Evaluating the Performance of the GrazFeed Model for Predicting Sheep Productivity on a Range of Pasture Types

By

Zhong Jun Yao

(B. Sc. Ag., Beijing Agricultural University)

A thesis submitted for the degree of Masters of Science in Agriculture

University of New England, Armidale NSW, Australia

June, 1996
Declaration

I certify that the substance of this thesis has not already been submitted for any degree and it is not currently being submitted for any other degree.

I certify that to be the best of my knowledge any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Zhong Jün Yao
Acknowledgments

I would like to gratefully acknowledge the many people and organisations who have assisted me during the conduct of this research.

Thanks must firstly go to the Australian Agency for International Development (AusAID, former Australian International Development and Assistant Bureau) who provided the financial support for my study in Australia. I would also like to express my sincere appreciation to Xinjiang Academy of Animal Science, China for allowing me to study at this University. I acknowledge Hassall & Associates Pty. Ltd., Australian and Overseas Projects Corporation of Victoria Ltd., Australia for their help in my initial establishment in Australia.

A special thankyou to my supervisors Dr. Jim Scott and Assoc. Prof. Graeme Blair for their enthusiasm and encouragement of the research work, both of whom have given me many worthwhile suggestions during the study and guided me in writing this thesis. Thankyou also to Mrs. Ann White and Mr. Greg Chamberlain, for their efficient and diligent technical assistant for the field sampling of the project.

I greatly appreciate the support given by all staff and postgraduate students of the Department of Agronomy and Soil Science. In particular I wish to thank, Assoc. Prof. Robin Jessop, Drs. Rod Lefroy, Joe Agyare, Brian Sindel, Acram Taji, Mr. Dan Alter, Mr. Michael Faint, Mr. Allan Mitchell, Mrs Ildi Hall, Ms. Neil Deane, Mr. Chen Wen, Ms. Suzanne Boschma, Ms. Kerry Greenwood and Ms. Holly Ainslie for their technical assistance, advice, and friendship during my time here. Special thanks go to Mr. Laurie O'Donnell for his help in English skills.

Other Department and staff of the University of New England whom I wish to thank include:

- Dr. Zhu Han Jiang and Dr. Ian D'vies of the Mathematics, Statistics and Computing Science Department for their statistical advice and assistance with curve fitting,
- the staff of the Computer Centre, in particular Mr. Alec Watt for their efficient work regarding computer upgrading.

From outside the University, I would like to thank Drs. Keith Hutchinson, Kath King, and Mr. David Wilkinson for their assistance in data collection from the experimental sites at the CSIRO Pastoral Research Laboratory at Armidale, NSW, Australia. Without their help the work reported in chapter 3 of this thesis would not be possible. I also would like to thank Mr. Frank Pickering for his help in analysing the in vitro digestibility of pasture samples using near infrared reflectance spectroscopy.
Acknowledgments

I am indebted to Mr. Allan Bell, NSW Department of Agriculture, Australia, for making available his field data for the Winton experiment, and for helpful discussions and continual interest throughout the project.

I am very grateful to Assoc. Prof. Lijuan Liu and Mr. Haihong Peng of China Australia Sheep Research Centre, Xinjiang Academy of Animal Science, China, for providing a copy of their field data for use in chapter 5 of this thesis.

I am especially grateful for the valuable comments and suggestions provided by Drs. Mike Freer, CSIRO Division of Plant Industry, Australia and John Corbett, formerly of CSIRO Division of Animal Production, Australia.

I would like to express my sincere regards to Mrs Joan Hammond for her kind help and valuable comments on the layout of this thesis.

This thesis is dedicated to my parents for their 25 years’ love and care from my childhood.

Finally, thank you to my fiancee Zanmei Li for her love, understanding, support and encouragement during the writing of this thesis.
Abstract

There are increasing pressures on graziers to improve management to achieve sustainable and profitable development and utilisation of their grazing lands. Computerised decision support systems (DSSs) which assist graziers in dealing with complex planning problems, by allowing exploration of alternative strategies and selection of appropriate technology, are becoming increasingly important tools in supporting farm management. Before a DSS can be useful as an aid in making management decisions, it must be evaluated for the ecosystem in which it is being used. Comparing a model's prediction with experimental observation is one method of evaluating a model's performance.

GrazFeed is a decision support system for the nutritional management system of grazing animals, aimed primarily at enterprises in temperate southern Australia. The aim of the studies in this thesis was to evaluate the model's performance in predicting sheep production in an environment similar to those for which the model was developed. Also it was evaluated as a potential model for nutritional management of sheep in north-west China by comparing the model predictions with field data obtained from a typical grazing production system of this region.

The field data used in the studies were taken from three different regions, two in the high rainfall zone (Armidale and Winton, NSW), Australia and one in Xinjiang province (Nanshan Stud Farm), China. A variety of pasture types and sheep breeds were involved in these experiments. The pasture and sheep parameters measured included green herbage biomass and in vitro digestibility, dead herbage biomass and in vitro digestibility, legume content of the pasture, sheep liveweight and greasy fleece growth.

The results of the comparisons conducted on the improved pastures at Armidale demonstrated the ability of the model to predict the seasonal pattern of events and the trends in sheep bodyweight changes (BWC) generated by the different pasture types and stocking rates. Whilst, the model agreed well with observed data on a degraded pasture, the model provided a biased prediction of sheep greasy fleece weight change (FWC) with the phalaris and phalaris/white clover pastures. Despite this bias, it was found that the model had the capacity to account for most of the observed variation.

In contrast to the performance of the model on the improved pastures at Armidale, the model performance on the native pastures at Winton was poorer. In general, the model under-predicted the sheep BWCs and greasy FWCs. The ability of the model to predict BWC was considerably less, with coefficients of determination of less than 0.53.

Since no distinction was made between green and dead in available herbage, assumptions of green and dead biomass were made to evaluate the GrazFeed performance at Xinjiang's
pastures, north-west China. Under these assumptions, the model was found able to account for the major sources of variation in sheep BWC and greasy FWC on three seasonal pastures at Nanshan Stud Farm. Although the model was unable to predict sheep BWC under grazing conditions, the problem may be due to the assumptions being inadequate. A review of the literature suggested that at least some of the discrepancies in sheep BWC may have been due to genetic difference between Australian Merino and Chinese Merinos in bodyweight gain. For most of the fleece data, the model predictions were well within one standard deviation of the field observations. Given the importance of supplementation of sheep in winter in grazing systems of north-west China, it was encouraging to see that the model demonstrated its potential as a nutritional management tool for supplement feeding, with the model successfully predicting all BWCs of sheep which were fully housed and fed supplement.

A variety of possible causes of the discrepancies between the model predictions and the observations are discussed in detail in each experiment. To some extent, errors in the estimation of pasture quantity and quality may have resulted in some of the discrepancies. It also appears that some of the discrepancies might be associated with deficiencies in the intake module of the model. However, there were insufficient data to allow the cause to be clearly identified. Further studies, especially the evaluation of intake module in GrazFeed, may lead to further improvements in model predictions.
Contents

Declaration ... i

Acknowledgment ... ii

Abstract .. iv

Contents ... vi

List of Tables .. ix

List of Figures ... x

List of Appendices .. xii

Chapter 1 Introduction ... 1

1.1 The Need for Improving Graziers’ Management .. 1

1.2 The Need for Computerised Decision Support Systems 1

1.3 Need for Evaluating Model Performance .. 2

1.4 The GrazFeed Model .. 2

Chapter 2 Review of Literature .. 4

2.1 Introduction .. 4

2.2 Environmental factors affecting pasture productivity 7

 2.2.1 Introduction ... 7

 2.2.2 Rainfall .. 7

 2.2.3 Temperature ... 7

 2.2.4 Light .. 8

 2.2.5 Soil factors .. 8

2.3 Environmental factors affecting pasture quality .. 10

 2.3.1 Introduction ... 10

 2.3.2 General seasonal changes ... 10

 2.3.3 Light .. 10

 2.3.4 Wind .. 11

 2.3.5 Temperature ... 11

 2.3.6 Soil ... 12

2.4 Prediction of Feed Intake .. 14

 2.4.1 Introduction ... 14

 2.4.2 Animal factors affecting intake ... 14

 2.4.3 Effect of pasture nutritional characteristics on intake 17
2.4.4 Effect of pasture physical characteristics on intake ... 20
2.4.5 Environmental factors affecting intake ... 21
2.4.6 Effect of supplementary feeding on intake .. 22
2.5 Prediction of Animal Production in Grazing Sheep .. 23
 2.5.1 Introduction .. 23
 2.5.2 Nutritional value of feed .. 24
 2.5.3 Calculation of ME requirements or maintenance .. 27
 2.5.4 Weight gain and loss ... 31
 2.5.5 Wool growth .. 34
2.6 Conclusion to Review of Literature ... 36

Chapter 3 Comparison of animal performance on improved pastures using experimental data and GrazFeed ... 38
 3.1 Introduction .. 38
 3.2 Materials and Methods .. 38
 3.2.1 Experimental site ... 38
 3.2.2 Measurements .. 39
 3.2.3 Evaluation processes .. 41
 3.3 Results .. 43
 3.3.1 Pasture .. 43
 3.3.2 Bodyweight change ... 45
 3.3.3 Greasy fleece weight change .. 46
 3.4 Discussion .. 58

Chapter 4 Comparison of Animal Performance on a Native Pasture Using Experimental Data and GrazFeed ... 61
 4.1 Introduction .. 61
 4.2 Materials and Methods .. 62
 4.2.1 Description of field site and data collection ... 62
 4.2.2 Evaluation processes .. 62
 4.3 Results .. 63
 4.3.1 Bodyweight change ... 64
 4.3.2 Greasy fleece weight change .. 68
 4.4 Discussion .. 69

Chapter 5 Comparison of Animal Performance on Xinjiang’s Pastures Using Experimental Data and GrazFeed ... 71
 5.1 Introduction .. 71
 5.2 Materials and Methods .. 72
 5.2.1 Characteristics of the production system .. 72
 5.2.2 The nutrition research program .. 73
5.2.3 Evaluation processes ... 75
5.3 Results .. 75
 5.3.1 Pasture availability and quality ... 75
 5.3.2 Evaluation the model’s performance on the summer pasture .. 78
 5.3.3 Evaluation the model’s performance on the autumn pasture .. 80
 5.3.4 Evaluation of the model’s performance on the winter pasture where sheep were partially grazed and fed supplement ... 82
 5.3.5 Evaluation the model’s performance on the winter pasture where sheep were fully housed and fed supplement ... 83
 5.4 Discussion .. 85

Chapter 6 Concluding Discussion .. 87

Bibliography ... 91

Appendices ... 115
List of Tables

Table 2.1.1 Mathematical symbols used in this chapter ... 5
Table 2.2.4 Expressions for efficiency of use of ME in feed for weight gain (kg) 33
Table 3.2.1 Characteristics of the experimental sites at Big Ridge 2, Chiswick, Armidale 39
Table 3.2.2 An assessment of the accuracy of predictions of BWC and FWC for Phalaris pastures (Plots 3 and 6). ... 57
Table 4.2.1 Characteristics of the experimental sites .. 62
Table 5.3.1 The nutrient content of supplements used in the experiments 76
Table 5.3.2 An assessment of the accuracy of predictions of BWC and FWC on the summer pasture ... 79
Table 5.3.3 An assessment of the accuracy of predictions of BWC and FWC on the autumn pasture .. 81
Table 5.3.4 An assessment of the accuracy of predictions of BWC and FWC when sheep were partial grazed and fed supplement on the autumn pasture ... 83
Table 5.3.5 An assessment of the accuracy of predictions of BWC and FWC when sheep were fully housed and fed supplement on the winter pasture ... 84
List of Figures

Figure 2.4.1 Comparison of the calculated intakes from ARC (1980) (□—□, q_m = 0.65) with the predicted intakes from the GrazFeed model (○—○, for small Merino; ●—●, for medium Merino). The detail of inputs for the GrazFeed model are described in Appendix 2... 16

Figure 2.4.2 The relationship between OMI and OMD of the feed, calculated from Ketelaars and Tolkamp (1992), ○—○; and the commonly accepted view about the role of OMD on OMI, ●—●, the turning point t is usually assumed to occur between 0.65 and 0.75 OMD. ... 18

Figure 2.4.3 The relationship between OMI and N content of the feed, calculated from Ketelaars and Tolkamp (1992), ○—○; and created by the GrazFeed model, ●—●, for diets with dry matter digestibility of 0.80. The inputs used for the GrazFeed model to create this graph are presented in Appendix 3. .. 19

Figure 2.4.4 Relation of rate of intake of t th dry and green herbage (▲—▲) and of grazing time (○——○) to herbage availability (source: Alden and Whittaker 1970)......................... 21

Figure 2.4.5 (a) relationship between substitution rate and pasture quantity and quality (mean digestibility 0.70, ●—●, and 0.50, ○—○) for 0.2 kg maize supplement with 0.90 digestibility. (b) relationship between substitution rate and supplementary quantity and quality (digestibility 0.60, ▲—▲, and 0.90, △—△) on pasture with mean digestibility of 0.50 and 1.0 tonne dry matter per ha. The detail of information used for the GrazFeed model to create the above graphs is presented in Appendix 4........... 23

Figure 3.2.1 Layout of treatment plots at Big Ridge 2, Chiswick, Armidale. ... 39

Figure 3.2.2 Function used for interpolating the staple length at the times when dye-banding was not performed... 42

Figure 3.2.3 Function used for interpolating the sheep daily (a) bodyweight change (b) fleece weight change over the experimental time, ● predicted by GrazFeed, - - - - fitted by Matlab... 43

Figure 4.3.1 The total rainfall and average maximum and minimum daily air temperatures between sampling dates at Winton. Total rainfall and average daily temperature for 11/09/1989 was previous six weeks’ rainfall and temperature and for the remaining dates the total rainfall and average daily temperature was since the previous date. 63

Figure 4.3.2 Seasonal variations in sheep production (a and b), pasture availability and in vitro digestibility (c and d), and legume content (e) at Winton 38. The model’s animal predictions (○) are compared with the field data (- - ● - -). Sp = Spring, Sept.-Nov.; Su = Summer, Dec.-Feb.; Au = Autumn, Mar.-May; W = Winter, Jun.-Aug.................. 65

Figure 4.3.3 Seasonal variations in sheep production (a and b), pasture availability and in vitro digestibility (c and d), and legume content (e) at Winton 39. The model’s animal
predictions (○) are compared with the field data (● - - -). Sp = Spring, Sept.-Nov.; Su = Summer, Dec.-Feb.; Au = Autumn, Mar.-May; W = Winter, Jun.-Aug.

Figure 4.3.4 Agreement between observed BWC (kg) and BWC (kg) predicted by GrazFeed at Winton 38 and Winton 39. ... 66

Figure 4.3.5 Agreement between observed FWC (kg) and FWC (kg) predicted by GrazFeed at Winton 38 and Winton 39. ... 69

Figure 5.3.1 The total monthly rainfall and maximum and minimum monthly air temperatures for the experimental period (Jun. 1992 to March 1995) at Nanshan. .. 76

Figure 5.3.2 Pasture biomass (● - ▲ - -), and in vitro digestibility (● - △ - -) measured over different seasons within the three-year experimental period. .. 77

Figure 5.3.3 The model's prediction of sheep (a) BWC and (b) FWC compared with the field data on the summer pasture, with the error bars denoting the standard deviation of the observed means. ... 78

Figure 5.3.4 The model's prediction of sheep BWC (a) and FWC (b) are compared with the field data on the autumn pasture, with the error bars denoting the standard deviation of the observed means. ... 80

Figure 5.3.5 The model's prediction of sheep BWC (a) and FWC (b) are compared with the field data on the winter pasture where sheep were partially grazed and fed supplement, with the error bars denoting the standard deviation of the observed means. 82

Figure 5.3.6 The model's prediction of sheep BWC (a) and FWC (b) are compared with the field data on the winter pasture where sheep were fully housed and fed supplement, with the error bars denoting the standard deviation of the observed means. 84
List of Appendices

Appendix 1 An example of the output from a complete run of the GrazFeed model 115
Appendix 2 The detail of input data used for generating Figure 2.4.1 118
Appendix 3 The detail of input data used for generating Figure 2.4.3 119
Appendix 4 The detail of input data used for generating Figure 2.4.5 120