Chapter 3 Experimental Study

The study presented in this thesi; was designed to investigate the effects of the
presence or absence of protozoa in the rumen, and of\methionine supplement

when protozoa are present in the rumen, on ruminal metabolism and microbial

production of LCFA.

3.1 Materials

3.1.1 Experimental animn als

Twelve first-cross Merino x Border Leicester wethers (2 years old) with body
weights of between 35 and 44 kg were used in this study. All animals were

surgically prepared with rumina. and abomasal cannulas at the commencement

of the study.

The ruminal cannula bung was equipped with 2 stainless-steel probes whose
inner ends were directed away from one another (Figure 3.1). To the tip of the
probe from which ruminal fluid was ccllected, a small metal cage covered with
gauze was attached and directed to the ventral sac of the rumen. The second
probe used for the administration of solutions (CrEDTA and, “C-labelled
acetate) was directed to the dors.il position in order to prevent a direct sampling

of the infused solutions.
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3.1.2 Diet

All sheep were offered a mix of 4)0 g of oaten chaff + 400 g of lucerne chaff per
day (air dry). The oaten chaff was previously spray treated with urea (2 %,

w/w) and a mineral mix (2.8 %, w/w) containing the following ingredients:
dicalcium phosphate (45.5 %), sodium sulphate (36.4 %), sodium chloride (9.1 %)

and trace minerals (Pfizer; 9.1 %).
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Figure 3.1. Ruminal cannula with its 2 stainless-steel probes. Note that probe
carrying infusion solution is directed dorsally, sampling probe is ventrally
directed. (Thanl:s to Jenny Hegarty for artwork.)
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3.2 Methods

3.2.1 Defaunation and refaunation procedures

All sheep were initially defaunited using the detergent alkanate 3SL3 (ICI
Australia Ltd.; active ingrecient sodium lauryl diethoxy sulphate).
Approximately 120 ml of alkanate solution (10% w/v) was administered into the
rumen through the ruminal cannt la on each of 4 consecutive days. Feed was not
offered during the treatment, but clean water was freely available. Sheep were
allowed at least 2 weeks to recover from treatment prior to the commencement

of study.

Eight sheep were refaunated by drenching with 60 ml of ruminal fluid from
additional mefaunated sheep hecld on similar feed. This drenching was
performed on each of 3 consecutive days. For refaunated animals, ruminal fluid
was additionally transferred froin one animal to another in order to unify the

rumen environments.
3.2.2 Management of animals

Ruminal fluid of defaunated arimals was checked to ensure the absence of
protozoa at the commencement ¢ nd corapletion of the experiment. Defaunated
and refaunated groups were hot sed in separate rooms in individual metabolic
crates. The rooms were controlled at a constant temperature of 22 °C and were
well ventilated. Animals were alapted to the new environment for at least 7 d

before commencement of the stuc.y.
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3.2.3 Feeding

Oaten chaff impregnated with wea and minerals (400 g) plus 400 g of lucerne
chaff was offered as the daily rat on to each sheep. The ration was delivered in
24 equal portions at hourly intervals via an overhead automatic-feeding
machine. The oaten and lucerne chaffs were evenly mixed during placement on
the belt of the machine. Drinkiny; water was available ad libitum throughout the
experiment. Animals were allow ed to become accustomed to the feed provided
daily, then twice daily over several wezks, and then hourly for at least 1 week

each before the commencement of the study.

3.2.4 Administration of CrEDTA solution

3.2.4.1 Intraruminal infusio 1 of the solution

To measure the flow of digesta 1o the abomasum, the double marker method of
Faichney (1975) was employed. Chromium ethylenediamine tetra-acetic acid
(CrEDTA) complex and dietary acid-insoluble ash (AIA) were used to measure
the flow of liquid- and particle-digesta, respectively. A solution containing
CrEDTA complex (120 ugCr/m ) was continuously infused into the rumen via
the stainless-steel probe with tlie tip directed dorsally. Enriched >N labelled
ammonium sulphate was also inicluded in the infusate but analysis arising from
this is outside the scope of ths thesis. The CrEDTA complex solution was
prepared according to the method of Binnerts et al. (1968).
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The continuous infusion was made intraruminally at a constant, measured rate
(approximately 0.4 ml/min) by a peristaltic pump. Infusion solution was
delivered through silastic tubing (1.5 mm internal diameter) by the peristaltic
pump to the rumen probe. Infusi>n rate was calculated from the change in mass
of the reservoir containing the CrEDTA infusate over periods of 3 - 8 h.
Infusions were made for 5 d wita samples being collected on days 3, 4 and 5,
and ruminal fluid being further sampled over day 6. Samples of ruminal fluid,
ruminal and abomasal digesta were collected before and during the infusion.
Samples of ruminal fluid were also collected after the infusion to estimate rumen
volume, t;/> and ruminal liquid outflow rate of defaunated sheep. Post-infusion
samples were not collected for refaunated sheep, so a single injection of CrEDTA

was made in this group (3.2.4.2).

3.2.4.2 Intraruminal injectio 1 of the solution

An intraruminal injection of CrEDTA (291 mgCr/ml) was made in the
refaunated sheep because inadequate samples were collected after the first
infusion period. To ascertain the kinetics of ruminal liquid, the CrEDTA and >N
solution were administered by a single intraruminal injection, 3 d after the intra-
ruminal infusion of the solution. The solution was taken into a syringe, weighed
and injected via the stainless-steel probe. The injectate was directed to six sites
within the rumen and was wasied in with 25 ml of warm water, the empty

syringe was reweighed and the niass of injected dose calculated.

3.2.5 Intraruminal infusion of 4C-labelled acetate

Production rate of total and individual VFA (acetate, propionate and butyrate) in

the rumen were determined by a continuous infusion of 1-C-acetate into the
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rumen according to the method o Weller et al. (1967). A stock solution of 1-1C-
acetate was prepared by adding ibout 1 mCi of the 1C-acetic acid sodium salt
(Dupont, Boston, USA) to a base solution containing 10 ml of milli Q water, 100
mg of Na-acetate and 2 drops o1 1T M NaOH. A subsample (4 ml containing
0.364 mCi 1-C-acetate) of stock :olution was taken into 1.94 1 of milli Q water
and made alkaline with 1 ml of 1 VI NaCH to be used as the infusion solution.

Ruminal fluid was taken from eich sheep before the commencement of tracer
infusion and analysed to determine background level of radioactivity. The 1-
MC-acetate solution was infused ntraruminally for 9 h and a series of ruminal

fluid samples were collected over the last 6 h of the infusion (3.2.6.1).

3.2.6 Sampling procedures

3.2.6.1 Ruminal fluid

Samples of ruminal fluid were always taken prior to the intraruminal infusion
and injection of the tracer solutio 1s to determine the background level of Cr and
H4C. Beginning on day 4 of the ccntinuous, intraruminal infusion of the CrEDTA
solution (3.2.4.1), seven ruminal fluid samples were collected representing 3
hour intervals over the followirg 48 hewmes. Approximately 13 ruminal fluid
samples were taken over 24 h aftzr the infusion stopped (defaunated sheep) and
following the single injection of the solution (refaunated sheep) (3.2.4.2), with
samples being taken at 60 min intervals in the first 4 h. During the last 6 h of the
9 h continuous, intraruminal iifusioni of the 1-14C-labelled acetate solution

(3.2.5), 7 ruminal fluid samples vere collected at intervals of 50 min to be used

for VFA analysis (3.2.8.4).
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Ruminal fluid was withdrawn through the ventrally directed rumen probe into a
20 ml syringe. The first 10 ml was rejected and then 15 ml was flushed back into
the rumen 2-3 times before the fluid sample was finally taken. Ruminal fluid
required for the analysis of Cr (3.2.8.2), NH3 (3.2.8.3) and VFA (3.2.8.4) was
transferred into a 25 ml McCartney bottle containing 4 drops of 18 M H>SO; and
stored at —18 °C prior to analysis. For the enumeration of protozoa (3.2.7),
ruminal fluid was placed into a vial containing 16 ml of a solution of

formaldehyde in physiological saline and stored at room temperature.

3.2.6.2 Abomasal digesta

Samples of abomasal digesta we -e collected during days 4 and 5 of the intra-
ruminal infusion of the CrEDTA :olution. Eight abomasal digesta samples were
collected over this period (at 1( am., 1 p.m., 4 pm. 7 p.m., 10 p.m., 1 am., 7
am. and 4 a.m). This ensured liurnal variation in digesta flow did not bias

results.

Prior to the collection, the abomsal digesta trapped in the cannula stem were
scraped out and discarded. A sample of abomasal digesta was collected by
placing a bottle underneath the opened abomasal cannula. Abomasal digesta
were then divided into 2 portiors. The first portion was centrifuged (9,500 g x
15 m) to obtain “fluid-rich” end “particle-rich” fractions, while a second
untreated portion of about equal weight was kept “as sampled”. All of these

fractions were stored at-18 °C.

3.2.6.4 Urine

Urine was collected daily for 7 consecutive days into a tared bucket (changed

daily) containing 11 of water and 20 ml of 9 M H,504. A subsample of the daily
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urine excretion of individual sheep (10% of total volume excreted) was
transferred into a small plastic bottle and stored at — 18 °C. The subsamples of

urine from each sheep were thawed and bulked for the analysis of allantoin

(3.2.8.6).

3.2.7 Counting of rumen protozoa

The sample of ruminal fluid (3.2.5.1) was thoroughly shaken and pipetted onto a
counting chamber (Hawksley, Sissex, England) of 0.2 mm depth and covered
with a double thickness coversl de. Protozoa were counted on 48 cells of the
counting chamber. Protozoa 1ving on the triple lines of the chamber were
included in the counting. Coun’s were made with the aid of a light microscope

(x 100 magnification).

3.2.8 Laboratory analysis

3.2.8.1 Dry matter (DM) and acid-insoluble ash (AIA)

Samples of ground feed (1 mm sieve), abomasal digesta and particles were
weighed into cleaned, tared filt:r crucibles (porosity 4). To determine their DM

(dry-matter) contents, samples “vere dried at a constant temperature of 80 °C for

48 h.

The AIA (acid-insoluble ash) content of DM was determined according to the
method of Choct and Annison (1992). Samples of DM were burnt in an ashing

oven at a temperature of 480 °C for at least 8 h. The temperature was taken up



Experimental Study 46

gradually (i.e. to 150 °C in the first hour, to 300 °C in the second hour and then to
480 °C). The sample was then trasferred into an evaporating dish filled with 4
M HCI, until the sample was wetted from underneath. Three-quarters of the
crucible was filled with the acid. The evaporating dish was placed on a hot plate
and boiled gently for 15 min. Af er cooling, the crucible was taken out and the
acid containing soluble ash was removed by suction. The sample was rinsed
with the acid and distilled H,O. 7'he sample was dried in an oven at 108 °C for 2
h and transferred into the ashiny oven to repeat the procedure of ashing and
removing the acid-soluble ash. The sample was dried at 108 °C for 6 h and
weighed.

3.2.8.2 Chromium

Ruminal and abomasal fluid, as well as mixture of 2 g of abomasal particle-rich
samples and 8 g of milli Q (ext-emely pure distilled) water, were centrifuged
(9,500 g x 30 min) to obtain supe-natants. The concentration of chromium in the
supernatants was determined “vith an atomic absorption spectrophotometer
(Perkin-Elmer, Connecticut, US.\; Model 360). Stock standard solution (1000
ugCr/ml) was prepared from K, ZrO; (Binnerts et al., 1968).

3.2.8.3 Ruminal ammonia

The concentration of NH3 in ruminal fluid (3.2.6.1) was determined by steam
distillation. The ruminal fluid was centrifuged (14,000 g x 15 min) and pipetted
(5 ml) into a distillation flask. £. few drops of universal indicator were added as
well as anti-foaming agent. This was rnade alkaline by adding 5 ml of saturated
Na-tetraborate buffer (pH 9). The sample was distilled immediately for
approximately 3.5 min, and 30 - 40 ml of distillate was collected into a beaker

containing 3 ml of 0.05 M H:50; and titrated to pH 5 with 0.025 M NaOH
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(Autoburette ABU12, Radiome:er, Copenhagen, Denmark). Ammonia
concentration was adjusted for recovery of NHs from an (NH4),SO, standard.

Recovery was typically 99 %.

3.2.8.4 Volatile fatty acids (VFA)

The VFA concentration and proportions of acetic, propionic, butyric, isobutyric,
isovaleric and valeric acids were determined in the centrifuged ruminal fluid
with a gas liquid chromatograp1 (Model 427, Packard Instrument Co. USA)
according to the method of Erw:.n et al. (1961). Isocaproic acid as an internal
standard was added to 0.7 ml of tie sample, which was then shaken and injected
(1.5 4) into the chromatograpl. A recording data processor (Model 604,
Packard Instrument Co., USA) was connected to the chromatograph and

integrated the area of eluted peaks.

3.2.8.5 Scintillation countingr

A ruminal fluid sample was assayed for #C radioactivity in a Packard Tri-Carb,
Model 3255 (Packard Instrumen: Company, Illinois, USA). Ruminal fluid (0.2
ml) and samples of diluted infusion solution (0.2 ml, dilution factor of 50) were
pipetted into scintillation vials. To each vial, 0.8 ml of milli Q water and 10 ml of
liquid scintillation cocktail (LSC: toluenz/Triton X [9:4], 0.2% [w/v] POPOP and
0.4% PPO) were added. The saniple was shaken gently and allowed to stand at

room temperature for at least 24 1 before radioactivity was measured.

3.2.8.6 Urinary allantoin

The colorimetric method of allantoin determination of Young and Conway,

modified by Chen and Gomez (' 992), was applied in this study. Small volumes
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(0.5 ml) of diluted urine sample (dilution factor of 40), standard and blank
(distilled water) were pipetted info 15 m] tubes, to which were added 2.5 ml of
distilled water and 0.5 ml of NaOH (0.5 M). After vortexing, this mixture was
placed in a boiling water bath for 7 min and then cooled in iced water. HCI (0.5
M, 0.5 ml) was added, so pH was within the range of 2-3. Phenylhydrazine-HCI
solution (0.023 M, freshly prepared, 0.5 ml) was added, and transferred again to
the boiling water for 7 min after sortexing. Tubes were immersed immediately
in an alcohol/ice bath for several minutes. To each tube, 1.5 ml of concentrated
HCl was added, followed by 0. ml of 0.05 M potassium ferricyanide (freshly
prepared). The potassium ferricyanide was added to tubes at 20 s intervals, until
all tubes were treated. Samples were mixed and their absorbance was read at
520 nm after 20 min. The sample; were read in turn at intervals of 20 s to ensure

equal time had been allowed for colour development in each tube.

3.2.8.7 Long chain fatty acias (LCFA)

a. Extraction

The method of Viviani et al. (1966) was used to isolate the total LCFA from feed
and digesta (Figure 3.2), whicl. were then quantified by titration (Dole and
Meinertz, 1960). Because these methods had not been previously used in this
laboratory, it was required I set up the apparatus (Figure 3.3) and evaluate the
procedures. The method was chosen because:

® it measures total (both free and bound) LCFA;

e it uses low temperatures ani an aatioxidant to avoid modifying the LCFA

profile;

e it excludes non-LCFA lipic. components which are of no benefit to the

animal;
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Figure 3.2 Procedure for extrac:ing total LCFA from diet and abomasal digesta
(Viviani et al., 1966). Subsamples of final extract were titrated in triplicate.
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e it provides an extract realy for methylation and analysis by gas

chromatograph.

No other method which could provide all these benefits was found after

extensive literature review. The grinciple of the method is as follows:

1) LCFA are saponified with methanolic-KOH;

2) LCFA soaps are then trapped in an aqueous phase while unsaponifiable
materials are removed in the r on-polar phase;

3) pHis then reduced to liberate free LCFA;

4) LCFA are absorbed back into a new non-polar solvent leaving other aqueous
impurities behind;

5) The quantity of LCFA is deter nined by titration.

Samples were weighed (0.75 g ‘or abomasal digesta and particles, 0.25 g for
feed) into wide-neck McCartney bottles. Methanolic-KOH containing
hydroquinone (10 ml of 10 M KOH, 25 ml of methanol, 0.05 g of hydroquinone,
15 ml milli Q water) was added: 3.75 ml for digesta samples and 4.75 ml for feed

samples. This mixture was incubated in an oven with a constant temperature of

30 °C for 3 days.

To each bottle, 10 ml of milli Q vater was added, followed by the same volume
of freshly distilled petroleum sgirit (B.P. 40 - 60 °C). The mixture was shaken
and allowed to stand and forn two layers with a sharp separation. The
petroleum spirit (the upper layer) containing unsaponifiable materials was
removed by mild suction. Tlis removal of unsaponifiable substances was
repeated twice with the same volume of petroleum spirit (10 ml). The water
phase was acidified by addition of 1.3 ml of 9 M HaSOy4 and 10 ml of petroleum
spirit was added to force LCFA from the water phase into fresh non-polar

solvent. The mixture was shaken thoroughly, and the petroleum phase
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Figure 3.3 Apparatus used for the titration of total LCFA in diet and abomasal
digesta. Note: N; stream bubbling through sample to exclude atmospheric CO..
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containing extracted LCFA was removed under suction into another clean
McCartney bottle. This procedure of extraction was repeated 5 times with the
same volume of petroleum spir:t (10 ml). The volume of petroleum in the
collecting McCartney bottle was reducec through evaporation with nitrogen gas
after each extraction to allow th= addition of all of the solvent rinses in one

bottle.

The petroleum spirit extract vras washed twice with milli Q water and
evaporated to dryness with nitrogen gas. Methanol (8 ml) was added to the

sample, and this was stored under nitrogen at - 18 °C prior to titration.

b. Titration

Three ml of the sample in methanol were transferred into a conical centrifuge
tube for titration with CO,-free INaOH (0.005 M). Bromothymol blue (0.02% in
ethanol) was used as indicator 2 drops). Nitrogen gas was delivered to the
bottom of the tube during titration to expel CO, (Figure 3.3). Palmitic acid
solution (0.3 g crystallised palmitic acicl in 100 ml of methanol) was used as the
standard. Linearity of the titration over a range of 0 - 60 gmoles palmitic acid is

shown in Figure 3.4.
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Figure 3.4 Titration of peImitic acid standard with 0.005 M NaOH
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3.2.11 Mathematical procedures

3.2.11.1 Calculations

a. Kinetics of rumen fluid

Downes and McDonald (1964) found that under steady-state conditions, the
dilution of Cr after a single intraiuminal injection of CrEDTA will be first order,

and experimental data could be vvell fitted by the following equation:

A= Acexp

where .\(= Cr concentration at time t
A,= Cr concentration at time zero
< = exponent or rate constant (d-!)

= slope of the regression In [Cr] vs time

Dose injected (ug Cr)

il

Rumen volume (1)

Ao (ug /1)
Outflow rate = Rumen volume x k
Half-time In (0.5) 0.693
of rumen water = =
(t1/2), min -k -k

b. Production rates of VFA

Production rates of total and in lividual VFA (acetate, propionate and butyrate)
« @re calculated according to the inethod of Weller et al. (1967). It is assumed that
acetate, propionate and butyrat> are produced in the proportion in which thev

exist in the ruminal fluid.
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Total VFA Qx R
production rat:= P = ————— x 1440
(mmoles/d) Plateau SR
where Q = Iafusior rate (g/min)
R = Disintegration per min/g infusate
SR = Specific radioactivity of sample (DPM/mmol
total VFA)
Individual VFA
production rate = P x Molar proportion of individual VFA

(mmoles/d)

The calculation of ATP production by cell-fermenting microbes was made by
assuming that fermentation to produce 1 mole of acetate, propionate and

butyrate generates 2, 3 or 2 mole; of ATP, respectively (Czerkawski, 1986).

¢. Outflow of microbial cells from the rumen based on urinary allantoin
excretion

The method for predicting microbial cell outflow from the rumen from urinary
allantoin excretion of Balcells et al. (1951) was applied. These authors suggested
the following equation for the relationship between urinary allantoin excretion

(y, tmol/kg®7 BW) and purine nfused duodenally (x, gmol/kg®7> BW):

y = 0.8015x - 43.7

The microbial N into the intestine was calculated on the assumptions that nucleic
acids N make up 15.2 % of the riicrobial N (Storm and Drskov, 1983) and rumen
bacteria contain 0.15 g N ani 1.10 mmol purines/g (Balcells et al., 1991).
Microbial-cell outflow (g DM/c) was then calculated assuming that cells contain

77.7 g N/kg DM cells (Storm ar d Orskov, 1983).
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d. Estimation of efficiency of cell production

The efficiency of cell producticn was estimated as g cell DM/mole ATP
generated (Yarp) and g cell DM/ kg DM apparently and truly digested in the
rumen (g/kg DMADR and g/ky DMTDR, respectively). The DMADR was
calculated as the difference betw2en dietary DM intake and DM flow through
the abomasum. The DMTDR was calculated as the difference between dietary
DM intake and abomasal DM flov/ corrected for cell DM flow (3.2.11.1c).

e. Calculation of abomasal digjesta flow

The flow of digesta to abomasum was czlculated according to the double marker
method of Faichney (1975). Die ary AJA was used as particle digesta marker,

while Cr was used as a liquid flov marker.

3.2.11.2 Statistical Analysis

All data collected were analysed with analysis of variance using Minitab
spreadsheets. A one way analysi: of variance was used initially to test for effects
of methionine (in the refaunated group). Where no effect was found, data for all
refaunated sheep were pooled and a one way analysis of variance was made to

compare defaunated and refauneted sheep.
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4.1 Results

There were initially 8 animals in the refaunated group at the commencement of
study, 4 of which were inlended to receive methionine supplement.
Unfortunately, 2 animals (1 of the methionine-supplemented and 1 of the
methionine-unsupplemented grcup) began refusing feed and were removed
from the experiment prior to dijesta-flow studies being made. An additional
animal from each group was exluded prior to the intraruminal injection of
CrEDTA, infusion of 1-"C-labelled acetate and the collection of urine samples.
Thus, in most cases, comparison >f refaunated sheep with or without methionine
supplement is based on only 2 +heep per cell. Comparison of defaunated and

refaunated sheep is based on 4 sheep per cell.
4.1.1 Rumen environments and fermentation

Methionine supplementation dic not significantly affect the rumen volume, half-
time of rumen liquid (ti/2) or th2 outflow of rumen liquid (P > 0.05; Table 4.1).
Rumen volume was, however, significantly larger in protozoa-free sheep which
also tended (P = 0.15) to have ¢ greater rate of flow of liquid from the rumen.
On the other hand, ruminal ammonia concentration tended to be higher in the

refaunated group (P = 0.07).

Neither protozoa nor methionine affected the concentration or production of
total VFA in the rumen (Table L.2). There was, however, a significantly higher

molar proportion of acetate (P < 0.01) and a lower proportion of propionate (P <
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< 0.05) in defaunated sheep. The acetate:propionate ratio was also significantly
higher in defaunated animals (P <(.05). The molar proportion of other acids was not

modified by methionine or protozoa.
4.1.2 Microbial-cell production and efficiency

The apparent efficiency of microbial growth in the rumen was unaffected by the
presence of methionine or of protoz>a. This was true when efficiency was expressed in
terms of YATP, g cells/kg DMADF. or g cells’kg DMTDR.
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4.1.3 The flow of nutrients to abomasum

As shown in Table 4.4, the apparent digestibility of dry matter in the rumen
(DMADR) was not altered by methionine supplementation, but was significantly
higher in refaunated comparec with defaunated sheep (P < 0.05). The
concentrations of total LCFA in the DM of abomasal digesta as sampled and the
particle-phase of abomasal cigesta were not affected by methionine
supplementation. The concentration of total LCFA in the DM of abomasal
digesta as sampled also did not differ (P > 0.05) between defaunated and
refaunated animals. The presencz of protozoa in the rumen, however, tended to
increase the concentration of tota LCFA in particle-phase of abomasal digesta (P
< 0.1). With the exception of two animals (nos. 6 and 10), the concentration of
total LCFA in digesta as sampled was higher than in the particle-phase of
abomasal digesta, regardless of methionine supplementation and faunation

status of the rumen.

The abomasal flow of DM (g/d} was s gnificantly greater in refaunated than in
defaunated animals (P < 0.05; Table 4.4). Supplementation of methionine
reduced the total flow of LCFA (P < 0.05) and the outflow of microbial LCFA
produced in the rumen. On tte other hand, the presence of protozoa in the
rumen increased the daily flow of LCFA and their production in the rumen (P <

0.01 and < 0.05, respectively).
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Table 4.2  Volatile fatty acid (VFA) concer trations, proportions and production (based on 1-14C-acetate
infusion) of defaunated and refaunated shee > consurr.ing 400 g of oaten chaff + 400 g of lucerne chaft.

Parameters Defaunated Refaunated Statistical effects
-M +M M P
Sheep No. 1 2 3 4 7 8 9 10
Total VFA 929 834 952 9.5 107.1 647 76.1 64.5 ns ns
Concentration
(mMol/1)
Molar Proportions
(%)
Acetate 73.7 751 75.7 7H.5 71.3  71.3 71.8 69.5 ns <0.01
Propionate 181 151 13.7 1.6 189 18.6 16.9 20.0 ns <0.05
Butyrate 61 55 73 "6 72 70 7.9 7.0 ns ns
Isobutyrate 05 26 13 3 0.7 11 1.2 1.3 ns ns
Isovalerate 0.8 0.7 1.2 .0 1.0 1.1 1.1 1.1 ns ns
Valerate 0.8 1.1 0.8 ).9 0.9 1.0 1.1 1.2 ns ns
C2: C3 ratio 41 500 55 5.5 38 38 4.2 3.5 ns <0.05
VFA Production 3.2 3.4 3.3 3.9 39 3.0 2.5 2.4 ns ns
(mol/d)

ns =not significant
M = methionine main effect
P = protozoa main effect
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4.2 - Discussion

4.2.1 Rumen environments and fermentation

The tendency for the concentrition of ruminal ammonia to be lower in
defaunated sheep than refaunatel sheep in the present study is consistent with
many reports as reviewed by Williams and Coleman (1992). Protozoa have a
range of deaminase enzymes ‘Williams, 1989) and they excrete ammonia
resulting from deaminating the ingested bacterial proteins and nucleic acids

(Smith and McAllan, 1970).

Volatile fatty acids are produced as end-products of ruminal fermentation, and
they disappear from the rumen through absorption and outflow (France and
Siddon, 1993). The balance betiveen the rate of VFA production in the rumen
and the rate of its loss from the rumen determines the concentration of VFA at
any given time. The loss of trans-ruminal VFA through absorption is a pH-
dependent prosess (Bergman, 1990; France and Siddon, 1993), but this is unlikely
to have confounded estimates of VFA production in this study since ruminal pH

was similar in defaunated and r¢faunated sheep (mean 6.65).

Over a wide range of diets, refaunated animals have been found to have higher
ruminal concentrations of VFA compared with defaunated animals (Veira, 1986;
Fadie and Gill, 1971; Ushida ef ¢I., 198€; Bird, 1982), while this study found that
the concentration of VFA was not significantly different between defaunated and
refaunated animals. Defaunatel animals had a larger rumen volume, however,
and would therefore have a la ‘ger total quantity of VFA in the rumen at any
time. This is consistent with ‘he greater apparent digestibility of DM in the
defaunated rumen, but is inconsistent with the apparent lack of effect on VFA

production rate estimated frcm 1-C labelled acetate. It is possible that
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production rates estimated from 1-“C labelled acetate. It is possible that
differences in acetate-butyrate interconversion between defaunated and
refaunated sheep existed (Leng, 1970) which would have caused errors in
isotopic estimates of VFA production based on a single acid. The lack of effect of
protozoa on ruminal VFA concentration may also have resulted from the
tendency for defaunated sheep t> pass more water out of the rumen than did

refaunated sheep, therefore losing more VFA in these digesta.

The main VFA produced by protozoa are acetate and butyrate, while propionate
is only produced in trace amount; (Hungate, 1966). However, defaunation is not
always associated with a decrease in production or molar proportion of acetate
or butyrate and an increase in that of propionate (Williams and Coleman, 1992).
The pattern of rumen fermentation in defaunated and refaunated animals can
not directly be attributed to the effect of protozoa per se, because there may be a
difference in population betweer the groups. The lower acetate proportion and
acetate:propionate ratio, and th2 higher propionate proportion of refaunated
animals in this study is in agreenient with Bird (1982). In his review, Bird (1982)
reported that approximately 75 % of the studies where sheep were fed on a
roughage:concentrate-based diet, there were lower acetate and higher
propionate proportions in defauated animals. These indicate that defaunation
may shift the population of run inal microbes towards more acetate-producing

and less propionate-producing svecies.
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4.2.2 Purine flow and calculated microbial efficiency

4.2.2.1 Effect of defaunation

The similar daily abomasal flow >f purine between defaunated and refaunated

animals in this study (calculated f -om the urinary excretion of allantoin) is not in

agreement with published studies which constantly report high microbial-

protein outflow from defaunated animals (Williams and Coleman, 1992). This

calls into question the accuracy of allantoin flux as a marker of microbial-protein

flow. This study has the followi\g features which lead the author to expect an

increased microbial-protein flow n defaunated sheep should have occurred:

1)

2)

3)

For the same dry matter intalie, more dry matter was apparently fermented
in the defaunated rumen than in the refaunated rumen. This means a greater
total mass of fermented orgaric matter was converted to cells and VFA in the
defaunated rumen.

There was no effect of protozoa on total VFA production or VFA
concentration in the rumen (although the total pool of VFA was greater in the
defaunated rumen). It is reesonable to expect the increased organic matter
available from fermentation 'vould therefore have been directed into cells or
methane.

There was no effect of proozoa on methane in this studv (data are not
included, intellectual proper:y of another researcher). In consequence, it is
reasonable the extra fermented organic matter should have appeared as

microbial cells.

While urinary allantoin excretio 1 has routinely been used as a marker of protein

flow, it is possible that the reletive breakdown of microbial protein compared
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with nucleic acid, or the relative :xcretion of allantoin relative to other derivatives
(xanthine, hypoxanthine and uric acid) is changed in the absence of protozoa. These
possibilities could bias the estimate:. and invalidate the conclusion. This will be tested
by comparison of purine-based estimates of digesta flow with estimates based on "N
enrichment of microbes. This conparison was unable to be completed in the time

available.

Another factor which may have lec to this unexpected result is that the lower ruminal
liquid flow and therefore outflow of liquid-phase bacteria in refaunated sheep is
compensated by the higher flow cf particle-phase bacteria so that there was similar
abomasal flow of purine between tte two groups. The nucleic acid content of particle-
phase bacteria (g/100 g DM) is lower than that of liquid-phase bacteria (6 vs 5; Merry
and McAllan, 1983).

4.2.2.2 Effect of methionine

This study shows that methionine nietabolism in the rumen may not have an important

effect on the overall ruminal enviro iment and fermentation in the presence of protozoa.
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Methionine presented in the rume 1 may be degraded to yield H:S, or absorbed
passively by ruminal microbes and used as such for protein synthesis, or
demethiolated producing CH;SH (Hegarty, 1989). Therefore methionine is a
source of sulphur as well as nilrogen for ruminal microbes. Deficiency in
sulphur may reduce the efficien:y of microbial growth (Kandylis and Bray,
1987), but this is unlikely to be the cause of lower microbial efficiency (g/kg
DMADR) for methionine-unsupp'emented animals in this study in light of the
high protein content of the diet. [n terms of nitrogen, studies have shown that
providing a mixture of amino «cids as a nitrogen source results in higher
microbial growth and efficiency than when NH; alone is provided (Maeng et al.,
1976; 1989). The effect of individual amino acids on the microbial growth and

efficiency, however, is poorly doc imented.

4.2.3 The abomasal flow of total LCFA

Microbial lipids synthesised in the rumen contribute to the post-ruminal
concentration and flow of LCFA (Harfoot, 1981). The contribution of the
animal’s own lipids rather than microbial lipids to the net gain in LCFA flow

across the rumen is negligible (Noble, 1981).

Previous studies of rumen lipid production have frequently been of limited use
because the determination of lipid has included non-LCFA fractions and
excluded much of the bound microbial LCFA. Microbial lipids contain some
LCFA which are in an unesterified form (ULCFA), either free and fully
protonated or ionic and so b>und to the cationic sites of protein or of
carbohydrate molecules (O'Leary, 196Z; Viviani et al., 1966). Other microbial
LCFA are present in an esterifiec form (ELCFA). Owing to the acidic conditions
in the abomasum (pH 2.00 to 2 5), however, there is no ionic form of ULCFA



Results and Discussion 69

present in abomasal digesta (Bauchart, 1993). Even if ULCFA-
proteins/carbohydrate complexes were present, all LCFA would have been
extracted in the LCFA extraction procedure employed in this study. Viviani et
al. (1966) found that the recovery of the total ruminal LCFA extracted by this
procedure was the same as the su n of the ELCFA plus free and bound ULCFA
in microbes when the esterified anc unesterified forms were extracted

individually.

This study clearly supports previous reports that the amounts of total LCFA
leaving the rumen are generally higher than those consumed by animals in the
diet (e.g. Sutton et al., 1970; Bickerstaffe et al., 1972; Hogan et al., 1972). Total
LCFA flowing out from the rumen consist of dietary LCFA which are adsorbed
onto particulate matter and microbial LCFA derived from the incorporation of
dietary LCFA and de novo synthzsis. When the amount of LCFA ingested by
animals is subtracted from the total LCFA flowing out from the rumen, the value
obtained can be interpreted as the quantity of total LCFA derived from de novo
synthesis by ruminal microbes. In making this calculation, it is assumed that no
LCFA are catabolised in the runen (Bickerstaffe et al., 1972). In this study,
approximately 40 % of the total LCFA available for absorption by the animal

were of microbial origin.

4.2.3.1 Effect of defaunation

Bacterial pool size and amino a:id outflow are generally higher in defaunated
compared with refaunated animals (W illiams and Coleman, 1992). However, it
does not follow that a greater LCFA outflow will occur in defaunated ruminants.
The full protozoal protein mass ‘s not available for post-ruminal digestion due to
sequestration of protozoa in the rumen (Coleman, 1989). Indeed, the flow rate of

protozoa is only 20 - 40 % of that of liquid (Williams and Coleman, 1992),
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indicating many protozoa are rotained and lysed in the rumen. There is,
however, a fundamental differen e in the ruminal metabolism of protein and of
LCFA; this being that protein is degraded within the rumen (mainly by
protozoa) but LCFA are not (Bickozrstaffe et al., 1972). Consequently, an effect of
protozoa on LCFA outflow will bi: seen only if they synthesise LCFA to a greater
or less extent than the bacteria tt ey replace. Protozoal predation of bacteria in
the rumen per se will not reduce I.CFA outflow as it does for amino acid flow for

which ruminal deamination is possible.

The finding that protozoa in the rumen significantly increased the ruminal LCFA
production and the daily flow of total LCFA to the abomasum indicates a greater
de novo synthesis of LCFA in protozoa than in the bacteria they replace. This is
expected considering that protozoa contain more lipid than do bacteria, and up

to 75 % of microbial lipid in the rumen is protozoal in origin (Katz and Keeney,

1969; Keeney, 1970).

In addition to the possible contribution of protozoal cell lipid to the higher flow
of LCFA in refaunated animals, some protozoal LCFA may also flow out from
the rumen unbound to the protozoal cells. If protozoal cells are lysed in the
rumen, their lipids as well as ttose of engulfed bacteria will be released to the
medium. The released lipid will be hydrolysed and the products of hydrolysis
(ULCFA) will be taken up by the existing microbes or alternatively will be

adsorbed onto particulate matter which flows out from the rumen.
4.2.3.2 Effect of methionine

The mode of action of methioiine or methionine hydroxy analog (MHA) to
affect the synthesis of LCFA or lipids by microbes has been previously studied.

In vitro study with non-rumiial bacteria (O'Leary, 1959) showed that the
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labelled carbon in the methyl group of methionine was incorporated mostly into
an “unknown compound”, which was later found by the author to be a
cyclopropane fatty acid (O'Leary, 1962). While the presence of this LCFA in
ruminal microbes has not been st own to date, Patton et al. (1970) demonstrated
that supplementing methionine hydroxy analog decreased the free ULCFA in
ruminal fluid and apparently promoted the formation of an unidentified polar
lipid. The consequence of the reduction of free ULCFA will be reduced
biohydrogenation of unsaturated LCFA since hydrogenation is dependent on the
presence of LCFA in their free fcrm (Hawke and Silcock, 1969). If this is true,
the proportion of unsaturated LCFA flowing out from the rumen may be higher
in animals receiving methionire. Fatly acid profiles of digesta were not,

however, determined.

The present study indicates that the daily total flow of LCFA was significantly
reduced by methionine supplement, even though the daily flow of DM or purine
was not altered by the supplemeit. The ruminal production of total LCFA was
also lower in methionine-suppl>mented animals compared with the control
animals. Owing to time constraiats, the LCFA content of rumen microbes from

each group of sheep was not determinec.

The lower ruminal production of LCFA associated with methionine
supplementation in the present study contrasts with previous observations
made by O’Kelly and Spiers (1950) that methionine increased the lipid synthesis
by ruminal microbes in vitro. Two factors may have contributed to this
discrepancy. First, the synthesis of lipids by particle-phase microbes was not
accounted for in the study of (YKelly and Spiers (1990); these microbes may
respond differently to methionine supplement compared with liquid-phase
bacteria. Second, O’Kelly and Spiers (1990) determined the synthesis of total
lipids rather than LCFA (as in the current study).
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In contrast to the reports of O’Kelly and Spiers (1990) and in like manner to
results of this study, Patton et al. {1970) found that supplementing cows with 40
and 80 mg of MHA tended to red ice the concentration of lipid in the rumen, but
this was not significant. In that study, it was also found that the methionine
hydroxy analog supplement sign ficantly reduced the percentage of stearic acid
by inhibiting reduction of olei: and linoleic acids. The digesta-flow study
reported here is probably the fir.t to show the suppressive effect of methionine
on LCFA synthesis. The reasons why methinone reduced the LCFA outflow are

still not known at this stage, and ‘his requires further study.

4.2.4 The concentrations of total LCFA in digesta

There was a tendency for the concentration of LCFA in particle digesta of
refaunated animals to be higher than that of defaunated animals. It has been
demonstrated by many author: (e.g. Merry and McAllan, 1983; O’Kelly and
Spiers, 1988; Bauchart et al., 1960; Hegarty et al., 1994) that the lipid content of
particle-phase bacteria is higher than that of fluid-phase bacteria. Therefore, the
changes in the numbers of bact:ria associated with both phases of digesta will
obviously have an effect on the -oncentration of LCFA in digesta. It is unlikely,
however, that the greater LCFZ. concentration in particle digesta of refaunated
than of defaunated animals is 1ue to the increased numbers of particle-phase
bacteria. Orpin and Letcher (1934) found that defaunation increased the number

of liquid-phase bacteria but not of particle-phase bacteria.

Gram-negative bacteria are kncwn to contain more lipid than do Gram-positive
bacteria (Salton, 1960) and it is possible that the higher LCFA concentration in

particle digesta of refaunated <heep was due to a higher proportion of Gram-
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negative relative to Gram-positive bacteria. Ushida et al. (1986) observed an
increase in the number of Grami-negative bacteria but not of Gram-positive
bacteria due to defaunation, while other workers (Whitelaw et al., 1972; Hsu et
al., 1991b) found that defaunation increased the numbers of both groupings
equally.

The difference between defaunated and refaunated groups in the concentration
of total LCFA in particle digesta in the abomasum may also be due to the
changes in the concentration of 1.CFA within the bacterial cells. Hegarty et al.
(1994) found that there was a tendency for both particle- and liquid-phase
bacteria to have higher lipid cont:nts when protozoa were present in the rumen,
irrespective of the availabilities o " nitrogen and sulphur or the kinetics of rumen
liquid. The higher LCFA content of particle-digesta DM in refaunated animals
could be partly due to the higher lipid content of particle-phase bacteria and a

greater flow of these bacteria in refaunated sheep.

In summary, it is postulated tha' the higher LCFA concentration in the particle
phase of abomasal digesta may be partly due to the contribution of protozoa
with higher lipid contents compared with bacteria, and/or a shift in the
population from mostly fluid to mostly particle attached species, and/or a shift

from Gram- positive to Gram-neg;ative species.

4.2.4 The importance of microbial lipids to ruminants

It is clear from the preceding scctions that ruminal microbes are able to alter
dietary lipids by lipolysis and biohydrogenation. They can also incorporate
dietary LCFA as well as synthesise de novo their cellular LCFA using shorter
chain FA as precursors. Advartages that microbial lipids provide to the host

arise from the alteration of ruminal fermentation due to the biohydrogenation
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and synthesis of microbial lipid: and the added nutritive value of microbial

LCFA.

Biohydrogenation of dietary ULCFA and synthesis of lipids by rumen microbes
are hydrogen-demanding processes (Czerkawski, 1986). One consequence of
this is that the utilisation of the a sailable hydrogen by the undesirable microbial
process of methanogenesis can be reduced. A small portion of the available
hydrogen (1 - 2 %) could be used for hydrogenating poly-ULFA included in the
diet, but the synthesis of mic-obial lipids could be a further appreciable
hydrogen sink (Czerkawski, 1786). Therefore, increasing microbial lipid
synthesis may be used as an opportunity to increase the efficiency of feed
utilisation by reducing methane procuction, which is also environmentally

desirable.

The nutritive value of microbial lipids has been studied by O’Kelly and Spiers
(1990, 1992). These authors found that on the same intake of either low or high
quality diets, Brahman cattle cbtained and maintained higher body weight
compared with Herefords, which was attributed the higher lipids supplied from
the rumen of the Brahman cattle Almecst all of the bacterial and protozoal lipids
will flow out from the rumen si1ce ruminal absorption and catabolism of LCFA
are negligible. Approximately tiree-quarters of the lipids in the rumen of a cow
fed on all hay diet is protozoal in origin (Katz and Keeney, 1967; Keeney, 1970).
and the protozoal contritution to post-ruminal LCFA, especially
polyunsaturated LCFA, may be significant (Williams and Coleman, 1992). When
energy is the limiting nutrient for animal growth, enhancing microbial lipid
production in the rumen is probably a useful alternative to direct energv

supplementation.
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5.1 General Discussion

From the review of the literatu-e and results of this study, it is apparent that
protozoa exert a significant effect cn the ruminal environment and alter
fermentation patterns. A chang: in the ruminal environment and the pattern of
fermentation observed when protozoa are eliminated from the rumen, however,
can not be attributed directly to the effect of protozoa per se. The rumen is a
complex system, and the fermentative digestion occurring in this organ is
carried out by a consortium of bacteria, protozoa and fungi. The elimination of

one group of microbes creates a niche that will be filled by other organisms.

Williams and Coleman (1992) stated that the most consistent consequence of
defaunation was a decrease i1. ruminal ammonia concentration. This studv
supports this statement with the ammonia concentration of defaunated sheep
tending to be lower (P = 0.07) tt an that of refaunated sheep. The higher ruminal
ammonia concentration in refaunated animals may be attributed to higher
production of ammonia through degradation of dietary protein and bacteria and
to the fact that protozoa do nct utilise ammonia as nitrogen source but rather

excrete it as an end-product of their metabolism (Nolan, 1993).

The difference in VFA proporions between defaunated and refaunated sheep
(i.e. higher acetate but lower propionate proportions in defaunated sheep
compared with refaunated sleep) may also be linked to the difference in
ruminal production of LCFA. Tt is known that acetate ancd propionate are

utilised as precursors by rumir al microbes for synthesis of their LCFA (Harfoot,
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1981). The utilisation of acetate as precursor will result in the formation of even
chain length LCFA, while the us2 of propionate will produce odd chain length
LCFA.

Little is known on the microb al response to specific amino acids such as
methionine in the rumen. For rwninal microbes, methionine may be utilised as a
source of sulphur required for tl e de ncvo synthesis of other sulphur-containing
amino acid (cysteine), incorporaed directly during microbial-protein synthesis,
or utilised as methyl source fcr the formation of the methylene bridges of
cyclopropane fatty acid (O'Leiry, 1959). The higher efficiency of rumen
microbial growth in the methion ne-supplemented sheep may have been a result
of the direct incorporation of this amino acid into microbial protein. The lower
ruminal LCFA production associatec with methionine supplementation is
different from its positive effect on lipid synthesis in vitro (O’Kelly and Spiers,
1990). The effect of methioniree on 1 vive ruminal lipid production where
particle- and liquid-phase bacteria are both taken into account has not been
studied. It is important to incl 1de the particle-phase bacteria in any study of
lipid/LCFA production because this group have a higher lipid/LCFA content
than fluid-phase bacteria.

The most important finding of this study was that the refaunated rumen
produced more LCFA than the defaunated one. This is in agreement with the
fact that protozoa contain mor: lipid than do bacteria and that most ruminal
lipids are protozoal in origin (Katz and Keeney, 1969; Keeney, 1970). An
increase in ruminal LCFA prcduction and supply will benefit the ruminant
because it will reduce the need for oxidation of glucose which is necessary for
the generation of the co-factor (NADJPH) required in LCFA synthesis (Preston
and Leng, 1987) as well as increase the proportion of dietary organic matter used

by the animal. These authors a:so noted that the glucose-sparing effect of LCFA
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might lead to more amino acids being deposited as protein than being oxidised

to meet the glucose requirement.

5.2 Future Research

There have been far fewer studies to investigate microbial LCFA production in

the rumen than to study microbii | protein (nitrogen) metabolism. Studies in the

following areas of microbial lipid metabolism may provide a better

understanding of microbial LCF\:

Particle-phase bacteria. This group has been consistently reported to have
higher lipid content than liqu id-phase bacteria (Bauchart et al., 1990; O’Kelly
and Spiers, 1988; Hegarty et al., 1994). The contribution of each group to
post-ruminal digesta LCFA and factors that may alter their relative

contributions, however, have not been studied.

Precursors for LCFA synthesis. Studies on factors such as the availability of
precursors (VFA) and methionine considered to have an effect on ruminal
lipid and LCFA production should be extended. [n vivo tracer studies may
provide information for a better interpretation on the mode of action of the

factors in affecting microbial lipid/1LCFA synthesis.

LCFA as microbial marker:. Some of the LCFA synthesised de novo by
ruminal microbes are brancied-chain (Harfoot, 1981). These LCFA are not
found in dietary lipids, and thus they are peculiar to microbes. It may,

therefore, be possible to use :hese LCFA as internal microbial markers.
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