Measurement of Pasture Growth, Parameterization for Tropical Grass and Validation of the GrassGro Model

By

Yogendra Raut

A Thesis Submitted for the Degree of Master of Science in Agriculture at the University of New England

May 1996
Declaration of Originality

I certify that the substance of this thesis has not already been submitted for any degree and not being currently submitted for any other degree.

I certify that to the best of my knowledge any help received in preparing this thesis and all sources used, have been acknowledged in this thesis.

Yogendra Raut
Acknowledgements

Provision of a scholarship by the Food and Agriculture Organisation (FAO) of the United Nations enabled this study to be undertaken at UNE in Australia. The author gratefully acknowledges their assistance. Funding for the field study and operational support was provided by the Meat Research Corporation and UNE. I am indebted to Dr. J.M. Scott, my Academic Supervisor, and to Assoc. Prof. Graeme J. Blair, who contributed to my supervision during Dr. Scott’s sabbatical leave. I am grateful to them for their continuing guidance, supervision, and invaluable suggestions throughout the study period. I also express my sincere gratitude to Dr. P. Vickery (Former CSIRO Scientist, Div. of Animal Production, Armidale) who was always helpful in understanding and explaining the GrassGro model. This assistance was necessary as the GrassGro model does not yet have a user’s guide or manual because this is still under development.

I acknowledge Dr. S.K. Shrestha, Director General, Dept of Agriculture Development, Dr. B.M. Shrestha, Chief, Animal Health Division, Dr. Richard T. Wurster, FAO Representative, Mr. A. Sterk, Chief Technical Adviser for their assistance and support in selection for the candidature of the study.

I would like to extend my sincere gratitude to my senior brother Mr. Mahendra Raut (Overseer) who educated me so that I could reach this level of study.

I am also thankful to Mrs. A. White and Mr. G. Chamberlain for their assistance in taking me to and from the experimental site, to Mr. D.R. Wilkinson for providing physical facilities at the experimental site to make the research possible and to Mr. L. O’Donnell for assistance in text editing.

Last but not least, I am thankful to Mrs. Gayatri (my wife), Master Om Bikram (my son) and Miss Kalpana (my daughter) for their assistance in splitting herbage and support.
Abstract

The GrassGro model was evaluated using 1995 experimental data from the Temperate Pasture Sustainability Key Program conducted at the Big Ridge 2 experimental site at CSIRO’s “Chiswick” farm. The experiment was designed to measure changes in feed on offer (ΔFOO) using the exclosure technique on three pasture types: Phalaris (*Phalaris aquatica*), Phalaris-white clover (*P. aquatica-Trifolium repens*) and ‘degraded’ (a mixture of C₃ and C₄ pasture species). The model was calibrated for daily growth rate (DGR) and ΔFOO under grazed and ungrazed conditions for the three pasture types. The parameters for phalaris and white clover pastures supplied with the model were accepted for simulation. A set of model parameters was developed for *Eleusine tristachya*, which was the major contributing species in the ‘degraded’ pasture.

Comparison of predicted pooled data for ungrazed phalaris showed significant relationships (P<0.05) between observed change in green FOO and observed total FOO. The R² value 0.80 and 0.60 and the associated S.E. of the Y estimates were ±756 and 1340 kg dry matter respectively. The model’s prediction was considerably higher than that observed for both Δgreen and Δtotal FOO in the December harvest (3418 vs 5752, 3884 vs 7939). However, when these extreme points were excluded from the regression, the R² values improved from 0.8 to 0.9 and 0.6 to 0.91 respectively. The grazed phalaris did not show a significant relationship between observed and predicted for either Δgreen or Δtotal FOO. This is because of the frequent change in stocking rate in the experiment which was not compatible with the running of the model.

The Phalaris-white clover pasture showed a significant relationship (P<0.05) for Δgreen FOO under ungrazed conditions (R² = 0.94). However, Δgreen FOO (grazed) and Δtotal FOO (ungrazed) showed significant relationships (P<0.05) but the coefficient of variation explained by the regression was lower (R² = 0.71, 0.61) due to over-prediction by the model. This over-prediction was mainly associated with the modelling of white clover which requires some changes to some of its parameters such as the notional net primary production (NPP), the soil moisture response and the allocation to the target root:shoot ratios.
The *Eleusine* based ‘degraded’ pasture did not show any significant relationship between predicted and observed Δgreen FOC or Δtotal FOO under either grazed or ungrazed conditions. This was due to fundamental differences in the botanical composition between observed and predicted pastures. However, when the relationships were explored excluding the spring data points from the regression, (the period when *Eleusine* was virtually absent from the paddocks), the coefficient of variation increased significantly both under grazed (R² = 0.93) and ungrazed (R² = 0.84) conditions. The significant relationships of *Eleusine* pasture under grazed conditions which are different with the other two pasture types, are mainly associated with its low digestibility and palatability to stock. Thus, stocking rate does not have much influence on the *Eleusine* pasture. An analysis of simulated growth factors for this species suggested some adjustments which need to be made with its temperature response and its consequent effect on NPP.

Comparison of the measured daily change in FOO of the three pasture types did not match the predicted, mainly because of the differences in the method of its calculation. This is not clearly documented in the model.

Once calibrated, the model was used to simulate the pasture growth under different climatic regimes (Cooma, Armidale and Canberra) and choice of lambing time for matching animal demand to the pasture supply on the Northern Tablelands of New South Wales. The simulated results agreed well with the information provided by various sources.
TABLE OF CONTENTS

CHAPTER 1. LITERATURE REVIEW: PASTURE PRODUCTION SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Grazed Pastures and Their Interactions</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Biology of Grazing Systems - Processes Involved in Herbage Production</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 Tissue Flow in a Grazed Pasture</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2 Measurement of Herbage Production</td>
<td>3</td>
</tr>
<tr>
<td>1.3.3 Sward Structure</td>
<td>3</td>
</tr>
<tr>
<td>1.3.4 New Herbage Growth and Grazing Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.3.5 Herbage Production</td>
<td>6</td>
</tr>
<tr>
<td>1.3.6 Utilisation of Herbage</td>
<td>6</td>
</tr>
<tr>
<td>1.3.7 Grazing Pressure</td>
<td>7</td>
</tr>
<tr>
<td>1.3.8 Ingestive Behaviour of the Grazing Animal</td>
<td>7</td>
</tr>
<tr>
<td>1.3.9 Disappearance of Herbage</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Modelling of Pasture Systems</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1.4.2 Significance of Models to Scientific Research and Development</td>
<td>11</td>
</tr>
<tr>
<td>1.4.3 Types of Models</td>
<td>12</td>
</tr>
<tr>
<td>1.4.4 Components of Dynamic Deterministic Modelling</td>
<td>13</td>
</tr>
<tr>
<td>1.4.5 Modelling of Growth</td>
<td>15</td>
</tr>
<tr>
<td>1.4.6 Computer Models of Grazing Systems</td>
<td>16</td>
</tr>
<tr>
<td>1.4.7 Rangeland Models</td>
<td>16</td>
</tr>
<tr>
<td>1.4.8 Pasture land Models</td>
<td>18</td>
</tr>
<tr>
<td>1.4.9 Models, Predicted Data, and Experimental Data</td>
<td>20</td>
</tr>
<tr>
<td>1.4.10 Conclusions</td>
<td>21</td>
</tr>
</tbody>
</table>

CHAPTER 2. PARAMETRIZATION OF THE GRASSGRO MODEL FOR USE WITH THREE PASTURE TYPES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Parameters for Phalaris (Phalaris aquatica) and White Clover (Trifolium repens) growth rates</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Degraded Pasture Growth Rate</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Description of Paddock, Enterprise A & SWAR 3</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1 Edit Paddock</td>
<td>39</td>
</tr>
<tr>
<td>2.4.2 Soil and Hydrology Description</td>
<td>41</td>
</tr>
<tr>
<td>2.4.3 Editing Sward</td>
<td>44</td>
</tr>
</tbody>
</table>
2.4.4 Edit Farm Basics ... 45

CHAPTER 3. A COMPARISON OF MEASURED FEED ON OFFER IN THREE PASTURES VARYING IN PERENNIAL GRASS CONTENT WITH PREDICTED VALUES FROM THE GRASSGRO MODEL ... 47

3.1 INTRODUCTION ... 47
3.2 MATERIALS AND METHODS .. 49
 3.2.1 Site Description ... 49
 3.2.2 Measurement of Feed On Offer (FOO) and Daily Δ FOO 50
 3.2.3 Statistical Analysis .. 53
3.3 RESULTS ... 53
 3.3.1 Rainfall, Temperature and Radiation ... 53
 3.3.2 Change in Daily Feed On Offer (Δ FOO) 54
 3.3.3 Simulated Growth Curve for Phalaris, White clover and Eleusine using the GrassGro model .. 55
 3.3.4 Growth Limiting Factors .. 57
 3.3.5 Comparison of Predicted and Measured Feed On-Off (FOO) of the Three Pasture Types ... 59
 3.3.6 Phalaris (Phalaris aquatica) Pasture ... 59
 3.3.7 Degraded Pasture ... 61
 3.3.8 Phalaris/White clover Pasture ... 63
3.4 DISCUSSION .. 65
 3.4.1 Average Change in Feed On Offer (Δ FOO) of the Three Pasture Types ... 65
 3.4.2 Comparison of DGR ... 66
 3.4.3 Simulated growth curves for Phalaris, White clover and Eleusine 70
 3.4.4 Comparison of Feed On-Off (FOO) of the Three Pasture Types ... 73
3.5 APPLICATION OF GRASSGRO ... 78
 3.5.1 Environmental Comparison ... 78
 3.5.2 Environmental Comparisons ... 81
 3.5.3 Matching Animal Demand to Pasture : Supply 83
 3.5.4 Matching Supply with Animal Dema id .. 85
3.6 COMMENTS ON GRASSGRO MODEL ... 85
3.7 CONCLUSIONS .. 86

4. REFERENCES .. 88

5. APPENDICES .. 100
List of Figures

Figure 1.1 Stages of plant and animal production in grazing systems. (after Hodgson, 1990) 2
Figure 1.2 A diagram of the interaction between grazing animals and grazed pasture; only the more important effects are indicated. (after Snaydon, 1981) .. 2
Figure 1.3 The relationships between tiller population density, individual unit size, and pasture mass. (adopted from Birchim and Korte, 1984; Korte et al. 1987; Hodgson, 1990; Smetham, 1990) ... 4
Figure 1.4 Characteristic curves for rates of new growth, herbage production, and decay versus pasture mass and time, (a) inference curves for the cumulative changes in herbage mass in a sward over time during a period of recovery growth after defoliation under the three pastoral systems; UG = ungrazed, RG = rotational grazing, and CG = continuous grazing, (b) effect of residual herbage mass on the corresponding changes in the rates of herbage growth, senescence and net accumulation. (modified and adapted from Birchim and Korte, 1984; Hodgson, 1990; Cacho, 1993) ... 5
Figure 1.5 A hypothetical experiment to show the effects of varying feeding rate, F, on the growth rate of an animal, G. Experimental data, &; the solid line represents a fitted equation (equation 1.4). (after France and Thornley, 1984) 9
Figure 1.6 A simple dynamic growth model. It is the graphical expression of equation (1.5) which represents the weight of an organism, W, and its dependence on time t. (after Thornley, 1976) ... 10
Figure 1.7 GrassGro and its place in ATsFarm, a whole-farm simulation project. (adapted from J. Donnelly, A. Moore & M. Freer, unpublished. A discussion document 'Using the GrassGro DSS' at Tamworth and Cowra, 1994) ... 19
Figure 1.8 Procedures of evaluating a mathematical or a computer model. (adapted from Thornley, 1976) ... 20
Figure 2.1 Schematic of GrassGro indicating parameters considered in the following section. 24
Figure 2.2 Effect of ambient temperature on the growth rate of main tiller of temperate and tropical pasture plants. (adapted from Mitchell, 1956, in Lazenby and Swain, 1973) .. 28
Figure 2.3 Effect of temperature on the mean yield of C4 and C3 plant species when grown in monoculture. Bothriochloa macra (▲) and Lolium perenne (●). (adapted from Cook et al. 1976) .. 30

Figure 3.1 Layout of the experiment showing the area of the individual paddocks. Buffer plots are used to change the stocking rates as per the availability of pasture. Plot 1 & 2 for degraded, 3 & 6 for phalaris, and 4 & 5 for phalaris/white clover 50

Figure 3.2 Actual monthly rain, average mean temperature, and solar radiation at Big Ridge 2 compared with 34 year average... 54

Figure 3.3. Daily change in feed on offer (Δ FOO) of the three pasture types (—O— degraded; —O— phalaris; —Δ— phalaris/w. clover) measured in 1995. Values are means from 12 cages (2 per strata x 3 strata per plot x 2 replicates) 55

Figure 3.4 Simulated growth curves produced by the GrassGro model using 1995 weather data from the “Chiswick” meteorological station. Values are monthly average DGR for the three species (—— Eleusine; —O— Phalaris; and —Δ— White clover) grown in pure sward conditions ... 56

Figure 3.5 Growth limiting factors associated with the three pasture species under “Chiswick” environmental conditions, 1995. Values range from 0-1. Lowest value indicates the most limiting condition whilst the highest value represents non-limiting factors for plant growth (—— GAI or light; —Δ— soil moisture; —O— temperature; ⊗⊗⊗⊗ waterlogging; and —— fertility status of soil). 58

Figure 3.6 Phalaris: A comparison of regression analysis, observed and predicted change in FOO of green and total herbage (DM kg ha-1), 1995. (a) change in green FOO, ungrazed (b) change in total FOO, ungrazed (c) change in green FOO when the extreme point in Dec-05 was excluded from the regression (d) change in total FOO when the extreme point in Dec-05 was ... 60

Figure 3.7 A comparison of Δ total FOO (DM kg ha-1) of the degraded pasture with Eleusine tristachya, the simulated species after the exclusion of spring data points when Eleusine was not 62

Figure 3.8 Phalaris/white clover: The relationship of Δgreen FOO and Δtotal FOO (DM kg ha-1) between measured and simulated, 1995; (a) Δgreen FOO (grazed), (b) Δgreen FOO (ungrazed) and (c) Δtotal FOO (ungrazed). The solid line (——) in the regression represents the 1:1 relationship whereas the broken line (– — –) is the line of best fit in the model ... 64
Figure 3.9 Long-term average of the environmental factors (Rainfall and Temperature) of the three sites and their consequent effect on the temperate pasture species. (see Figure 3.10) .. 80

Figure 3.10 Simulated growth and productivity of temperate pasture species at the three sites as a consequent effects of the environmental factors (Figure 3.9) (---O--- Armidale; —Δ— Canberra; —+— Cooma).. 81

Figure 3.11 Pattern of animal intake and pasture supply simulated over 3 different lambing dates. Vertical bars represent the monthly intake of dry matter of the grazing animals (kg DM/ha) and the lines are the total available green dry matter on offer (FOO) (kg DM/ha).. 84
List of Tables

Table 2.1 Volumetric soil water content at different suctions for the three pasture types. 42
Table 2.2 Stocking rates (DSE ha^{-1}) of wether for 1994/95.. 46
Table 3.1 Major paddock inputs used for the simulation of growth of the three pasture species.
Phalaris and white clover were also simulated in mixed sward using stocking rate
(SR) at 10 dse ha^{-1} on phalaris soil conditions. .. 56
Table 3.2 Comparison of the regression analysis of the three pasture types. 61
Table 3.3 A summary of some of the major differences in parameters setting for the three
species. Parameters for l-leusine are newly created whereas phalaris and white
clover are the original set from the model. Some of these parameters require fine
adjustments as explained in the discussion... 71
Table 3.4 Farm information: These are some of the major but common inputs used for the
simulation to all the three sites (Armidale, Canberra, and Cooma) 79
Table 3.5 Summary of simulated months and annual above ground production (kg DM ha^{-1} d^{-1}), and precipitation at the three sites... 81
List of Appendices

Appendix 1. List of parameters of the three pasture types used in the simulation of results of the GrassGro model. .. 100

Appendix 2. Description of soil at Big Ridge 2. .. 102

Appendix 3. A summary of regression analysis: \(Y = a + bx; Y = a + bx + c\sqrt{x} \) obtained with the standard disc pasture meter in the Big Ridge 2 experiment, 1995................ 104
List of abbreviations

°D : Degree day or Day degree
AbGR : Absolute Growth Rate
AGR : Apparent Growth Rate
AI : Animal Intake
ASW : Available Soil Water
BHM : Beginning Herbage Mass
C : Herbage Consumed
CG : Continuous Grazing
CSIRO : Commonwealth Scientific and Industrial Research Organisation
D : Herbage Decay, Decomposed
DGR : Daily Growth Rate
DM : Dry Matter
DMI : Dry Matter Intake
DSE/dse : Dry Sheep Equivalent
DSS : Decision Support Systems
DU : Digestibility unit
FC : Field Capacity
FOO : Feed On Offer
G : Herbage Growth
G.FOO : Green Feed On Offer
GLA : Grazing Land Application
GM : Gross Margin
HM : Herbage Mass
HP : Herbage Production (change in green herbage mass with time)
ISPD : Integrated System of Plant Dynamics
LAI : Leaf Area Index
MOAF : Ministry of Agriculture and Fisheries
MRC : Meat Research Corporation
NPP : Net Primary Production/Notional Primary Production
NZ : New Zealand
OMD : Organic Matter Digestibility
RG : Rotational Grazing
RGR : Relative Growth Rate
RSR : Root Shoot Ratio
RW : Reference Weight
SA : South Africa
SMR : Soil Moisture Response
SPUR: Simulation of Product on and Utilisation of Rangelands
SR : Stocking Rate
T.FOO: Total Feed On Offer
U : Herbage Utilisation
UG : Ungrazed
USDA-SCS : United States Department of Agriculture, Soil Conservation Services
WP : Wilting Point
WUE : Water Use Efficiency