High resolution remote sensing for native vegetation assessment and monitoring: an impact assessment approach

Ross Barrett Jenkins

BSc (JCUNQ); DipSci (Newcastle); MSc (Newcastle); GradDipGIS (UQ)

A thesis submitted for the degree of Doctor of Philosophy of the University of New England.

October 2009

Candidate’s Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature
Acknowledgements

Financial support for this research was through ACARP C15013: The Effect of Longwall Mining on Vegetation (University of New England: Dr Paul Frazier). Additional financial support was from a Keith and Dorothy Mackay Travelling Scholarship (UNE). I would like to extend my gratitude to my supervising committee, in particular the committee chair, Paul Frazier, and David Lamb and Janelle Wilkes for their advice, support and encouragement. Thanks too, to Nicholas Coops, University of British Columbia, for his advice and encouragement while I attended UBC on the Mackay Scholarship.

Particular thanks go to staff at BHP Billiton – Illawarra Coal: Gary Brassington, Bruce Blunden, Peter Crowe and Michael Nicholson, both for discussion and advice, as well as provision of airborne laser scanning data and high resolution aerial photography, without which this thesis would not be possible in its present form.

Thanks also to Biosis Research PL, particularly Matt Richardson and Sian Wilkins, along with David Keith, Department of Environment, Climate Change and Water (DECCW), for invaluable advice and logistical support in the field. Likewise, thanks to staff at Beltana Highwall Mining Pty Limited: Ralph Northey and Tim Walls. Thanks to DECCW via Peter Bowen, Coordinator GIS Support, for provision of Department of Lands Cessnock and Wollongong 1:100,000 map sheet areas digital topographic, cadastral and terrain models.

At UNE, thanks to Cate Macgregor for GIS support, Jo Lenehan for independent ecological assessment of swamp boundary mapping, Jeff Thompson for assistance with orthorectification of Beltana imagery, and Tieneke and Mark Trotter for dGPS location capture at Beltana. Thanks again to Tieneke for many discussions on all things research.

To my family and dear friends, as always. And Jane, for getting me back on the right track.

This thesis is dedicated to the memory of Jane Azevedo d. 9 May 2000
Abstract

The last decade has seen major advances in remote sensing technology, particularly in high-resolution satellite imagery and airborne laser scanning (ALS). Fundamental differences in data capture mean that new assessment techniques are required, particularly for vegetation structure and multi-temporal analysis. Here, high-resolution remote sensing tools are developed using a longwall mine subsidence impact assessment framework, based primarily on a scrubby forest-woodland setting on the Woronora Plateau, NSW Australia.

Linear regression and \(t \)-tests were used to compare vegetation structural metrics from field and ALS data, with ANOVA and post-hoc tests used to determine solar energy and moisture controls on vegetation variation at hillslope scale. Landscape stratification was based on insolation and topographic wetness surfaces derived from ALS-based digital elevation models (DEM). Image matching and linear regression was used to test 3D-method orthorectification accuracy for off-nadir QuickBird imagery using different-resolution DEM.

High resolution ALS-derived digital elevation models (DEM) allow pixel-accurate orthorectification of off-nadir imagery, a necessary precursor to multi-temporal image analysis. ALS-derived vegetation metrics correlate well with field data (canopy height: \(R^2 = 0.915; \ SE = 2.08 \ m; \ p < 0.01 \); and foliage projective cover: \(R^2 = 0.916; \ SE = 4.5\%; \ p < 0.01 \); and a significant though weaker correlation for canopy cover: \(R^2 \approx 0.5; \ SE \approx 16\%; \ p < 0.01 \)). Repeat survey indicates that individual tree mortality is detectable, and that height percentiles from the upper part of the canopy are robust, as are foliage cover and canopy cover. Foliage cover and crown cover are moderately well correlated (\(R^2 = 0.65; \ SE = 16\%; \ p < 0.001 \)). Statistically significant structural and spectral vegetation variations were quantified at hillslope scale. Foliage cover varies according to insolation and NDVI (normalised difference vegetation index) varies according to topographic wetness, demonstrating that different remote sensing metrics capture local vegetation variation according to the fundamental plant growth requirements of energy and water.

A particular application was developed for upland swamp assessment and monitoring; identified as a key mine-subsidence monitoring requirement for the Sydney Basin Southern Coalfield. Swamp boundaries can be derived from stratification of ALS canopy height models to tree-level accuracy (overall accuracy 98%), and multispectral image classification is suitable for swamp vegetation community monitoring.

The various techniques described, developed and evaluated also have more general ecological and environmental application for fine-grained environmental impact studies, and this study provides a warm-
temperate Australian context to studies predominately focussed on cool-temperate or boreal resource management applications.
TABLE OF CONTENTS

HIGH RESOLUTION REMOTE SENSING FOR NATIVE VEGETATION ASSESSMENT AND MONITORING: AN IMPACT ASSESSMENT APPROACH

Candidate’s Certification
Acknowledgements
Abstract

CHAPTER 1
High resolution remote sensing for native vegetation assessment and monitoring: an impact assessment approach
1 INTRODUCTION
1.1 Native vegetation assessment and monitoring
1.1.1 Background
1.1.2 Remote sensing
1.1.3 High spatial resolution imaging systems
1.1.4 Laser scanning
1.2 The impact assessment framework
2 AIMS AND OBJECTIVES
2.1 Longwall mine subsidence: components, criteria and indicators
2.1.1 Coal mining
2.1.2 Longwall mine subsidence
2.1.3 Subsidence mechanism
2.1.4 Subsidence fracture and hydraulics
2.1.5 Reported impacts
2.1.6 Groundwater
2.1.7 Native vegetation
2.2 Assessment framework: contingency and causality
2.3 Assessment framework: indicators and methodology
2.3.1 Indicator sensitivity
2.3.2 Data and techniques
2.3.3 Statistical validation
3 THESIS STRUCTURE

CHAPTER 2
Study areas
1 LOCATIONS
1.1 Dendrobium study area
1.1.1 Location and landuse
1.1.2 Landform, geology and hydrology
1.1.3 Climate
1.1.4 Vegetation
1.1.5 Fire
1.1.6 Disturbance
1.2 Beltana study area
1.2.1 Location, landuse and climate
1.2.2 Geology
1.2.3 Vegetation

CHAPTER 3
Operational factors for orthorectification of high resolution, off-nadir imagery

Chapter 4

Airborne laser scanning for vegetation structure quantification in a south east Australian scrubby forest-woodland

1. **Abstract** 47
2. **Introduction** 47
3. **Methods** 48
 3.1 Study area 48
 3.2 Sample areas 49
 3.3 Field measurements 50
 3.4 Remote sensing data 53
 3.5 ALS processing 54
 3.5.1 Surface modelling 54
 3.5.2 Forest metrics 56
 3.6 Statistical methods 56
4. **Results** 57
 4.1 DEM comparison 57
 4.1.2 Forest metrics 57
 4.1.3 Multi-temporal metric comparison 59
5. **Discussion** 60
 5.1.1 Forest metrics 60
 5.1.2 Question 1: to what extent do ALS vegetation metrics correlate with site-based observations? 62
 5.1.3 Question 2: are the ALS metrics replicable through repeat observation? 63

Chapter 5

High-resolution remote sensing of upland swamp boundary and vegetation for baseline mapping and monitoring

1. **Abstract** 67

Chapter 6

Landscape controls on structural variation in Eucalypt vegetation communities: Woronora Plateau, Australia

1. **Abstract** 85
2. **Introduction** 85
3. **Methods** 87
 3.1 Study area 87
3.2 Data 89
 3.2.1 Field data 89
 3.2.2 Imagery and ALS survey 89
3.3 Landscape position classification 90
3.4 Plot selection 91
3.5 Vegetation pattern analysis 91
3.6 Statistical methods 92

4 RESULTS 92
 4.1 Vegetation-landscape comparison 92
 4.2 Correlation – regression 95
 4.3 Spatial pattern – geostatistics 95

5 DISCUSSION 97
 5.1.1 Question 1: How does fine-scale vegetation structure vary with landscape position? 98
 5.1.2 Question 2: Can ALS and QuickBird data provide complementary assessment for a range of vegetation metrics? 98

CHAPTER 7 103

Discussion 103
 1.1 Indicators for further research 105
 1.2 Relevance to wider research 106

REFERENCES 109

LIST OF FIGURES

Figure 1 Horizontal layover ... 5
Figure 2 ALS scanning principles... 9
Figure 3 ALS-derived topographic information ... 10
Figure 4 Canopy height model .. 11
Figure 5 Longwall mining cross-section .. 14
Figure 6 Longwall mining, Beltana area ... 15
Figure 7 Subsidence profile .. 17
Figure 8 Subsidence modelling and subsidence profiles .. 17
Figure 9 Soil cracks and subsidence trough ... 19
Figure 10 Subsidence fracture zones and strain parameters .. 20
Figure 11 Impact framework contingency matrix .. 24
Figure 12 Swamp boundary mapping .. 27
Figure 13 Study areas ... 32
Figure 14 Dendrobium study area ... 33
Figure 15 Beltana study area ... 36
Figure 16 Study area ... 49
Figure 17 Example ALS surfaces at sample plot A3_020 ... 55
Figure 18 Canopy height profile examples .. 61
Figure 19 Study area ... 69
Figure 20 Typical swamp-woodland ecotone .. 71
Figure 21 Swamp boundary mapping from 1 m CHM stratification 76
Figure 22 Swamp classification and ecotone mapping .. 79
Figure 23 Variations in Wet Heath and vegetation cover 2006 – 2007 80
Figure 24 Location map ... 88
Figure 25 Topography and sample plots ... 91
Figure 26 Semivariance range plots for ALS height data ... 96
Figure 27 Vegetation response to energy and water availability (Scale bar 50m) 97

LIST OF TABLES

Table 1 Selected, commonly used satellite image systems. B = blue, G = green, R = red, NIR = near infrared, SWIR = short wave infrared, TIR = thermal infrared (Jensen 2007). .. 3
Table 2 Recent studies using high spatial resolution imagery ... 6
Table 3 Temporal components of the analytical framework .. 23
Table 4 Spatial components of the analytical framework .. 23
Table 5 Indicator analysis parameters .. 28
Table 6 QuickBird image metadata ... 39
Table 7 Orthorectification precision ... 42
Table 8 Orthorectification accuracy .. 42
Table 9 Vegetation plot attributes ... 51
Table 10 Zig-zag transect attributes .. 52
Table 11 ALS metadata ... 53
Table 12 T₁-T₂ elevation difference statistics obtained by DEM subtraction .. 57
Table 13 Canopy height regression ... 58
Table 14 fCover regression .. 58
Table 15 CHM height correspondence for field canopy cover ... 59
Table 16 Canopy cover regression (9 m stratification) .. 59
Table 17 Height percentile comparison T₁- T₂ ... 59
Table 18 fCover comparison T₁- T₂ .. 60
Table 19 CHM stratification comparison T₁- T₂ .. 60
Table 20 Swamp boundary accuracy assessment ... 76
Table 21 Vegetation class accuracy assessment .. 77
Table 22 Vegetation class variation 2006 - 2007 .. 78
Table 23 Plot means, standard error and ANOVA significance α < 0.05. .. 94
Table 24 Between-plot correlation of QuickBird NDVI versus ALS-derived metrics 95
Table 25 Correlation of NDVI versus CHM semivariance ranges .. 97
Table 26 Vegetation condition indicators in eastern Australia ... 104
Table 27 A qualitative evaluation of indicator utility ... 105