DYNAMIC COMPUTER MODELS TO IDENTIFY THE OPTIMAL SYSTEM AND MANAGEMENT OF POPULATION STRUCTURE FOR SELF-CONTAINED MEAT SHEEP CROSSBREEDING ENTERPRISES

HESHMATOALLAH ASKARI-HEMMAT

This thesis is submitted for the degree of Master of Science in Agriculture at the University of New England Armidale, NSW 2351 AUSTRALIA

SEPTEMBER, 1997
TO MY FATHER
In the name of the Most High God

Foreword

The study presented in this thesis is original and was initiated by the author while in receipt of the Ministry of Culture and Higher Education of Iran postgraduate scholarship, and under supervision of Professor B.P. Kinghorn.

I certify that this thesis has not been submitted for any degree and is not currently being submitted for any degree.

Any help received in preparation of this thesis and all sources used have been acknowledged in this thesis.

H. Askari-Hemmat

September, 1997
Acknowledgments

I would like to thank some people who have helped me in the undertaking and completion of this thesis.

First, I thank the Ministry of Culture and Higher Education of Iran, who provided me with the post-graduate scholarship.

I am highly indebted to my supervisor Professor B.P. Kinghorn. Many sincere thanks to him for his guidance, assistance and continuous encouragement and support throughout the course of my study. The work was suggested by him, on whose knowledge and experience I could count at all times.

Special thanks go to Dr. M. E. Goldard whose valuable initial ideas regarding optimal crossbreeding schemes became the inspiration for the development of the dynamic computer models being offered in this thesis.

I would also thank Dr. R. Banks the Australia’s National Lambplan coordinator, and Mr. Allan Luff, livestock officer of NSW Agriculture, Cawri, for their assistance in collection of the input data.
Summary

Two deterministic computer models for the choice of the crossing system possessing optimum design flock structures, for self-contained meat sheep crossbreeding enterprises were developed, using Microsoft Excel’s Solver software. Both of the models use a dynamic strategy for optimization of the flock structures for a time period of 10 years.

There are two breeds of sheep and up to three flocks considered in each model. Also, the initial total number of the ewes in the flocks to commence the crossing system with, is an optional input parameter which should be determined by the breeder. At any time for a given set of the input data, the computer models search all options to determine the optimal structure of the flocks under a detailed year-by-year scheme. The models predict the relevant parameters while applying the standard cash flow discounting method (optional), and propose either a rotational crossing, a terminal-rotation crossing, a single two-way crossing, or a combination of these systems. Meanwhile, the flock structures, and most of the important phenotypic, genotypic and economic parameters are displayed diagrammatically for a clear understanding of the simulation modeling.

The input data which are almost comprehensive should be given to the models by the breeder, being as follows: weaning rate of the ewes, weaning rate of the maidens, slaughter weight of the lambs, body weight of the culling ewes, ewe replacement rate, greasy fleece weight of the ewes, greasy fleece weight of the hoggets, greasy fleece weight of the yearlings, clean fleece weight, greasy fleece weight ratio (= yield), fibre diameter, ewe mortality, weaning to hogget mortality, weaning to slaughter mortality, costs of husbandry per ewe per year, costs of feed per ewe per year, costs of feed and husbandry per slaughter lamb, costs of feed and husbandry from birth to yearling, costs of feed and husbandry from yearling to hogget, costs of marketing per ewe, costs of wool harvesting and marketing, price of 1 kilogram of clean wool of 21 microns in diameter, extra price (negative and/or positive) per 1 kilogram of clean fleece for each micron deviating from 21 microns, price of the purebred replacement hoggets and that of the purebred ewes for the two initial years of the crossing system, price of the ewes per kilogram body weight, price per kilogram live weight of the lambs, discount factor, total number of the ewes for commencement of the system, and finally, heterosis for the most important traits in the reciprocal crosses.

The computer models predict the following cases, being offered in the year-by-year diagrams: Phenotypic parameters, most important of which being: slaughter weight of the lambs, body weight of the ewes, greasy fleece weight, fibre diameter, weaning rate, and ewe replacement rate. Genetic parameters, i.e., degree of heterozygosity, breed difference, gene proportion of the breed (usually) superior in meat production, for the ewes and hoggets, and also gene proportion of each breed for the slaughter lambs. Management parameters include: number of the ewes in the flocks, number and source of the migrant hoggets as replacements, number of the slaughter lambs, number of the salvage animals (implicitly) and number of the losses. Economic consequences for the proposed system, e.g., the cumulative discounted net profit, applying the standard cash-
flow discounting method (optional) for each economic year, as well as other economical aspects.

One of the models is designed for a stable flock’s size regime and the other for a variable one, both using the data attributed to the Australian Merino (M) and Border Leicester (BL) sheep breeds. In the former, the flock’s size is stable in all years of crossing and in the latter, it is allowed to vary from one year to another. In a comparison of the models running with same input data, the model with a stable regime proposed a terminal-rotation crossing, and that having the variable one, a combination rotational crossing system including some sub-systems of rotational crossing.

The initial number of the ewes in the variable model was held constant and only this number for the other model changed until a cumulative discounted net profit, equivalent to that for the variable model was gained in the final year of crossing. The stable model resulted in a remarkably higher average cumulative discounted net profit per ewe, i.e., 20.21% more benefit per ewe, compared with the variable model, owing to a 20.25% smaller cumulative number of the ewes in the former, acknowledging that the ewe and hogget costs are among the main economic components affecting the whole optimized population structure. Further, the crossing system suggested by the stable model, helps produce more desirable meat, by means of less variations in the meat quality in subsequent years of crossbreeding due to less variations in the BL’s gene contribution.

It was concluded that the variable model would be more suitable where a lower amount of the initial investment and also limited resources are available to the breeder at the commencement of the crossing system. Another conclusion in this regard is that, if there are no limitations in terms of provision of the required husbandry facilities, and also if the delay in acquiring a notable amount of profit until the final two years of crossing is admissible, the variable model is more desirable though there will be a smaller profit gained per ewe raised. The argument was given in the text.

Also, the standard cash flow discounting method had no effect on the flock structures, when equal numbers of the ewes were used for the commencement of the systems in with- and without cash flow discounting procedures, using same models at a time. However, trend of the annual net profit changed, when cash flow discounting method was applied.

Conversely, when setting the propose I systems for equal cumulative net profit gained through different initial numbers of the ewes, in both with- and without cash flow discounting procedures, the whole flock structures had some minor changes. In other words, (only) the cumulative number of the lambs sold was affected (but dramatically) in a reverse direction, from a 0.5% larger number, to a 7% smaller one in the stable model in comparison with that in the other one, in a without- and in a with cash flow discounting manner, respectively.

In the same status as above, in the stable model, the average cumulative net profit per ewe remained almost proportionately higher, in accordance with the cumulative number of the ewes which was held proportionately lower when discounting was applied, although the initial number of the ewes for commencing the system did not change proportionately from the with- to without cash flow discounting procedure. There was
16% difference between the changes occurred (from 500, the initial number of the ewes) in this number in same economical circumstances applied to both models.

A further conclusion is that, the cumulative number of the ewes, as well as the average cumulative net profit gained per ewe, are important factors in optimization of flock structures with optimal profitability, as they changed almost proportionately, in the different conditions applied.

Finally, the models allowed little variations in the flock structures from optimality, e.g., small proportions of the female lambs and/or hogget ewes could be sold with negligible effect on the optimal profitability of the proposed crossing system.
TABLE OF CONTENTS

Chapter One - LITERATURE REVIEW

1.1- Introduction 1

Crossbreeding in genera 2

1.2 - Reasons for crossing of breeds 4

1) *Exploitation of heterosis* 4
2) The use of complementary effects of sire and dam 10
3) Averaging of breed effects 13
4) The possibility of widest use of genetic resources 14

1.3 - Systems of crossbreeding 14

Specific crossing systems 14

1) *Upgrading* 15
2) Two-breed crossing systems 16
3) Three-breed crossing systems 17
4) Four-breed crossing systems 18

Rotational crossing systems 19

Advantages and disadvantages of rotational crossing systems 19

Classification of the rotational crossing systems 21

1) 2-breed rotational crossing systems 21
2) 3-breed rotational crossing systems 22

Synthetic crossing systems 24

Advantages and disadvantages of synthetic crossing systems 26
Further exploitation of synthetic breeds 27
Modified systems of rotational crossing 27

1) Rotational crossbreeding with generation preference 28
2) Terminal-rotation crossbreeding systems 30
3) Periodic rotational crossing systems 30

Determinants and deterrents concerning uptake of crossbreeding systems 31

A brief comparison of different crossing systems 32

1.4 - Importance of computer modeling 34
1.5 - Some examples of computer modeling 36

Chapter Two - THE DYNAMIC COMPUTER MODELS 39

2.1 - Introduction 40

2.2 - Materials and methods 40

General information on the models 40
Functional aspect of the models 43
Cash-flow discounting 48
Preliminary information on the prediction of the flock structures, and performance levels 49
The modeling equations 52

Chapter Three - WORKED EXAMPLES OF THE MODELS 94

Brief characterization of the breeds used in the examples 94

Notes on the input parameters 94

Initial composition of the flocks 95

Complementary information on the DYN CSTBL.XLS and DYN CVRBL.XLS models 96
The DYNCSTBL.XLS model (the year-by-year diagrams) 99
The DYNCRVRL.XLS model (the year-by-year diagrams) 120

Chapter Four - DISCUSSION

4.1 - Comparison of the model:

4.2 - Effect of the standard cash flow discounting on the flock structures and trend of the annual net profit 150

4.3 - Sensitivity of the models 153

References 153

Chapter Five - APPENDICES 159

Answer Report 1 - DYNCSTBL.XLS 160
Answer Report 2 - DYNCRVRL.XLS 163