, or mode, can be assessed by a student and provided in a response.
Nevertheless, the approach seems unwieldy in its current formulation and difficult to
accurately apply in practice.

IMPLICATIONS

There are several implications from the above findings to both this study and the
SOLO Taxonomy. For example, evidence from both the Watson study and the Collis
and Romberg study indicated that many students ‘compartmentalise’ their studies, i.e.,
they do not take school learning nto their out-of-school environment. This raises
many philosophical and ethical questions, such as:



i Should strategies be instiga'ed to enable learners to harness the usefulness of
multi-modal learning, i.e., i; multi-modal learning ‘teachable’?

it. What are these strategies and how have they been discovered or assessed, i.e.,
what does the research siggest with respect to encouraging multi-modal
learning?

It is difficult to address either of 'hese issues. Current research would suggest that
there exists a complex interaction between the ikonic and concrete symbolic modes,
with each supporting and mutually ‘feeding’ into one another, and that expert problem
solving may be hindered without such interaction. For example:

mathematically competent children link mathematical symbols and rules
to the concepts to which they refer, making an effort to make sense of
the connection. In contras', weaker mathematics learners allow those
rules and symbols to become dissociated from corresponding referential
concepts.

Watson et al. (1992b, p. 24)

A similar observation to the above has been noted with respect to adult learners
(Collis & Romberg, 1991, p. 103). Unfortunately, current research suggests that
development between modes is hapiazard and non synchronous, and therefore difficult
to map. In addition, true and precise multi-modal functioning may only be possible
for "expert learners", or, at the very leas:, those with a wide variety of modes with
which to offer possible interaction.

CONCLUSION

All the mathematical hierarchies d scussed above appear to have many strengths and
similarities. However, it is the SOLO Taxonomy that would appear to have the
greatest general applicability to nterpreting adult learners’ responses to fraction
questions. There are three main re.isons for this decision:

@) The theory offers a systema ic method of classifying students’ responses that is
largely independent of the aje of students.

(i)  The model allows the classiiication of students’ responses and does not attempt
to discriminate or label students in any permanent way. Instead, ‘hope’ is
offered to both teachers anc struggling students as the model has the potential
to present possible pathwa/s of intellectual growth that are diagnostic and
prescriptive.
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(iii) The work of Watson er a. (199lab, 1992ab) has dealt with the issues of
applying some of the more¢ novel aspects of the SOLO Taxonomy (such as
multiple UMR cycles) to de:cribe childrens’ responses to fraction questions.

All of these attributes pave the way for interpreting adult learners’ responses to
fraction questions using the SOLO Taxonomy as a theoretical framework. One of the
main strengths of the SOLO Taxonomy lies in its simplicity. The two-dimensional
nature of the model makes it posiible to locate a student’s response in both scope
(modal reference) and depth (level reference). As an evolving moedel, it also has
‘built-in’ contingencies, such as riultiple UMR cycles. One of the advantages of
incorporating multiple cycles into the framework would seem to be that a more
detailed progression of learning car be ‘mapped’. This in turn should provide greater
depth to understanding how learnin;; takes place.



