Aligning Assessment in Higher Education:

Using a cognitive structural model to gain insight into student understanding of ecological practice

Adrienne Burns
PhD Adel
BSc (Hons 1) Adel

A thesis submitted for the degree of Masters of Education with Honours
University of New England

March 2010
Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help receive in this thesis, and all sources used, have been acknowledged in this thesis.

Signature......

........ date..27th March 2010..........................
Acknowledgments

I would like to thank my supervisor Professor John Pegg for his advice and guidance over the course of this research, particularly in extensive discussions of SOLO coding. I would also like to thank my co-supervisor A/Prof Debra Panizzon for her support and inspiration through my transition from environmental science to education. Thanks go to both supervisors on comments on drafts of this thesis.

A special thanks to Dr Darren Ryder for his support and assistance in interrogating his environmental science units. Thank you also, for discussions on development of course and unit objectives. Also gratitude is given for comments on extensive drafts of my thesis.

I would like to thank the School of Environmental and Rural Science at the University of New England and specifically acknowledge the students in the unit ECOL202 who provided their assignments for participation in this project, without which this research would not have been possible.

My thanks go to my family and friends who have provided encouragement during my studies and especially Darren and my children Ben, Ollie and Toby for their tolerance of a preoccupied mother at times during this project.
Abstract

Student outcomes in a tertiary science setting are expected to be multi-faceted. Learning outcomes in science encompasses the range of incomplete and partial understanding of single concepts to complete and integrated understandings of multiple concepts accepted by the scientific community. Assessment in the disciplines of Ecology and Environmental Science often focuses on the progression of independence by the student, in scientific research design and report writing.

Qualitative models such as SOLO (Structure of the Observed Learning Outcome) have previously provided a framework for aligned curriculum design with allied assessment items for the teaching and learning of single scientific concepts. There has been no precedent for diverse and multiple concept analysis by SOLO to multi-faceted educational science outcomes. This research project aims to develop a protocol for marking scientific written assessments using a cognitive structural perspective provided by the SOLO model for a second year tertiary level ecology unit. A sectional based and holistic approach within the cognitive structural model was used to compare the effective alignment of assessment through extended written assignments.

The major analysis determined qualitative learning outcomes based on written assessment items which reflect both skills in scientific report writing, and execution and analysis of an ecological study. A subsample of the 2007 cohort was used to design a pilot framework to qualitatively assess a similar assessment task for the following years’ students. The conceptual context for the investigation of qualitative differences in learning outcomes was the written expression of ecological studies as a scientific report. The categorisation of student outcomes was compatible with the theoretical framework of the two–learning cycle per mode version of the SOLO model.

The results of the sectional analyses identify that the majority of students could present a scientifically written review, formulate testable questions, and design and carry out robust replicable studies in a scientific framework. All students within this
cohort could synthesize their results in the given ecological framework, and some students demonstrated greater abstract cognition and application by presenting ideas beyond those directly instructed for the task. This suggests that within a mode, the cycle level is likely to increase. Although this extended assessment task was analysed as separate sections, the lucidity and trail of presented evidence leading to the student outcomes of each section were not independent.

The holistic analysis used three interrelated elements for categorisation: Theoretical, Functional and a Practical understanding. There was a significant and clear separation of holistic outcomes between cycles of the concrete symbolic mode, and between the concrete symbolic and formal modes. A highly positive relationship between qualitative outcomes and quantitative grades was also apparent and were best interpreted by a holistic impression of a students’ work. The strength of a holistic approach is that it integrates all aspects of validity within the single model. Whereas the content validity is definitive in the sectional approach, construct and criterion related issues are strengthened by the holistic approach. A major part of the assessment task under investigation was to uncover a measure of an individual’s reasoning process through construct application of the scientific process and a scientific writing style. The constructs of reasoning, creativity and attitudes were all facets of the functional understanding integrated in the holistic SOLO framework.

Establishing SOLO categories for scientific reports and for the holistic assessment of structured written scientific assignments provides a framework that can more rapidly evaluate meaningful qualitative differences in student outcomes when applied to other extended written scientific tasks within multi-faceted disciplines. The findings of this study have relevant implications for research and development aspects of tertiary teaching and learning; specifically, curriculum design, evaluation of teaching methods, and professional development.
Table of Contents

CERTIFICATION .. I

ACKNOWLEDGEMENTS ... II

ABSTRACT ... III

CHAPTER 1 ... 1

INTRODUCTION AND ORGANISATION OF CHAPTER .. 1

ISSUES IN HIGHER EDUCATION CURRICULUM DESIGN .. 2

Higher Education Reforms ... 2

Approaches to Learning Theory ... 3

THEORIES OF TEACHING AND LEARNING APPROPRIATE TO HIGHER EDUCATION 4

Teacher versus Learner focus .. 4

Beliefs and methods of teaching ... 6

A complementary theory: Academic Literacy .. 8

APPLYING THEORY TO PRACTICE: CURRICULUM DEVELOPMENT AND PLANNING 9

The Learning Outcome ...10

Criterion referenced objectives ...11

Teaching and Learning Activities ..12

Lectures and Large Class Teaching ...12

Problem Based Learning ...13

Learning outside the classroom: Online teaching and course materials13

Linking curriculum objectives with teaching and learning activities – are they aligned?14

Assessment ..15

Formative assessment ..16

Reliability and validity in assessment ..17

Sectional versus holistic assessment ...17

Evaluating the outcome of teaching ...18

Summary of the practice of curriculum development ..19

LEARNING IN SCIENCE? ..19

Issues of teaching and learning in tertiary science ...20

Knowledge domains and learning in science ...21

SUMMARY AND CONCLUSION ...23

CHAPTER 2 ..25

INTRODUCTION ..25

DEVELOPMENT OF THE SOLO MODEL ...25

SOLO MODES AND LEVELS ...26

Transition through SOLO Modes and Levels ...30

APPLICATIONS OF SOLO MODEL IN SCIENCE AND HIGHER EDUCATION31

EVALUATION OF SOLO ..33

Summary ..34

STUDY RATIONALE ...35

RESEARCH THEMES AND QUESTIONS ..37
List of Figures

Figure 4.1 Distribution of SOLO categories for written responses to the partial scientific report from students of ECOL202, 2008 cohort.________66

Figure 4.2 MDS ordination plot of assessment task 1: Ranked SOLO section analysis. Groupings by quantitative grade.________________20

Figure 5.1 Distribution of SOLO categories for written responses to the full scientific report from students of ECOL202, 2008 cohort._______98

Figure 5.2 MDS ordination plot of assessment task 2: Ranked SOLO section analysis. Groupings by quantitative grade. _________________104

Figure 6.1 Distribution of SOLO categories for holistic responses to the full scientific report from students of ECOL202, 2008 cohort. _____118

Figure 6.2 Correlation of SOLO ranks from holistic analysis and quantitative grade.___125

Figure 6.3 MDS plot of holistic SOLO data for assessment task 2 (full scientific report) 1 = CS 1st Cycle, 2 = CS 2nd cycle, 3 = Formal. Each independent point represents results from each student condensed over the 4 report sections, with groupings (1-3) from holistic analysis overlaid.______________________________126
List of Tables

Table 2.1 Major steps in the development of the SOLO model, and their relationship to Piagetian stages and forms of knowledge. 27
Table 2.2 The modes of SOLO and developmental emergence. 28
Table 2.3 The hierarchical levels of SOLO. 29
Table 3.1 Outline of sequence associated with collection and coding of learning outcomes. 41
Table 3.2 Response rate from students for assessment tasks. 45
Table 4.1 Summary of systematic SOLO categories from assessment task 1. Pilot Study 2007 63
Table 4.2 SOLO categories and quantitative grades for written responses to the partial scientific report from students of ECOL202, 2008 cohort. 67
Table 4.3 ANOSIM (Analysis of Similarities): Ranked SOLO section analysis. Groupings by quantitative grade. 71
Table 4.4 SIMPER (Similarity Percentages) section contributions to SOLO outcomes between analysis of qualitative grades. 72
Table 5.1 Summary of systematic and holistic SOLO categories from assessment task 2 (Mode/Level). 93
Table 5.2 Inter Marker Reliability (n=10). 95
Table 5.3 SOLO categories and quantitative grades for written responses to the full scientific report from students of ECOL202, 2008 cohort. 99
Table 5.4 ANOSIM (Analysis of Similarities): Ranked SOLO section analysis. Groupings by quantitative grade. 105
Table 5.5 SIMPER (Similarity Percentages) section contributions to SOLO outcomes between analysis of qualitative grades. 106
Table 6.1 Summary of holistic SOLO categories from assessment task 2 (Mode/Level). 117
Table 6.2 SOLO categories and quantitative grades for holistic responses to the full scientific report from students of ECOL202, 2008 cohort. 121
Table 6.3 ANOSIM (Analysis of Similarities): Ranked SOLO holistic analysis. Groupings by quantitative grade.; CS 1st = 1, CS 2nd = 2, F 1st = 3._