Chapter 1

Introduction

This thesis concerns the analysis of count data which are correlated, and a major
component of it will be the use >f Poisson models with random effects. The motivat-
ing problem arose from a field ~xperiment conducted by NSW Agriculture in which
herbicide efficacy on nutgrass p>pulations in cotton crops was studied over three (3)
years and the response was mea;ured by counts of nutgrass tubers. It was anticipated
that field data such as this could be both spatially and temporally correlated, hence
techniques which could appropr ately d=al with this correlation are investigated. This
data set will henceforth be refe:red to as the herbicide data set.

Independent count data are conveniently interpreted using Poisson models which
are analysed as a Generalized .inear Model (GLM). It was expected that the her-
bicide data were not independ:nt anc the residuals from the naive (independent)
analysis readily confirmed this (See correlation matrix (2.2) and Figure 2.3). Thus,

independence, a major assumpt on of simple GLMs, was not tenable in this situation.



In recent years there has bezn a recognition of the increasing requirement of con-
sulting statisticians to model complex non-normal data. For example, in recent lit-
erature, the need to model lon situdinal data with adjustments for inherent random
effects (clustering) has been highlighted.

McDermott and Schukken 1994) reviewed 67 papers from the first 10 volumes
of Preventitive Veterinary Medicine to examine how the issue of clustering (random
effects) was addressed. Of thes= papers, 31 did not attempt to adjust their analysis
to account for the clustering eflects, resulting in inefficient or incorrect inferences.

The scientific and economic costs to industry of incorrect or ineflicient inferences
are a major consideration of tiis investigation. For example, the cost to the agri-
cultural industry of disgarding a herbicide which has been erroneously shown to be
ineffective may be profound ir both economic and environmental terms, and may
guide the scientific investigatio1 in a potentially less beneficial direction by concen-
trating resources into developir g less effective herbicides.

We shall conclude this chaptzr with an overview of GLMs and error models. We do
this to provide the framework and notation for the extensions to incorporate random
effects in GLMs, which is the tiieme of the thesis.

The analyses of the herbicide data by several techniques are presented in Chapter
2. The disparity of the results amongst the techniques leads to their comparison in
Chapters 3 and 4.

In Chapter 3 we shall introduce Poisson models for independent count data and

extensions of these model to acomodate correlation. The techniques, among others,



that were used to analyse the I'oisson random effects model for the data in Chapter
2 will be discussed and compar:d algebraically.

Chapter 4 consists of a small simulation study. We use this study to compare
the available techniques numerically and to make recommendations under different
modelling scenarios.

A variogram of transformel residuals is presented in Chapter 5. We use the

variogram as a tool to help guile the selection of appropriate error models.

1.1 Generalized linear models

The evolution of Statistics has >een predominately based on the normal distribution.
Many of the major developmets in interpreting complex data have, consequently,
also been based on the assumpt on of normality. Due to this background, methods for
modelling complex normally di: tributed data, such as those arising from longitudinal
studies, are well established in literature. However, this is not always the case when
experimental data are distributed in some other form, such as Poisson.

Some data, because of the n: ture of their measurement scale. can not be accurately
modelled by accepted normal cistribution techniques. For example, treating counts
as a continuous measurement 01 [—00, co] can, depending on the distributional range
of the counts, lead to predicted values that are negative, which is clearly invalid.
Count data are often able to e represented by the Poisson distribution, in which

the mean and the variance of :he distribution are equal. One method of analysing



such data has been to apply trinsformations to the response and to then analyse the
data on the transformed scale. Existing methodology, which is based on the normal
distribution, is then appropriate.

Carroll and Ruppert (1988 (in revisiting Box and Cox, 1964) have shown that

for Poisson distributed data, tt e Box-Cox family of transformations,

where h() represents the trans ormed data, is capable of providing a constant vari-
ance of the mean. However, it such a transformation was successful, the results of
the consequential analysis neec. not be conceptually simple. This is because the in-
terpretations, while valid on tt e transformed scale, may be difficult to relate to the
experimental results on their natural scale.

It is also relevant to conside - the three main objectives of transforming data which

are to create data on a transformed scale which have;

1. a simple additive mean s ructure,

2. a constant variance, and

3. can be considered to be 1 ormally distributed.

Carroll and Ruppert (1988, pl61) state that normal errors and constant variance
often cannot be achieved for a data set through a single transformation. This makes
it necessary to simultaneously t ansform in order to provide normal errors, and weight,

to ensure constant variance.



However, GLMs, which wer: introduced by Nelder and Wedderburn (1972), pro-
vided statisticians with a means of modelling such data without the need to use
inelegant techniques such as variance stabilizing transformations on the data. If the
random component of data can be represented by a density from the exponential fam-
ily (defined below as (1.1)), we may use this alternative procedure which addresses
the issues of additivity and error structure separately, while preserving the scale of

measurement. Simple GLMs, however. are restricted to independent data.

1.1.1 Definition of generalized linear models
A general algebraic representation of the classical linear model is
Y =XB+e.

In this model, Y = (y1,¥2,...,¥n)7 is the n dimension vector of observed data.
The matrix X is often referrec to as the design matrix, and has dimension n x p.
Then B = (B1, B2, --,B,)T is a p dimension vector of parameters, which needs to be
estimated. The product X3 reoresents the systematic effects, while € represents the

random variation within the m>del.

Generalized linear models are defined by three basic components;

1. Components of Y are fror a distribution of the exponential family with E(Y) =
p and var(Y) = a(@)-var p), where ¢ is a scale parameter and a() is a function

of ¢. This is the random component.

2. 7 = X3 is the systematic component.

5



3. n = g(p) where g(+) is ca led the link function.

The general algebraic represzntation of the generalized linear model in this termi-
nology 1s

9Y)=n+e=XB+e

1.1.2 Likelihood functions

When using generalized linear models, we assume that the Y components have a
distribution which is a member of the exponential family. Following McCullagh and
Nelder (1989, p28), we have the definition of the exponential family as follows: If the

density can be manipulated int. the algebraic form of (1.1)

fr(y,8,9) == exp{[y8 — b(6)]/a(¢) + c(y; 9)}, (1.1)

where ¢ is a dispersion parameter and 6 is referred to as the canonical parameter.
then the density is said to be >ne from the exponential family. The log-likelihood
function is taken a; log[fv (y, 6, 9)] (also referred to as {(y, 8, ¢)).

Maximum likelihood estima es of parameters from such a density may be written

as (see McCullagh and Nelder, 1989, p29)



where V(u) is the variance func ion of y. Derivation of the likelihood estimates above
1s given in Appendix B.

A significant benefit to flow from generalized linear models is the working algo-
rithm for fitting the models. T 1e algorithm approximates maximum likelihood esti-
mation with an iteratively reweishted least squares procedure (with accuracy O(n™!)),
and thus can efficiently compute the estimates. This enhances the process of adding
and deleting terms in a hierarch cal model. A brief description of the fitting algorithm
(Appendix A) is provided to shcw the connection between iteratively reweighted least
squares and maximum likelihocd methods.

While the GLM framework has the advantage of avoiding the complications of
transformations, we cannot overlook correlation when it is present. In the following
sections of this chapter we shall include models to account for correlation structure

and foreshadow the complicatic ns random effects models can introduce.

1.1.3 Correlation in longitudinal and temporal data

In the simplest case of independent data, the estimates of the model’s coefficients
and their subsequent variances 'with subscripts dropped for brevity) at the (7 + 1)th

iteration are

. N me) T\
5 (i+1) ~(7) r{dp 1 dp
= X _ . . X .
'B 'B + (d’)’,(])) Var(p,(])) (dn(])) )

\
! )
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var (B) = T ﬂf) 1 -(i‘i)T h
2 ¢(X (dn Var(a) \an) *) (1:3)

where cov(yi,yx) = 0 Vi # k, a1d so V (the variance matrix) is diagonal. It is often
the case in practice that this i1 depencdence assumption is not sustainable. However,
certain aspects of GLMs, sucl as the transformation from the additive covariates
to the non-linear mean respon: e, and the relationship of the variance to the mean,
make it desirable to retain the GLM framework for data analysis. Thus. we consider
modelling such data with a link and variance function in a way which can account
for the heterogeneity that will irise because some of our observations are inherently

more alike than other observations (i.e. correlated).

1.2 Models for correlation structure

A model for longitudinal and sy atial data must incorporate a component to represent
the associations among repeated measurements and field plot position.

Let us consider a linear model in a longitudinal setting. We work first in the linear
framework and later extend sorie of these concepts to generalized linear models. The

model-will take the form
Vit = Proin + Petia + - ..+ BpTitp + €its (1.4)

where p is the number of explinatory variables in the model, ¢ is the subject and ¢
represents sampling time.

If the data were independernt (cov(e;, €:x) = 0 Vt # k) the residuals ¢;; should be



distributed as

e; ~ N(0,0°1), (1.5)

where I is an identity matrix, and oI represents the variance-covariance matrix of
the errors, resulting in it beir g diagonal. However, in longitudinal studies, non-
negligible covariances of the reriduals (from the same subject at different times) are
to be expected, and therefore the variance-covariance matrix will not be diagonal. In

the non-independence case the residuals can be represented by
€~ MVN(0,V;), (1.6)

where V,; represents the variar ce-covariance matrix of measurements for subject z.
As measurements between subjects are assumed to be independent the residuals can

be represented in matrix form .is
e~ MVVN(0,V), (L.7)

where V is block diagonal, witi V; being its non-zero blocks for each subject.
It is desirable to represent 1he variance-covariance matrix (V) as a function of a

small set of parameters since;

1. there are generally too few degrees of freedom to identify individual elements

of V, and

2. the “smooth” parameter sed version of V can have general applicability and

need not be specific to a »articu.ar data set.



In defining the parametric fo-m of V we need to consider the sources of error which
give rise to the dependence of lata. To achieve an adequate model it is necessary
to consider the possible sources of variation which could occur in any particular
longitudinal or spatial study. "“hree commonly attributed sources of this variation

are;
1. measurement error,
2. serial correlation,
3. and random effects.

It is possible for all three sourc:s, which we shall now describe, to contribute to the
variation in a study.

Measurement error occurs w1en the measurement taken on a response or response
variable in the study is not exact.

Serial correlation occurs if the response profile of an observed unit in the study is
determined by a time-varying s:ochastic model for that particular unit. With serial
correlation, a unit r‘neasured at time t is directly influenced by the prior history of that
unit. These previous measurem 2nts can be used as predictor variables, and modelled
using Auto-regressive Moving Average (ARMA) techniques.

Dependence due to repeated measures on a subject (or plots within the same
block) can be accounted for in the random effects model. For example, when the
profile of an individual in a lor gitudinal study can be represented by a parametric
model and summarized by the coefficients of that model, we estimate the response
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for the population by assuming the ccefficients for all individuals are samples from
a distribution. Correlation can be accounted for by random effects because all the
repeated measures for an individual share the same subject effects.

If all three sources of variation were considered to be pertinent to achieving a good

working model, the residuals gi 7en in (1.5) could be represented in the additive form

€t = Z?;U1 + Wi (7)) + Mq, (1.8)

where z;, represents a design vector for the random effects, and U; is a vector of
coefficients for the random effe:ts. Se-ial correlation is represented by a stationary
Gaussian process, W;, 7;; represents sampling time, and M,; denotes the measurement
error component.

To distinguish between seriil correlation and correlation due to random effects,
consider the simple case of two observations made on the same subject at sampling
times ¢, and t,. We express the »bservations (z;,, z;,) as functions of the deterministic

effects (8y,, B, ), the subject effects (u) and the residuals (e, €, ). That is,

e, =Py tut ey, Ty, =Py U+ €.

The correlation of the error:, {(u + €,), (u + €,)}, may be due to;

1. the random subject effect u,

o

. the serial correlation betveen ¢, and ¢, or

3. a combination of both 1 ¢nd 2.
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If the correlation is modell:d as being due to only random effects, then we as-
sume that u ~ N(0,02), ¢,, and ¢, are distributed as N(0,0?) and that all other

covariances are zero. Then;

2

o var(z, ) = var(zy,) = 02 -- 02,
e cov(zy,,T4,) = 02, and

o corr(zy,,z,) = 02/(02 + 7).

When we model the correlation as being due to only serial correlation, we assurne

that o2 is negligible and;

e var(z,,) = var(zy,) = o2,

® cov(zy,,Tt,) = - 02, so that
o corr(zy,,zy,) = Q.

Modelling the correlation s being due to both serial correlation and random

effects, and assuming independ:nce between the two error sources gives;

o var(z;,) = var(z;,) = 02 -- g2,
o cov(zy,,T4,) = 02 + a - o?, then

o COI‘I‘(JStl,:L‘t?) = (0-121 +a- ‘3)/(03 + 052)

Diggle, Liang and Zeger (194) expound the advantages of using a random effects

model for the covariance by explaining that they can be non-stationary in structure.
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For example, let us view the residuals as
€ = Zi];U,', (19)

where z;; = (1, 7), so there is i linear time trend and random intercepts and slopes
for each individual in the study. If we assume that U; ~ MV N(0,D), where D is a

diagonal variance-covariance matrix,
D= , (1.10)

and U, represent the random sibject effects. then

vir(ey) = vi+71ivi, and (1.11)

13

cov(e j, €1) = vi+ TTavs. (1.12)

Such a model is often appropri:.te for growth data, which generally consist of a series
of response profiles which will characteristically increase in variance through time or
with an increase in the mean.

This characteristic can be seen in she simulated data set given in Figure 1.1. In
this data set we have simulated growth profiles for four (4) subject units over eight
(8) repeated measures. For eich of the units, coefficients were simulated from a

MV N(B,X) distribution wher:

B = and ¥ = " |. The simulations were made by obtaining the
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Choleski decomposition of ¥ (v.e. LLT = X), following which the random coeffi-

cients were calculated as

B;=B+L"U;, (1.13)

where U; ~ N(0,1,) and ¢ indicites subject. The simulated response of each subject
(2) at time t is then given by

yie = X287 + €, (1.14)

where €;, ~ N(0,1) and x;; is the desigr. vector for subject 7 at time t. Morgan (1984.
p85) outlines this method of simulating multivariate normal data.

From Figure 1.1, we note thit the variance of the data increases with the overall
mean (represented by the solid line), but the variance of each individual from their
own growth profile is constant. The heterogeneity of the data is induced by individuals
having random time slopes, and it is therefore reasonable to model such data in a

random effects framework.

Figure 1.1: Giowth profiles from simulated data.
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Our primary objective is to interpret the coefficients when the correlation has been
adequately represented. Diggle: et al. (1994, p137) show an example in the linear
model case where the coefficients under the different covariance rnodels have similar
interpretations regardless of whether the correlation is modelled as serial correlation
or random effects. This may not apply in the nonlinear setting, so choice of correlation
structure needs to be considered. In choosing a model we should be guided by the
data. In growth curve situations, the random effects model is likely to be appropriate
(Diggle et al., 1994, p89).

In recent literature, the rar dom effects model for longitudinal data has taken a
dominant role (e.g. Stiratelli, l.aird, and Ware (1984), Laird and Ware (1982). and
Carlin (Editors Gilks, Richardson and Spiegelhalter, 1996, pp 303-319)). Diggle et al.
(1994, p88) have speculated that this has occurred because although serial correlation
1s an intuitive feature of longiti dinal data in many situations, its contribution to the
covariance structure is of a less:r magnitude than that of the random effects and the
measurement error. As a resul,, the inclusion of serial correlation in the covariance

model becomes unnecessary an1 can decrease the model’s efficiency.

1.3 Random effects models

In the previous section we est.blished that a common approach to the problem of
longitudinal data is to assume that the heterogeneity present is due to some unob-

served variables (U), which ar: collectively known as random effects. We are now
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going to introduce some of the lifficulties that can arise in random effects modelling.

Representing the model as

Pr(Y = y|U = u) = g(X8 + u), (1.15)

the marginal distribution () of the observed data will be

L=TIPr( = w) =] [ 9(X8 +wdD(u). (1.16)

where D(u) is the distribution of the random effects (/). The mixing of the random
effect induces the correlation a1 d heterogeneity into our data.

Integrals in this form are very oftea difficult to evaluate because they are not in
closed form, and estimation ba:ed upon expressions for the likelihood such as (1.16)
would be complex. Also, deterriining which model provides the most adequate fit to
the data through adding and decleting terms can become tedious.

This facet of the problem has been noted by many statisticians in recent years.
Stiratelli et al. (1984) noted oine of the problems with the maxirmum likelihood ap-
proach was that ir;tegrals, suct as those of (1.16), do not have general closed form
expressions, and as such, stand ird analytical techniques cannot be used. McCullagh
and Nelder (1989, p437) use th: method of quasi-likelihood estimation in preference
to explicit maximum likelihood Their justification of this technique is that it is sim-
pler than maximum likelihood, ind assumes only the first two moments. Breslow and
Clayton (1993) noted that, for >utcomes of counts or proportions, the full maximum

likelihood analysis has been used in relatively simple problems of binomial or Poisson
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mixtures and in situations where the data was largely independent. However, they
state that “to date it has provec. intractable for more complicated problems involving
irreducibly high-dimensional in'egrals”.

The unobserved random va-iable which we shall use to incorporate the hetero-
geneity of the data could be in erpreted in several ways. It is cornmonly convenient
to assume that it operates on the same scale as the fixed effects and enters into the

mode] as part of the linear precictor (7). Some alternative ways of representing such

a model are;

1 = XB+ ZU, (1.17)
1 = (X+¢€)8, and (1.18)
1 = X(B+96). (1.19)

Equation (1.17) is the random effects model, (1.18) is the “errors in X variable”
model (measurement error) and (1.19) is the random coefficients model. It may be our
personal perspective which leads to how we couch the model, but often the structure
of the data, the ex.perimenta,l dzsign, and the sampling scheme will suggest which of
these forms is appropriate. In this thesis we shall concentrate on models of the form
(1.17) because it is relevant to she herbicide field trial which we consider in Chapter
2.

Future developments in thi; area may see it unnecessary to have the fixed and
random effects on the same scile. Nelder and Lee (1994) propose that the random

effect, can have a distribution ccnjugate to that of the fixed effect so that the integrals
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in (1.16) are more tractable. Vin de Ven and Weber (1995) used the Gamma distri-
bution to account for random e fects in Poisson data. In that case, the random effects
were nuisance parameters and the objective was to reliably estimate fixed effects and
their variances, without concern for the relative contribution of the random effects.
Situations such as this, where t'ie extra variation is absorbed into measurement error,
are categorized as “overdispers on models”.

In this thesis, we shall pursiie a detailed examination of several alternative meth-
ods for approximating generalized linear models with random effects so that in-
tractable likelihoods such as (1 16) are overcome. These methods fall into the follow-

Ing categories;
1. quasi-likelihood techniques,
2. overdispersion models,
3. generalized estimating equations, and
4. Markov Chai.n Monte Ca lo techniques.

We examine these models in de ail because our understanding of them and knowledge
of their strengths and shortconiings is important in the model selection process as a

whole.
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Chapter 2

Comparative analysis of herbicide

experiment

In this chapter we shall describe a field experiment in which the effect of 11 herbicides,
a cultivation and a control tre:tment on nutgrass tuber populations in cotton crops
was assessed. We illustrate the need for a random effects model when analysing the

experiment, and compare the rzsults from different modelling techniques.

2.1 The experimental design

The experimental design consisted of 5 blocks of 13 treatments, which are listed in
Table 2.1. These treatments were arranged in 10 columns and 9 rows, with two
treatments, control and cultivation, being repeated within each block. Cultivation

(treatment 2) was repeated on e, and the control (treatment 1) was repeated twice.
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The response to the treatmen:s was measured as the number of nutgrass tubers

present in a soil core. Measureinents were taken yearly over a three year period.

Table 2.1: "“able of experimental treatments.

Treatment | Treatme=nt
Number | Description
1 | Control
2 | Cultivation
3 | MSMA
4 | MSMA & cult.vation
5 | Defolia1t glyphosate
6 | MSMA & defoliant glyphosate
7 | MSMA & cult vation & defoliant glyphosate
8 | Glyphosate & defoliant glyphosate
9 | Glyphosate & cultivation
10 | Norflurizon & cultivation
11 | Benfuserate & cultivation
12 | Norflurizon & benfuserate & cultivation
13 | Norflurizon & glyphosate & defoliant glyphosate

The allocation of treatments within the design can be seen in Figure 2.1. The
treatment numbers correspond to those given in Table 2.1, and blanks indicate plots
where treatments were missing »r altered during the course of the experiment. These
plots were not of interest in ouws case, so for analytical purposes they were ignored.

We note from Figure 2.1 that the design for this experiment is quite poor. For
example, the cultivation treatn ent (2) is found 6 times on border plots, and in con-
secutive plots in row 9 and colu nn 10. Some treatments, such as treatment 10, which
is only represented in rows 1 ard 3, are all found in the lower (or upper) rows of the

design.
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Figure 2.1: Experimental design of nutgrass trial.
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Discussions with the researclier invclved in this project indicate that this design

was meant to be of a row-column nature to account for spatial effects, and hence the

positioning of these treatments is not due to chance.

The inadequacies of this design have led to a partial confounding of treatment
effects with row effects, which czn be seen in Table 2.2. This poor spatial design will
limit the success of any model v'hich attempts to account for spatial trends, and as

such this limitation should be taken into consideration when determining the success

or otherwise of the models we fi* to this data.
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Table 2.2: Treatment counts by design row.

Rcw Number
1 2 3 4 5 6 7 8 9
Treatment 1 0 41 2 3 11 21
2 0 211111 0 3
3 0 0000 1 2 11
4 0 020011 10
5 0 0 000 0 2 1 1
6 1 011101 00
7 1 1.0 01 0 1 1 0
8 1 1.0 01 0 0 20
9 0o 01 00 1 1 1 1
10 2 0 2 1 0 0 0 00
11 1 000 2 2 0 00
12 0113 00 000
13 0 1 0 1 1 1 0 0 1

2.2 Preliminary analysis

Figure 2.2 illustrates the raw data collected over the 3 year period of the trial. As
the data is potentially Poisson (:he simplest distributional assumption) it is expected
that the variance will be roughly equal to the mean. However, this graph provides
some evidence that the data may be overdispersed, as the variance appears to be
becoming greater than the meaa as the trial progresses. Following from Section 1.3,
we would expect that this could occur in a growth profile situation if random effects,
such as plot*time effects were present. Therefore, one plausible model in this case is

Poisson random effects.
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The initial step taken in this analysis was to model the data assuming time inde-
pendence and fixed replicate eff:cts, alzhough strictly replicates could be viewed as
random effects because they represent a random selection of plots. The model used

was a GLM with log link and Poisson errors. The significant terms are given below

log [E(counts)] = treatment*time + replicate + replicate:treatment

+log (soil core weight), (2.1)

where : indicates an interation term and * indicates that each term and their inter-
action are fitted. The offset, log (soil core weight), in (2.1) is necessary because cores
differ in weight and hence volunie. Consequently the cores have different potentials

to yield nutgrass tubers, regardl:ss of other effects.

Figure 2.2: Raw data from nutgrass experiment.
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The spatial independence assump:ion of the GLM was examined using contour
plots of the Pearson residuals fcr each year. In the case of the Poisson model the Pear-
son residuals can be considerel to be standardized residuals (Dobson, 1990, p133),
and with large count values, such as we have in the herbicide experiment, these can
be treated as standard normal variables (Aitkin, Anderson, Francis and Hinde, 1989,

p219).

Figure 2.3: Contour plot of residuals from model (2.1), year 1.
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Figure 2.3 is the contour p .ot of Pearson residuals over the trial site for the first
vear. From this graph we notel areas in the trial where there are clusters of positive
residuals. For example, the right hand side of the trial (columns 7-10) is a region
where positive residuals are predominant. Negative residuals are most often located
at the edges of the trial. Peals and troughs, which indicate spatial dependence are

evident over the trial site. A normal quantile plot of the Pearson residuals from
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the first year indicated that tl ey were not normally distributed and therefore the
assumption that the data could be modelled by (2.1) was violated. The contour plots
for the following 2 years indicated similar model deficiencies.
The correlation matrix of t! e Pearson residuals between years from (2.1) was
1.00
pP=1016 1.00 - |- (2.2)

0.17 0.44 1.00

This correlation matrix is consis tent with the concept of random intercepts and slopes
for individual trial plots in the experiment. We will examine this concept in section

2.3.

2.3 Diagnosing random effects from correlation struc-

ture

To illustrate the concept of betveen time correlations and their relationship to random
effects, let us consider an exainple in which the errors, consisting of both random

effects (subject intercept and s ope on.y) and measurement error, are given by
€ = 25U + M, (2.3)

In this example U; are the random effects for subject ¢, and they are distributed as

N(0,D), where



where v} is the random subjec. intercept variance and vZ is the corresponding ran-
dom slope variance. The design vector for the random effects, z;, is (1,7;). The
measurement error is represent:d by M;;. The measurement error is independent of

the random effects, and it is di: tributed as N(0,0%,). From this,

var(ei;) = vi4 102+ 0k, (2.5)

cov(en, €;) = vi+miTi;vs, and (2.6)

2 2

Vi + TiTi Vg o

corr(e;, €5) = - — ! - : ']2 = —. (2.7)
\/(Vl + Tavs + ok ) (Vi + Tivi + o)

Figure 2.4 is an illustration of the correlations, (2.7), expected from the residuals
given by (2.3), over a range of values for the variance-covariance, D, of the random
effects. Measurement error has been included in the calculations, with o2, = 0.5. and
the linear time trend, 7;; has taken the value of the sampling time, ¢.

The differences over the range of values in Figure 2.4 a) and b), which are the
correlations between sampling times (1,2) and (1,3) are very slight. This feature was
seen in (2.2) where the correli.tions are 0.16 and 0.17 respectively. However, the
correlations seen in c) are usuilly much larger than those of both a) and b). This
feature is also evident in (2.2) v-here the correlation of the Pearson residuals between
year 2 and 3 is 0.44, substantially larger than the other between year correlations.
Therefore, the same error variainces in intercept and slope for a subject yield stronger

correlations with increasing tin e.
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Random slope variance

Figure 2.4: Contour plot of theoretical correlations amongst residuals. a) Correlation
between time 1 & 2, b) Correl: tion between time 1 & 3 and c) Correlation between
time 2 & 3.
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Our preliminary analysis hes suggested that the spatial (by graphical illustration
Figure 2.3) and temporal correlation is of a magnitude that cannot be ignored. We
shall now examine some models that include components to account for correlation
in a GLM framework.

The three techniques used are available in the Genstat 5.3.2 procedure library
(Genstat 5, 1993). They are marginal quasi-likelihood (MQL, Breslow and Clay-
ton, 1993), penalized quasi-like ihood (PQL, Schall,1991). and generalized estimating
equations (GEEs, Liang and Z:ger, 1986). The PQL and MQL techniques are used
when the model 1s formulated as a generalized linear mixed model (GLMM), and
hence the correlation in the d.ta is assumed to be due to the presence of random
effects. The GEEs used are :n extension of GLMs which attempt to adequately
account for correlation withou: specific reference in the model to the cause of this
correlation. The discussion qf hese methods is deferred to Section 3.2, however, we
use these techniques on our herbicide data to illustrate that we have a disparity in
the results, and therefore a need to examine each of them, as well as other available

techniques, in detail.

2.4 GLMM analysis
The model for both PQL and MQL was formulated as

E(count | U) = ;1 = exp [XB + ZU + log(soil weight)], (2.8)
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where 3 is a vector of fixed effects consisting of treatment, time and their interaction.
The vector U contains the rancom effects of row, column, row by column (plot), and

the interactions of these with t me. That is, for the ¢:th plot at sampling time ¢
log(pit) = treatment; * timey; + (row; * column;)/time;; + log(soil weight),, (2.9)
For these two techniques, the population mean is
E(count) = exp [XB + ]og(m)] , (2.10)

where soil weight represents the mean of the soil weights. These population means
are compared with the sample means in Figure 2.5.

We note from Figure 2.5 that the estimates from the MQL technique tend to be
close to the observed mean, estimating above and below this average with roughly
equal frequency; the MQL estiniate is slightly above the observed mean for treatments
2 and 10, slightly below the observed mean for treatments 1, 3, 4, 5, 6,and 11 and
about equal to the observed mean for treatments 7, 8,9 and 13. This would seemingly
indicate that adjustments are heing made for random plot effects as some estimated
treatment means will be increased compared to the observed mean by the MQL model

to account for “poor” field pos tioning and vice versa.
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Nutgrass 1uber Count

Figure 2.5: Comparison of estimates for nutgrass model.
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The contour plot of the MG L Pearson residuals for year 1 (Figure 2.6) does not
contain as many of the characteristic peaks and troughs which would indicate spatial
correlations in the modelled residuals as was seen in Figure 2.3. The positive and
negative residuals are not following as many evident patterns as they were in the
independent model, indicating " hat the removal of the random plot effects has been
moderately successful, when taling into consideration the poor spatial layout in the
design. One area still of concein is between columns 7 - 9 and rows 7 - 10 where a
large trough occurs, indicating that further modelling of the spatial structure may be

warranted. However, we will no' be pursuing this further at this stage of the analysis.

Figure 2.6: Contour >lot of residuals from MQL model, year 1.
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The PQL estimates shown i1 Figure 2.5 are consistently lower than the observed
mean and the population mean estimated using MQL. This possible underestimation

of the population mean by P()L techniques is unexpected when adjustments are
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being made for random plot effects, as we would expect some plots to be in poor
positions, some in better posit.ons and some to be about average. If this were the
case then estimates would be aljusted up and down according to field position. This
is of concern in the herbicide experiment because underestimation of the nutgrass
tuber population will falsely indicate that the herbicides being tested perform more
effectively than they actually do in practice.

The contour plot of the PQJ. Pearson residuals for the first year of the experiment
is given in Figure 2.7. This plot indicates that the spatial correlation has not been
adequately modelled, as the peaks and troughs are still clearly evident in a number
of areas over the field. Results Tom the following two years, which are not presented,

highlighted similar deficiencies in the model.

Figure 2.7: Contour plot of residuals from PQL model, year 1.

10

Row number
6

N
&2
#‘}/

Column Number

To determine if PQL is unc erestimating the population mean, and when each of
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these two techniques (PQL and MQL) is appropriate we shall examine and compare
them algebraically in Chapter 3. In Chapter 4 we shall examine their performance in

a small simulation study.

2.5 GEE analysis

The model used in the GEE mecthod was
E(count) = p = ex>[X3 + log(soil weight)], (2.11)
where the fixed effects vector 3 is equivalent to that of (2.8). That is
log(pi) =  treatment; * time;; + log(soil weight),,. (2.12)

An unconstrained correlatio structure was specified for the between years corre-
lation on plots. This was consid :red appropriate as with only three repeated measure-
ments, and an expected correlat on structure (2.2), the standard correlation structures
available in the GEE Genstat procedure (exchangeable, autoregressive or indepen-
dence) would not be adequate.

The GEE technique appears to be giving reasonable approximations which closely
map the MQL estimates and observed means for treatments 1. 2, 3, 4, 6, 10 and 13
(see Figure 2.5). However, for reatments 5, 8, 9, 11 and 12 the technique seems to
be yielding spurious results, particularly between years 2 and 3. For example, with
treatment 12, the estimate fron the GEE method in year three is more than five
times greater than the observed mean, and it seems unlikely that this could be a true

correction for random plot effects.
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The contour plot of the GE]J Pearson residuals for the first year (results in follow-
ing years being similar) are givzn in Figure 2.8. These contours indicate that spatial
correlation 1s an issue with this model due to the peaks and troughs seen in the field
layout of the model residuals. In (2.12), no attempt has been made to account for
row and column effects, as on y between time correlations on a subject have been
considered, hence possible spa ial correlations have been ignored. Attempts which
were made to account for spat al correlation by treating rows and columns as fixed

and then averaging over them “vere not successful.

Figure 2.8: Contour plot of residuals from GEE model, year 1.
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The model could further be refined to accommodate spatial correlation by using
a specially defined correlation type. This capability is provided within the GEE
Genstat procedure, and is kncwn as GEECORREL. This, however, would involve

a higher level of programming than may be warranted in the analysis of field trials
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The contour plot of the GELl Pearson residuals for the first year (results in follow-
ing years being similar) are giv:n in Figure 2.8. These contours indicate that spatial
correlation is an issue with this model due to the peaks and troughs seen in the field
layout of the model residuals. In (2.12), no attempt has been made to account for
row and column effects, as oniy between time correlations on a subject have been
considered, hence possible spatial correlations have been ignored. Attempts which
were made to account for spat al correlation by treating rows and columns as fixed

and then averaging over them ‘vere not successful.

Figure 2.8: Contour plot of residuals from GEE model, year 1.
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The model could further be refined to accommodate spatial correlation by using
a specially defined correlation type. This capability is provided within the GEE
Genstat procedure, and is kncwn as GEECORREL. This, however, would involve

a higher level of programming than may be warranted in the analysis of field trials
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when other techniques can prov.de satisfactory results for data that is both spatially

and temporally correlated.
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Chapter 3

Applications to count data

3.1 Introduction

Longitudinal studies are often conductad to observe the effect of experimental treat-
ments over time. Repeated me:.sures of counts, which are not Normally distributed,
present us with challenges as t> how they may be modelled. In the univariate set-
ting, the Poisson model and its associated negative binomial (McCullagh and Nelder,
1989, p198) models are appropriate. In this chapter we consider modelling the re-
peated measures of counts where the merginal distributions are Poisson and the counts
are correlated over time due tc random effects. We shall use the term “correlated
Poisson” as a name for these types of data.
The probability function for the Poisson distribution is of the form

y. —_
Pry =y)= i‘——e’%—‘ﬁ. (3.1)

If the counts over time were in lependent, the likelihood would take the form (3.2),
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where y;; denotes the measurement of subject 7 at time ¢, (i == 1,2,...,m), and
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The likelihood given in (3.2) is of the exponential family form given by (1.1) with a
dispersion parameter of 1 and the canonical link (logarithm). From (3.2) we can see

that the log likelihood has the torm

m mn, m n,

I(y; 0) = Z}:yné’n - Z Zexp(ﬂu). (3.3)

1=1t=1 1=1t=1

Standard results (see Appendi< A) give the maximum likelihood estimates of the
parameters ,B in the GLM for the independent Poisson model, given some initial

estimates 3,, and using the linl: function are
leg pie = mie = Xﬁﬁ + €it, (3.4)

and the estimating equations fcr this are given by (1.3).

As discussed in Section 1.2, n the case of longitudinal studies. it is naive to ignore
the possibility of correlation i1t the data. We shall now introduce some methods
of accounting for correlation in Poisson data. The main methods we shall examine
relate to random effects models and we shall also consider overdispersion models and
generalized estimating equatior techniques.
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Prior to introducing GLMDN s we shall sketch the results for linear mixed models
(LMMs). This is done because 1he maia thrust of several of the approximate methods
for GLMMs is to linearize the data and then proceed as in the linear model case.
Thus we shall be able to comp.ire the results for linear models with their non-linear

counterparts.

The LMM can be represent:d by
Y = X8+ 72U +¢, (3.5)

where the link is the identity, U ~ N(0, D) is the distribution of the random effects,
Z 1s the corresponding design niatrix, and € are the measurement error terms, which
are distributed as N (0, o?I).

The variance of this LMM can be shown to be
var(Y) =V = ZDZT + 01, (3.6)

assuming that random effects and measurement error components are independent.
With the LMM, restricted riaximum likelihood (REML) can be used to estimate
the variance components (D), t1en the fixed effects (3) are estimated via generalized

least squares using D to estimste the variance-covariance matrix V:
B= (XTV'X)T XTVlY. (3.7)
The random effects are estimat >d using best linear unbiased predictors (BLUP)
U=D2"V (Y -X3). (3.8)
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We now introduce the rand>m effects model for Poisson data in a general form
to derive the likelihood and priiciples for estimation. Let the Poisson random effects

model be represented as
log[E(Yy|U;)] = log pis = nie = x1,8 + 21U, (3.9)

In this model U; ~ MV N(0,D’ are independent realizations from a distribution with

density function
fU5D)=(20)"" | D |2 exp (—%U?D“Uz) ’ (3.10)

where ¢ is the dimension of the vector U,. Conditional upon U; it is assumed that

the responses Y;,..., Y, are independent Poisson variables, and

f(yie | Ui; D) = exp [yiebis — exp (0:1)] /i (3.11)

where 6;; = log u;;. The marginal likelihood for the observed data can then be

derived by integrating out the 1andom effects

yzt l U,,D) f(U,,I)) dU,

I /1t
I /Tl

=*Ru

exp [yitir — exp (0ir)] fuat! - (27)~ /2. D |~ 12 exp <— UTD'IU ) dU;

m Ny Ny e 1
= ¢ [] / Iz-[ (2”_(1/2 | D I-l/z) exp [; Yiebir — gexp (0:r) — 5T U?[)—lUi] dU;,

where ¢ = 1™, [T2, yi:!™!. This integral does not have a closed form solution due
to U; being quadratic in the e::ponential, and numerical methods are necessary for

evaluation.
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The classic procedure for e:timating parameters is maximum likelihood. In the
above case we need to evaluate the integral with respect to U and then find the
estimate of § such that the likelihood (L) is maximized. Newton-Raphson or Fisher’s
scoring are the usual algorithms used to find the maximum.

Assuming the random effects (U;) are independent we have derived the log-

likelihood in Appendix D:

I = loglL

i o 1 .
= Y |log (ID[72) +log (q/ exp{Z[yaeﬂ — exp (0a)] — 5n.UT D‘IUf}dL‘,-)
. u t=1 L

1=1

(3.13)

The score equations for the fixed effects (@) and the variance of the random effects

(D), if working with “complete’ data, comprising of (y, U), are

E(yilU-)
Spu = ZZ ztxu Xit €Xp (X:’Cﬂ + ZgUi)] =0, and (3.14)
1 X
Spwu = QD_1 S FE (U UT) D! - 5 D‘1 = 0. (3.15)

ey
Direct solution of ‘these score ¢ quations i1s complicated by U; being an unobserved
variable, and this draws us to the EM algorithm where U; can be replaced by its
expected value (Diggle et al., 994). This involves iterating between an E-step to
estimate the conditional expectations (i.e. (3.16) and (3.17)) in the score equations,
and an M-step in which these estimates are used to solve the score equations to gain

updated parameter estimates.
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The conditional expectations to be solved in the E-step are

E[E(y« | U:)] = exp (I8 +7,Dzy/2), and (3.16)

—1 ;
E(U,'UiT) = /R UiU?(27-)“’/2|D|‘1/2exp(7U5TD"]Ui)dU,i(3.17)
q

where ¢ is the dimension of U;. The integral in (3.17) is of the same dimension as
the random effects, U;, and necds to be evaluated numerically. This has been done
successfully in cases where therz was a small number of random effects (e.g. Hinde.
1982). However, in higher din ensional problems, alternative strategies have often
been employed as the numerica integration has become too unwieldy.

The numerical analyses described above are non-standard and do not lend thern-
selves to the use of commonly available procedures. Research during the past decade
has been directed towards findir g work'ng approximations. In section 3.2 we consider
some of the research and the evolution of methods that can be used for analysing
correlated Poisson data. Later in the thesis, a simulation study with constructed

correlated Poisson variables is 1 sed to compare the techniques.

3.2 Methods for analysing correlated Poisson data

In this review we shall compare and contrast 5 methods of approaching the approx-
imation of GLMMs. These me hods are generalized estimating equations, marginal
quasi-likelihood techniques, penalized cuasi-likelihood, the Gibbs sampler and mixing

distributions.
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3.2.1 Generalized estimating equations

Full likelihood models that aris: from (1.17), (1.18) and (1.19) are generally not prac-
ticable for routine data analysis. However, GEEs extend the GLM methodology to
correlated non-normal data by approximating the likelihood with a quasi-likelihood
based on the mean and varianc=. These procedures are much simpler than full likeli-
hood and amenable to routine use. As far as we are aware GEEs have been applied
mainly to longitudinal data in 1nedical statistics and remain relatively unexploited in
other contexts.

Liang and Zeger (1986) ext:nded generalized linear models to a longitudinal set-
ting, when regression was required, through the use of estimating equations which
took the correlation of the data into account. The joint distribution does not need to
be used in this method. Howev:r, weak assumptions about it are used to obtain esti-
mating equations that will yielc consistent estimates of the regression parameters and
their subsequent variances. Wi'h this method we let R(a) be a symmetric “working”
correlation matrix for the respcnses which is fully characterized by the vector ac. We
then let

Vi = V() "R(a) V(1) %a(¢). (3.18)

Equation (3.18) will be equal to cov(Y;) if R(«) is the true correlation matrix of the
response variables Y;. Some common forms of R(a) are given below. Figure 3.1 a)

corresponds to an autoregressive structure and b) to a uniform structure.
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Figure 3.1: Example correlation structures, a) autoregressive, b) uniform.
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The uniform correlation structure is equivalent to a random intercept (for subjects)
and measurement error model in the Jinear model. The errors in such a model are
represented by

€t = Z;I;U,' + Mit, (319)

where M is measurement erro-, distributed as N(0,02%), U are the random effect
coefficients which are distributed as N(0,02) and z; is the corresponding design
vector. As measurement error s assurned to be independent of the random subject

intercept then

var(e;) = ol+o0k, and (3.20)

COV((,‘t,C,']') = UZ, Vt;é] (321)

The correlation within subjects of the errors given by (3.19) is therefore

0_2

p=—t (3.22)

2 2
0u+am

and this is a uniform correlatior structure. Diggle et al. (1994) note that the uniform
correlation structure is the sam e as that which results from a split-plot experiment.

However, with longitudinal studies, the repeated measurements on the same subjects
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means that use of a split-plot 110del is no longer designed based as the allocation of
sampling times cannot be randcmized. Analysis via the split-plot ANOVA is therefore
model based using the assumption of uniform correlation.
Liang and Zeger (1986) define the zeneralized estimating equations by
n
S GIvIls, =0, (3.23)
i=1
where G; = ‘;—‘;:Xi and S; = Y, — y,. If the identity correlation matrix was chosen,
(3.23) would reduce to the score equation for the independent GLM. The GEEs
differ from the quasi-likelihood method (McCullagh and Nelder, 1989) in that V; is
a function of the correlation parameters, a, in addition to the model parameters, 3.
To compute the score equetions we replace both a and ¢ with n!/2? consistent

estimators &(Y, 8, 4) and ¢(Y, ). The estimate then proposed for the variance of

the coefficients 3 from (3.23) i:

n -1 /5 n \—1
Vg=2¢ (Z GiTleGi) (> GiTV[ISiS}rV;lGi) (Z GIVilG:| . (3.24)

i=1 =1 i=1 /

If we were using true maxiraum likelihood we would have the identity

d?l
p(5)+E

Then ( n L GIVIisSTv ‘1G,-), which is the quasi-likelihood counterpart of

2
(%) =), at the maximum likelihood estimate. (3.25)

(%)2 would cancel with ( a1 G,TVi_lG,-) -l, the quasi-likelihood counterpart of

- (%Z—i). Following from this, (3.24) would reduce to the usual parameter variance
of the independent GLM. However, as we are using a quasi-likelihood technique we

do not expect (3.25) to hold. Royal (1986) recommended variance estimates like
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(3.24) for robust estimation of the parameter variance. This is often referred to as

A

the sandwich estimate of the perameter variances (V(3)).

The estimates of the regression coeficients ( [3) are computed by a modified Fisher
scoring technique then ¢ and «x are calculated through moment estimation. This
algorithm is often referred to a« GEE1

GEE2 (Zhao and Prentice, 1990) encompassed a second stage where variance
parameters were able also estimr ated by different regressions, exploiting the indepen-

dence of the mean and dispersions. These algorithms are computationally demanding

and not considered further in this thesis.

3.2.2 Approximations using penalized quasi-likelihood

Schall (1991) produced an algor:thm for generalized linear models with random effects
which gave the same estimates for binary data as that proposed by Stiratelli et al.
(1984). Schall’s algorithm was ¢n adaption of Fellner’s (1986) work on estimation for
the LMM and works with the .«djusted dependent variable (McCullagh and Nelder,
1989, p40). For th(;, case of Poisson data, following Diggle et al. (1994, p174), we can
specify the algorithm as follows.

The adjusted dependent variable is represented by

d"]i
g(pee) + (yie — pie) =

S dpi

= log uy 4 Fi = H) (3.26)

Hit
and we use
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vie = var(yie | Ui) = a(@)V (pi) = pat,
. d 2 . -1
Q. = diag [v,—t (ﬁ*j) ] = diag[p;'], and
V, = Q:] + Z,DZ:F
The first step of the algor thm is to use the current estimate of D to obtain
updated estimates for the fixed ind random effects, 8 and U. To do this, the following

equations, (3.27) and (3.28) are solved iteratively;

A

B = (XTVX) X7V, (3.27)
U, = DZIV; (¢ -X.8). (3.28)

The second step then consists of using the updated estimates of B and U to calculate

an updated estimate for D. Tte equation used for this is

w
[
Ne)
N

DU+ = ! {E: [IAJ,-L"}T + (Z‘.TQt_—lz‘- + D(J')“)"l]} _ (3.

1::1
These two steps are iterated ur til convergence of the parameters is obtained.
It can be seen that (3.26) is the linearized form (first order Taylor’s expansion),

in the Poisson case, of log(y):

log(y) = log(x) + ¥ - L) (3.30)

where u = exp(zf + zU). A1 advantage of this linearization scheme is that the
random effects have been kept on their original scale, thereby giving their estimates

an easily interpreted value.
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3.2.3 Approximations using marginal quasi-likelihood

Breslow and Clayton (1993) give an algorithm for the GLMM using MQL. This
marginal model is appropriate when the fixed effects are used to determine their
effect on the population averag: rather than on individual profiles.

Using this model (in the Po sson case) we take

Evyi) = i, = exp (x18) . (3.31)

From Appendix C, (C.11), we s2e that this does not coincide with the marginal mean
given by the model (3.9), so (3 31) is thought of as a crude 1st order approximation
to the population mean averaged over infinite subjects, then D ~ 0.

Rather than using the adjus:ed dependent variable, (as in Schall, 1991), the value

of y is linearized using a Taylo1’s expansion about U; = 0;

d

exp (X?;ﬂ) + U; { — |exp (xgﬁ + zg;Ui)] |U‘=O} + e

Q

Yt a0,

= exp (x:";ﬂ) + z1 U, exp (x£ ) + €4, and then

(3.32)
var (yi;) = var [5£U,- exp (xg )] + var (€;t)
= exp(x} ) 21Dz, exp (xg;ﬂ) + a (i) V (pir)
= AGMIDz A + 0,
= A (A,-tvftA,'t + zﬁszt) AL,
(3.33)

47



_d - Tg)\]™! _ T3
where Ay = ZB¢ |y,20= [exp ()‘u )] , and v}, = uj, = exp (x”ﬁ‘).

The fixed effects are estimated using the quasi-likelihood equations for dependent

outcomes (McCullagh and Nelcer, 1989, pp332-336), which in our Poisson model are
X (Ave +2ZDZT) T A(Y - p7) = 0. (3.34)
We proceed by allowing 5, = x~3, and using the dependent variable
§o =i+ D (yie — piy) (3.35)
and then the inverse weight metrix becomes
V' = (AvjAi+2/Dz,). (3.36)

The fixed effects of the mode are then estimated by iteratively reweighted least
squares:
A= (XTV*—IX)—I (XTV*_lé') . (3.37)
We can see that the differences of the approach to that of Schall (1991) are in the
linearization technique, and as a result the methods differ only slightly.
The estimates of the variances components, &, where D(a) = 0, are obtained using

pseudo-likelihood and the REN L estimating equations (Harville, 1977)

1 . Tre-10V™
—5[(5 -XB8)' VvV 7

J

-1 \'%A
vV o(&T-XB8)—tr (Pa )] =0, (3.38)
aaj
where P = V*7' —V* 7' X x (X TV"—IX) “'XTV*" In this MQL method we iterate
between (3.37) and (3.38) until :onvergence is obtained, and then the BLUP estimates

of the random effects, U, are c.lculated as

U =DZ'Vv*" (& -Xg). (3.39)
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This method would be reascnable to use if the random effects themselves were of
no interest, but were rather seer as a way of adequately accounting for the correlation
present in the data. This is beciiuse the linearization scheme has placed the estimates
of the random effects on a new scale, making interpretation difficult. However, if
the random effects were of som= interest then the fact that the linearization scheme
used in the MQL approach has potentially set them on a different scale could make

interpretation a little more difficult.

3.2.4 Approximations using the Gibbs sampler

Zeger and Karim (1991) set the GLMM in a Bayesian setting, using the Gibbs sam-
pler to overcome the difficultie:. associated with likelihood inferences. The Bayesian
formulation is to let p(3, D) be the joint prior for these random variables and derive

the posterior distribution:

Ty [ £(y:1 U B)o(U; | D)p(B.D)U,
HBBIY) = T [ 75 1. 8)9(U. [D)p(8, DyaU.agaD” >

Because the denominator is a normaliz.ng constant, and independent of 3 and D, the
posterior mode can be derived using only the numerator. The posterior distribution
(3.40), and similarly f(U; | y) are usuially both numerically intractable and so the
Gibbs sampler is proposed as a three step method. With this method we seek the joint
distribution of U;,8 and D, a: well as the posterior distribution (3.40) and f(U; |
y). The Gibbs sampler allows us to achieve this by working with the conditional

distributions of U;, 8 and D, which are easier to sample from.
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The algorithm of Zeger and Karim (1991) iterates between three steps to obtain
updated estimates of (3, U,D . This follows from the work of Geman and Geman

(1984) which showed that
]\;i_rg) (,E‘(N),U(V),D(N)) = (8,U,D),

where convergence was obtainel exponentially under mild conditions.

The first step is to obtain a simulated value for the fixed effects (3) from the
conditional distribution [3 | U"),y]. By using the current estimates of U, the random
effects can be set as an offset tc a standard GLM, and current estimates for B(k), and
their variance, V,B(k) , determined. Fromn these values we simulate an updated estimate

s (k+1)

B

. It is difficult to know vhen sample size is large enough to justify sampling
a new estimate of @ directly fiom the MV N (B(k),vﬁ(k)>, so a rejection sampling
technique is used. This process s described briefly below, and a more detailed account
is available in Morgan (1984).

It is known that the true density of the fixed effects 3 is

£(8) o 1 flwie | V), (3.41)

and we can represent the multivariate Gaussian approximation to 8 by

exp [—-% (ﬁ — B)TVZ; (ﬂ - B)] ) (3.42)

~-1/2

9(8) = 2m) |V g]

with 3, ﬁ being p dimension v-ctors and Vﬁ is a d x d matrix.
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Figure 3.2: Illustration of rejection sampling concept.
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The rejection sampling algcrithm requires a constant, ¢, to be chosen such that
c-g(B) > f(B) over the required range, as illustrated in Figure 3.2. An updated

. o (k+1)
estimate [3( ) is then produced as follows;

1. generate 3" from g(B(k)),

2. calculate the ratio r = f(3%)/c- g(8"), and

3. generate a Uniform(0,1) random variable, u. If r > u accept 8" as the updated

- (k+1)

B

, otherwise repeat 1 ntil an acceptable update is found.

From Figure 3.2, it can be szen that the probability of 3 being rejected increases
with its distance from B(k). Tais rejection sampling can be done at little cost and
effort computationally.

The second step is to updiite the estimated variance-covariance matrix for the
random effects, D. As U; ~ N'VN(0,D) the standard non-informative prior (given
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by Box and Tiao, 1973) is

P(D) x |D| let1)/2 (3.43)
where ¢ is the dimension of U;. Then ID~! has a posterior distribution which follows
a Wishart distribution with (m — ¢ + 1) degrees of freedom and parameters S*) =
UKWUMT, An update of D caa be obtained by generating a standardized Wishart
distribution (Odell and Feiveson, 1966) with the appropriate degrees of freedom,
represented here by W*. Usirg a Choleski decomposition, S = H®TH®*)  we

obtain the updated estimate

-1

DG+ — (H“‘)TW*H(")) (3.44)

(k+1))

The third step is to genera:e updated random effects (U . The density of

these random effects is given by

8Dy - i1 U5 B)s(U | D)p(8,D) .
HOA8DY) = 776 T0, g0 [ Dpg DT, %)

The denominator of (3.45) involves an intractable integral which is avoided by the

Gibbs sampler. Only a simulated value from the conditional distribution is needed,
and once again this'is obtained 1 sing rejection sampling. For brevity let the numerator
of (3.45) be known as p(U).

We use the adjusted dependent variable given by (3.26), and updated estimates

o (k+1)

B

and D*+D | to iterate b:tween (3.46) and (3.47) and gain measures of mode

and curvature;
U, = (2'ViZi+D) " 2TV (& - XB). (3.46)
o = (2'ViZi+D7) 7. (3.47)
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Rejection sampling is now conducted to select an update on the estimates for the

random effects. The procedure is;
1. generate U ~ MV N (f] ,cyi;,-). where c; 1s a constant.

2. calculate ¢;; = p (ﬁ,) /¢ (ﬁ,) (this ensures equal ordinates at the common

mode U;), and

3. generate Unif(0,1), and call it u If the ratio p(U7}) /e1i - g (U7) > u we allow

Ur = UMY otherwise t 1e process is repeated.

1 1

This three step algorithm is iterated a large number of times until convergence is

considered to be satisfactory, s> we can be sure of stochastic stability.

3.2.5 Dealing with overdispersion by using mixing distribu-
tions

Van de Ven and Weber (1995) reated the overdispersion seen in the Poisson random
effects model by compounding the Poisson random variable with a gamma random
variable. Then the mean of th: Poisson and the gamma variance were modelled via
log-linear models. By mixing thie Poisson distribution with the gamma to account for
subject induced overdispersior, the integrals needed to calculate the likelihood are
éolvable. Lee and Nelder (1996) extended the idea of using conjugate distributions to

other members of the exponen ial family.
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The model is defined as
Yy ~ Poisson(v;uit), (3.48)

where v; are independent G(z, ). In this model, G, is the distribution of a I'(a;, =)

random variable. With this model we 1ave

log (i) = x},8,  and

losas) = 7,
(3.49)
where 3 are parameter values fcr the fixed effects, and 7 relate to the gamma random

variable. [t can be shown (Appendix E) that under this model the likelihood is given

by

B m P(ai -- yl) ( Q; )0’: n, ( it ) yut]
L= ' —— |, 3.50
i=1 [T(a,-) (TTo2y yae!) \ o + pa g o + p ( )

where z; = Y 14, Ty.
The solutions for the fixed a1d random effects are then given by iteratively solving

the following equations (3.51) and (3.52), using Fisher’s scoring method;

'm -1 m
Biosyy = B+ (Z X?AN:‘Az-Xi) S XTANVIH(Yi—p), (351
1=1 1i=1
; = i ZT i1 Brs1AmsiZ) ZTA ] 3.52
71(s+1) - ’7(3)+( “Am4+1Pm+143m+1 m+1im+1- ( . )
In these equations we use
A, = diag(p 1,- - -, fling)s

Vi = Ai+py] /o,
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A, = diag(a ,...,am),

dlogL  0dlogL\T
., = ey , wh
i ( Oy oam ) where
8logL Y. 1 Q; Hio — Y.
- — ) +1 : d
Oa; §<ai+r—l>+Og(ai+ut—.)+ui.+0¢i’ an
B,.+1 = diag(bms 1,---,5mt1n), where

B Y:. 1 2 F(ai) Hi.
b1 = Zl l:(ai Fr— 1) ] B I'la; +1) (Hi~ +C¥i> .

r=

Van de Ven and Weber (1995) also proposed a method which did not require
the mixing distribution G(z,a;1 to be gamma. This required use of quasi-likelihood

methods. The extended quas -likelihood for the subject totals is given by

QL= Z ——10g(27ry1)——'105 (1+——> +y: log<y )+(yz’-+a,‘)log<yl i H

1=1 z'+az

53)
To estimate the parameters under she extended quasi-likelihood model 1,,,; and

B,.+1 in (3.52) are replaced by

0Q Q

L = dia'g(%:, ce 5;;) where
8Q (o 13 —+ y,:‘ Y. a; Hi. — Y.
- =1 ( ) : +1lo + , and
Oa; °8 Q. N 20, (a, + y,'.) & o; + Wi Hio + o
Bl = dia‘g(b:n.+l,l3 s b;+1,n)1 where
b* R _L x lt _ _ﬂ? + Y. ) Yi. + Y. (2az + yz)
mE T ey T g (i + ) ai(aityi) 202 (e + i)

In the next chapter we will compare the performance of the models through the

use of a small simulation study with scme constructed correlated Poisson data.
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Chapter 4

Simulation Study

A small simulation study was conducted to examine the performance of GEEs (using
the correct correlation structure ), the PQL (Schall, 1991), the EQL (Van de Ven and
Weber, 1995) and the MQL (Breslow and Clayton, 1993) approximate methods for
GLMMs. Restrictions on computational resources did not allow the inclusion of the
Gibbs sampler approach in this :tudy, which we had programmed initially using Splus,
and an attempt was made to mr odel by using the program BUGS 0.5 (Spiegelhalter,

Thomas, Best and Gilks, 1996)

4.1 Outline of algorithm

Sim (1993) provided an algoritbm for simulating Poisson data with a fixed covariance
matrix which we shall now briet y describe. First, we define the elements of the vector

Y = (Yi,---,Y,) as independent Poisson variables with mean A; (z = 1,---,p), and
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a second vector W = (W, ,W,) as our required Poisson variates with a fixed
covariance matrix, 3, the elem :nts of which are o;; (¢,t = 1,---.p). Hence the mean
values of W, are o;;.

The required vector, W, caa be obtained from the independent vector, Y, using

the following transformation;

W, = 1 (as first sample is independent )

W’yg = Q91 * }'1 + Y—g

er = apl*}/l+"'+0»’p,p—l*}/p—l+y;y

(4.1)
where a;; € [0,1], 1 <z <t <j. This new random variable a * Y is defined as:
Y
axY =Y Bi(a) (4.2)
i=1

where a € [0, 1], Y is an independent Poisson variate and B;(a) ~ 12d Bernoulli(«).
Therefore it is the sum of Y independent units, with probability o of being retained
in the transformation (4.1).

This algorithm can be shcwn to produce the required Poisson variates (when
applied under some constraints) because a*Y is itself a random Poisson variate with
a lower mean than Y, o;; = Cov(W;, W,) = 22;11 QikQuk Ak FauA; and oy = Var(W,) =

t—1
k1 Ok + Ar
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4.2 Implementation of algorithm

The algorithm given by Sim (1193) and implemented using the Genstat procedure of
Murison and Harden (Appendi:: F) was used to simulate correlated Poisson data with
exchangeable correlation structure. Sim’s algorithm allows any specified correlation
structure, however we limit ourselves to the exchangeable structure in this study as it
1s a structure which we would reasonab:y expect to see in practice, as it corresponds to
a random intercept model, and will serve to test the different models. Several levels
of correlation were also simulited, p = 0.2 and 0.5. These levels were chosen
as 0.2 is representative of apjroximately the minimum level of correlation which
would need to be modelled anc 0.5 represents a high degree of correlation. For each
correlation size, 50 sets of data were simulated and for each parameter the mean and
standard deviation of the 50 estimates was calculated for comparison with the known
parameter.

The marginal means for 2 t-eatment groups at 4 times were modelled by

log(p, = Bo + Btreatment T 5time (4.3)

where (o and Bireatment are subject to random effects. The known values of g,
Btreatment and Biime Were chosen to give the means of 5, 6, 7, 8 for group 1 and 6,
7, 8, 9 for group 2. This simple mean model allows direct focus on the comparison of
techniques, unobstructed by tr:atment nuances.

The PQL (Schall, 1991) and MQL (Breslow and Clayton, 1993) models were fitted

using the procedure GLMM wt ich is available in the Genstat 5.3.2 procedure library.
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The GEE1 models were fitted u:ing procedures which are also available in the Genstat
5.3.2 procedure library. The e<tended quasi-likelihood (EQL) technique of Van de

Ven and Weber (1995) was fitted using the Splus program provided in Appendix G.

4.3 Simulation results

The results for the parameters f interest (intercept and treatment) are given in Table

4.1 and Table 4.2.

Table 4.1: Simulation results 1 +se) for exchangeable correlation structure, p = 0.2

Parameter | Sample size (n) =~ Actual GEE1 MQL EQL PQL

Ao 5. 1.6l 1.48 1.53 1.53 1.50
(£0.181) | (£0.177) | (£0.177) | (£0.176)

10 1.60 1.60 1.60 1.56
(£0.137) | (£0.134) | (£0.134) | (£0.137)

20 1.59 1.59 1.59 1.56
(£0.092) | (£0.090) | (0.090) | (£0.098)

Btreatment _ 5| 013 0.24 0.18 0.18 0.18
(£0.235) | (£0.207) | (+£0.207) | (+£0.208)

10 0.18 0.19 0.19 0.19
(£0.137) | (£0.127) | (£0.127) | (£0.132)

20 0.18 0.18 0.18 0.18
(£0.097) | (£0.094) | (£0.094) | (£0.097)

The results from the PQL method of analysis seemingly indicate a small but

consistent bias which is not yprominent in the other approaches. Considering the
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results it can be seen that this bias decreases with both increasing sample size and a
decrease in the level of correlat on. The bias of Bireatment is also small at low levels
of correlation, where mainly £, is effected, and this bias increases with correlation
levels.

Performances of all methocs were better at lower levels of correlation when the
sample size was small (10 sub_ects per group). This can be seen in the results by
both an increase in the accuracy of the estimate of the mean at correlation level (0.2
as compared with 0.5, and a decrease in the subsequent standard deviations of these

means.

Table 4.2: Simulation results . &se) for exchangeable correlation structure, p = 0.5

Parameter | Sample size (n) | Actual GEE1 MQL EQL PQL

Bo 5 1.61 1.58 1.57 1.57 1.53
(£0.200) | (£0.169) | (£0.171) | (£0.172)

10 1.55 1.56 1.56 1.52
(£0.158) | (£0.145) | (££0.145) | (£0.150)

20 1.58 1.58 1.58 1.55
(£0.097) | (£0.093) | (+£0.093) | (£0.098)

Btreatment 5/ 013 0.18 0.22 0.23* 0.23
(£0.268) | (£0.241) | (£0.238) | (&0.249)

10 0.22 0.21 0.21 0.21
(£0.200) | (£0.172) | (£0.172) | (£0.173)

20 0.21 0.19 0.19 0.20
(£0.125) | (£0.118) | (£0.118) | (£0.118)

NOTE: * Simulation 26 value: failed to compute for EQL estimates. All other run
estimates were ;he same as MQL to 4 decimal places.
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Table 4.1 and Table 4.2 illistrate that with larger sample sizes (20 subjects per
group) the estimates of the meins are more consistent between correlation levels for
all four techniques tested.

The bias illustrated in this simulation study is consistent with the findings of Kuk

(1995) and Lin and Breslow (1996) who proposed methods to correct for this bias.

4.4 Practical implications

In the results for this simulated exchangeable correlation structure we see that GEEI
and MQL are comparable in bcth their estimates of the mean and their correspond-
ing standard deviations. This was observed in the case where the working correlation
matrix for the GEE1 procedur: was correctly specified. Crowder (1995) illustrated
that problems may be encount :red when the structure of the working matrix is in-
correctly specified. In his pape: he showed that, over a specific range of correlation
levels, estimations of the paranieters, o, in the working correlation matrix, have no
solution if specified as exchangeable when the true correlation is autoregressive.

In our consulting role we fe:l that we would use MQL procedures in an analysis
where spatial and/or temporal correlation was present in the data, and accounting
for this correlation in terms of the model was intuitive or of some interest. The use of
MQL in field trials may often i1 volve spatial effects that are due to serial correlation,
which would be indicated by feld trends, rather than the patchy row and column

effects seen in the nutgrass da:a. In such cases, a more sophisticated model than
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the one used in the nutgrass da.a analysis, which could incorporate serial correlation
terms to account for trend, wotld be required.

The primary use we see for GEE1 procedures is in cases when a study involves
repeated measurements in time, such as animal experiments. The GEE procedure
has the facilities required to ccnstruct complex correlation structures through their
specification in GEECORREL. This feature gives GEE greater scope for use in field
trials, however, this involves 1 nderstanding the nature of the correlation, that is
how the correlation is induced serial correlation or random effects), and thinking of
this correlation in model term:. Whereas GEEs, as discussed in Section 3.2.1. are
generally used to account for correlation when the cause or source of the correlation
is of little interest other than to refine our parameter estimates.

The trend of increased accuracy in the PQL estimates with increasing sample size,
which can be seen in Table 4.1 and Table 4.2, combines with a lower accuracy than
the other techniques. This has .ed us to conclude that the use of PQL is appropriate
only in cases where there is a lerge sample. We will discuss some possible reasons for
the failure of PQLlunder the conditions of small sample size in Section 4.5.

With these simulated data sets it was observed that the estimates for the fixed
effects from the EQL method were equivalent (to four decimal places) to the estimates
from the MQL analysis. To h:lp determine whether this was a perculiarity of the
simulated data or a real effect, an ana.ysis of the data provided in the paper by Van

de Ven and Weber (1995) was carried out using MQL techniques. A comparison of
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the estimated fixed coeflicients for the model, given in the paper as

7
log(ui:) = Z Ttk Ok
k=1

where (i, -, B6) relates to tle slide number and 3; indicates a counter status of

zero, is given in Table 4.3.

Table 4.3: Comparison of MQL and EQL results for slide example

Method B B2 Ji B4 B Be Bz
EQL 3.189 | 0.1945 | 0.0536 | -0.0160 | -0.1069 | -0.1158 | -0.3834
MQL 3.177 1 0.1896 | 0.0502 | 0.0053 | -0.0930 | -0.1202 | -0.3712

These results were considerzd to be sufficiently different and combined with the
non convergence of a simulatior set (Table 4.2) seemed to rule out the possibility that
the methods were equivalent.

In the EQL analysis it was also noted that the convergence of the random effects
was heavily dependent on the s arting values used in the algorithm. However, despite
the failure of the random effec:s to converge, the estimates for the fixed effects had

little difficulty in cbnvergence.

4.5 PQL with small sample sizes

In the case of the linear mixed model, parameters are estimated using REML but there
is no real counterpart to REML in the nonlinear setting. In the GLM setting, PQL

methods use REML type estiniation with the updated dependent variable, given by
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(3.26). In section 3.2.2 we also 10ted that (3.26), in the Poisson case, was equivalent
to the first order Taylor’s expar sion of log(y) (given by (3.30)).

The PQL algorithm is derived by using the adjusted dependent variable (£) in a
linear mixed model context. As such, the parameter estimates are only reliable for
making inferences about data it € is a reliable approximation for log(y).

Using (3.26), we may denoted the adjusted dependent variable by

&€ = glp)+ (y —pg'(n), andin the Poisson case,

= log(p) +(y — u)

® R

= XB+2U+2H  and then,
u

on

2
cov(§) = ZDZT + %I (5;) , 1n the general case, and

= ZDZT + diag(p~'), in the Poisson case. (4.4)

For fixed D, updated estimates of 8 and U are found by solving (3.27) and (3.28).
However, an estimate of D mist be used in these equations. We take the score
equation for D, (3.15), and its conditional expectation, (3.17), to gain an estimate
for D. From these equations we derive

m

D = m? Y E(UUT |y)
=1
= m Y EU |y) E(Us |y +m™ Y var (U; | yi) (4.5)
1=1 i=1

Approximating the distribu ion (U, | y:) by a Gaussian distribution allows us to

replace E(U; | y;) by the mode of the Gaussian counterpart. Using the curvature of
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the Gaussian distribution,

m_‘ 1
var (Ui | yi) = 3 (2.:Q7'Z] + D) (4.6)
1:=1

where Q; is as defined in Secticn 3.2.2

Diggle et al. (1994, ppl74-)) suggest that (4.4) and (4.5) are the limitations of
PQL. In the case of (4.4), cov(£) is not constant but may be satisfactory if the GLM
1s not far from Gaussian. This would be the case with large sample sizes of Poisson
variates which also have large mean parameters. Such a sample may be reliably
approximated by the Normal distribution and Z—Ll ~ 1. Equation (4.5) is possibly more
vulnerable for data such as the 1utgrass experiment since there are small samples per
subject. The Gaussian distribu:ions constructed from these samples may not match
the data well and the mode calculated with Gaussian assumptions could be dissimilar

to the mean it is intended to approxim.ate.
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Chapter 5

Error model diagnostics for Poisson

GLMDMs using the variogram

5.1 Introduction

In this thesis so far, we have d:scussed models where the nature of correlation could
be assumed. In this chapter we examine diagnostics for selecting the correlation
structure of a data set.

The variogram, which has its origins in geostatistics, has often been used as a tool
for identifying error structures in linear repeated measures analysis (Diggle et al.,
1994). Its function is to describe the association amongst repeated measurements, and
it can be used when the measuiements are not equally spaced in time. In the context

of examining error structures, ‘he residuals are used to calculate the variogram.
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The definition of a variogra:n can be represented as
]
’)(u) = E;E [(6,’3 — 6,']')2] ) (51)

where u = |t — j| represents the lag between measurements on a subject. The vari-
ogram is the plot of y(u) again;t u. The lag may be a time or spatial separation.
The model for residuals containing all three sources of variation (random effects,
serial correlation and measurerr ent error) is given by equation (1.8). From this repre-
sentation we can derive from this (see Appendix H) that the variogram for the model

with only a random intercept or no random components at all will be

Y(1) = o + 05c [1 — p(u)] (5.2)

The term o3, represents the variance of measurement error, 02 is the variance of the
serial correlation and p(u) is the autocorrelation function.

To interpret a variogram for linear data we can use

o lim, .o, y(u) = 03 + 0. + var(other random terms),
e 7(0) = 0%, and the process variance

o var(e;) = 25Dz + 03 + 0kc

The variogram will indicate wiich components of dispersion are present and their
relative contributions to the model. An example variogram is given in Figure 5.1,

where



v} is the variance of the random: subject intercept and 2 is the variance of the random
subject slope effects.

The sample variogram is calculated from data by firstly calculating the residu-
als 7y = yit — ¥: (subject ¢, time t) and then averaging the half squared observed

differences (v;jx) for each apprcpriate lag (u;jx) where

(T‘,‘j —_ T‘,’k)2 y and (53)

D =

Vijk =

Uik = tij—t,'k. (5.4)

The process variance (V,,) is similarly calculated as the mean of

1.
3 (Tig — T‘lk)2 (5.5)
where 7 # [.
Figure 5.1: Examwnle variogram containing 3 error sources.
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We are interested in extending the use of the variogram to repeated measures of
count data as an aid in determ ining which error model is appropriate for any given
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data set, in particularly whetl er the use of the random effects model is justified.

We shall consider the use of tle variogram for identifying error structures for both

GLMMs and GEEs.

5.2 The variogram for detecting random effects
and serial correlation in correlated Poisson mod-

els.

In the linear model, the variogram is calculated from the residuals after fitting the
fixed effects at each sampling. In the case of count data, the initial Poisson based
model is the naive GLM and we examine the resultant residuals for the error structure.

The adjusted dependent variable in the Poisson case is a linearized form of log(y)

to the first order, that is,

los(y) =~ og(s) + @ (5.6)

where p = exp(xﬂ.). (McCullagh and Nelder, 1989, p40)

Schall (1991) exploits this linearization by assuming that linear methods such
as BLUP and REML are sati:factory. One advantage of the linearization scheme
discussed in section 3.2 is that it keeps the random effects on the same scale as the
parameters, and if serial corre ation were present it would similarly be kept on the
same scale.

From (5.6) it can be seen 'hat the “working” residuals {(y - p) -g%} are on the
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linearized scale and as such are the residuals which are required for the variogram.
We now show how residuals from tae linearized scale can be used to interpret the
error components.

Suppose the true underlyin s structure of the model conforms to
log(yit) = x5B + 2z, Ui + Wi(r) + M.. (5.7)

The first step is to construct a variogram of the residuals from the fit of a naive
Poisson GLM, assuming only o 1e error source and independence of data. In this case
pir = exp(x},B).

The “working” residuals for the Poisson model would be

(yir = far) ﬁ(XEA {explz} Ui + Wi(ri) + M] - 1}
fLit exp(x%8)

= Z:’C] Ji+ Wi(ri) + M; + higher order terms.

(5.8)

If the higher order terms ar> negligible, the variogram of the “working” residuals
will be an appropriate estimatz of the magnitude of the random intercept and the

other error components in a gien set of data.
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Another residual we could coinstruct is

wi = log(yir) — log(ftit)

ZZ;-Ui + W,’(T,’z) + M,' (59)

(yn - ﬁ'it)

fhit
(5.10)
We note that the residuals «;; given by (5.9) are approximately equal (first order)
to the working residuals (5.8). F ut since the working residuals from the naive Poisson
GLM potentially contain the random effects and serial correlation, they may be too

inaccurate to be useful in the d agnosis of the error components.

5.3 Variograms from a simulation study

To determine the appropriateness of the variogram of “working” residuals (from the
independence model) a small sirnulation study was conducted. The model simulated
contained random effects and measurement error. There was a random intercept and
slope which were d'istributed as N(0,D), with

D= ,
0 0.01

and the measurement error was distributed as N(0,0.25).
The first stage of the study wvas to calculate both the working residuals (5.8) and
the alternative residuals (5.9) for eack of the 10 simulated data sets to determine

whether the higher order terms of the Taylor’s expansion in (5.8) were negligible.
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Figure 5.2: Comparison of two residuals in Simulation study (one set). The dotted
line is 1:1.
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Plots of w;; (termed true resiluals) egainst the first order working residuals (Figure
5.2) given by the naive GLM siow that these working residuals may be inappropri-
ate for use in the variogram Lecause the first order linear approximation discards

important information. Succestive plots where the higher order terms
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first order residuals. As a resul: we expect that the first order working residuals will

not be as informative as the residuals (5.9) when used in a variogram.

Figure 5.3: Simulaticn study variograms for true residuals (5.9).
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The variograms for the residuals (5.9) in Figure 5.3 verify the use of these residuals
from a naive Poisson GLM fit to determine appropriate error structures. All the
variograms except g) would clearly indicate at the investigative analysis stage that a
random intercept model for the error structure, with possibly other random or serial

correlation terms would be appropriate. By comparison with the generic variogram
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(Figure 5.1), we deduce that t} e variance due to random intercepts is not negligable.
Variogram g) would falsely ind cate that the correlation in the data had been induced

by some random effects other than an intercept or an autocorrelation function.

Figure 5.4: Simulat on study variograms for working residuals.
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The variograms for the linzar predictors (Figure 5.4) show that the use of the
working residuals to approxim ate residuals (5.9) from a naive Poisson GLM fit is
potentially subject to an inaccuracy wkich can be misleading when trying to determine

the appropriate error structures. Variograms a), b), d), e), f). h), and j) would still
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clearly indicate (although often not as well as the variograms for residuals (5.9)) that a
random intercept model for the error structure would be an appropriate starting place,
due to the large gap between he variogram and the estimate of V,,, with possible
other random effects and/or autocorrelation functions being neccessary. Variogram
¢) would be inconclusive and sariograms g) and 1) would falsely indicate that the
correlation in the data had not been iaduced by a random intercept. In practice, c)
would probably be treated as a borderline case and examined more thoroughly at the
exploratory analysis stage.

In linear modelling the varicgram would usually be constructed using the residuals
on the original scale (known as “response” or “raw” residuals). To demonstrate why
this would be inappropriate in the Poisson case we can draw upon (5.7) and calculate

the “raw” residuals from the ni.ive GLM,

Yir — flit exp(x%B) lexp[zE U; + Wi(ri) + M;] — 1)

= exp(x};f)

25U, + Wi(ri) + M; +  higher order terms|. (5.11)

We can see from (5.11) that the magnitudes in the variogram of such “raw” residu-
als would have been affected by a scale change due to the multiplication of the errors
by the mean calculated from -he naive GLM. As a result, the variogram of these
residuals may not be as simply used to identify the magnitude of the effect each error
component has in the data.

This is confirmed by the va iograms of the raw residuals given in Figure 5.5. Al-

though these variograms would have basically indicated the same error components,
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it was not as visually obvious which model to choose. This can be illustrated by
comparing the variograms of cata set j). In the variogram constructed from both
residuals (5.9) and the working residuals it was quite evident that serial correlation
was not a major contributor tc the error term, and consequently the random inter-
cept model (and possibly other random effects) would be appropriate. However, in
the corresponding variogram y elded by the raw residuals, serial correlation and/or
random effects other than an intercept appear to play a more significant role in the
error structure of the data.

We also note, using data set i) as an example, that the appropriate error model
has becorne more obscured as ve move from residuals (5.9), to (5.8) and (5.11). In
Figure 5.3 (residuals w;;) it is clear that a random intercept model is appropriate.
with possible other random te-ms or serial correlation. the same data set with a
variogram of the working resicuals (Figure 5.4) indicates that the possibility of a
random intercept could be inve:tigated as it is a borderline case. With the variogram
of raw residuals (Figure 5.5) there is no indication of a random intercept being present
in data set i). This decrease i sensitivity through the three residual types can be
observed in the majority of the data sets, specifically b), ¢), d), e), f) (in which the

random intercept became more prominent with the working residuals), h), i) and j).
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V(lag)

The comparison of these viriograras implies that in practice the use of working
residuals, (5.8), to determine er -or structure from an initial independence GLM, in the
Poisson case, is likely to direct t 1e analvsis appropriately. However, the residuals given
by (5.9) are more sensitive to she uncerlying error structure and easy to construct,

therefore making them adoptaole in routine practice. The raw residuals (5.11) are

10

10

Figure 5.5: Simul.tion study variograms for raw residuals.
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too insensitive to the true erro - structure to be used for this purpose.



Appendix A

Iteratively weighted least squares

Our starting point is the likelil ood equation:

_Wo-bo)
= B elyi o) (A1)

We require estimates B whizh are obtained from starting values by the Newton-

Rhapson procedure,

. .l 21\
ﬁ(]+1) — ﬁ“) + _(_ . E <_—-) A2

The chain rule for differentiition:

A9l do du On

0B 80 du dy 9B

can be used to find the score statistic:

a1 [(y—-n) du}
— iz —— - X = A3
a8 " a(9) [ v A9)
and the expected value of the s:cond derivative 1s:
0% 1 { rodp oy dpir ]
— — = A X ()T (=) X A4
o505~ a@ |* (@) A
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Substituting the values of e juations (A.3) and (A.4) into equation (A.2) yields:

_ T 711
30+1) _ 30) 4 |1y i“i) -1 (d_”) L [(y—"—ﬂ ~d—”]
s +L<¢> () v (B) x| g e

Thus estimation can be don: by weighted least squares. We calculate the updated

dependent variable,

, . L dnl9)
L) = 7}(1) +(y — ,u(])) . e (A.6)
at the jth iteration, and define weights
duld)
( s ) V(W)= DVID (A7)
We can then calculate:
AUHY = [ XT(DV D)X XT(DV D)) (A.8)
or equivalently from A.5;
T ¢ du(?) 1 )
BUHY = [ O) 4 X~ G varom v — 17 (A.9)

¢ dula) dul?)
X T( dfr)t—(ﬁ )Var(p(ﬂ) ( d"q‘zJ) )TX
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Appendix B

Identities

Using the identity E(a—é) =0a1d E(Y) = p then:

O = {u B10))/a()}

b — #516(0)]

So E(Y) = p = 5[b(6)].
Using E(Z1) + E(Z)? = 0 implies:

2 2

~ /a6 + B {u= g0} a(s)

o la() + E ([~ E(V))/a(4))’

_3_2 uld Var(Y)
é,02/ (@) + (o)
Var(Y)

where V' (u) is the variance functioa of p.
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Appendix C

Derivation of F(y) and var(y) in

Poisson GLMM

The Poisson glmm is given by:
log(n) = n = XA + ZU (C.10)
Now, the expected value of y under this model is:

E(y) = E[E(y|U)]
= /Oo exp(XB +ZU)- (27)"™2. | D |7V% -exp (%IUTD*U\) dU

oo 1
— (2r)™?.|D | -exp(X@)/ exp (ZU - 5UTD-1U) duU

m

1/2
—m _ T 1
= (27) /2-|D| 1/2-exp(XB)-{H (D“-%) - exp [ZDZT/ (4-‘)

S

N——

| S———
N———

= exp(XB +2ZDZ")2)

(C.11)
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The expected value of y? is needed:

E(y’) = E[E(y V)]

/  exp (2XB + 27U) - (27)"2. | D |12 . exp (:‘;—l—UTD"lU) dU

(27)"™2. | D |7V - exp (2X8) /_o:o exp [— (%UTD"IU - 2ZU>] dU

(27)™™2 | D |7V exp (2X8) - (2m)™2 | D [7Y2 exp

4ZDZ7/ (4. i

o |
N
—_

exp (2X8 + 22Dz 7)

(C.12)
From (C.11) and (C.12) we can calculate:
var[E(y |U)] = E[E(y?|U)| —{E[E(y | U))}?
= exp(2X3 +2ZDZ7) — exp (2X8 + zZDZ”)
= ep(2XA) [exp (2ZDZT) — exp (ZDZT)]
(C.13)
As we are using the Poisson distribution of the GLMM:
Elvar(y |U)] = exp(XB+2U)
(C.14)
From (C.14) and (C.13) we calculate the variance of y as:
var(y) = Elvar(y|U)|+ var E(y|U)]
= exp(XB + ZVJ) + exp (2XB) [exp (2ZDZ”) — exp (zDZ")
(C.15)
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Appendix D

Derivation of log-likelihood and

score functions in Poisson GLMM

Working from the marginal 1 kelihood given by (3.12) we can calculate the log-

likelihood as:

[ = loglL
= log {H/ exp [i yi (LB + 2 TU ) i exp (x:";ﬂ + ngiﬂ
t=1

- 1/2 q/2 ( l Tp-1 )] 1
H[|D| (2m) exp (-5 UTD7U, )| U

o~
—

Yit (’{:’Cﬂ + ngi) — iexp (xiTt,B + Z};Ui)]

_ gjlog{/}hexp[

t

—= EF’JP

I[ID 7 @2m) exp <—%U,-TD“U,)] dU,}

1
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= Y log {/R exp [z': Yit (<3;ﬁ + ng,-) — ‘:exp (xzﬁ + z?;Ui)] f(Uy; D)dUl}
=1 w t=1 t=1

(D.16)

From (D.16) we can develo> the fcllowing score equations:

1=1

By m d—‘b Jry €XP [Z?él Yit (xﬁ@ + z?;Ui) — exp (xgg + ng,-)] f(U;; D)dU;
55 - Z Jry €Xp [y 1 (x5 B + 28 U;) — exp (xE8 + 21 U,)] £(U,; D)dU;

Jruexp [C0ts yie (x53 + 2L Us) — exp (x];8 + 2] Uy) f(U;; D)dU,
(D.17)

- {fnu 75 (exp [Ty (318 + 2LU:) — exp (8 + 21 UL |) F(U:: D)dUz}

1=1

where f(U;; D) is defined by (D.24).
Now 5% will equal zero if the numerator in (D.17) is equal to zero. To show this

we focus only on parts involviag 8. lKxpanding the derivative in the numerator we

have
75 (o0 | S (2 + 210) - exp (<t + 210
B P
= {% L:Z'l Yit (x:f';ﬁ + z:-TtU,-) — exp (xgﬁ + zzUi)}

exp [znl: Yit (X:‘Cﬁ + Zl-jt‘U,') — exp <X£ﬁ + Z;It‘Ul)} }

t=1

= { [Z yitxg — X;t €Xp (xg;ﬂ + ngi)}
t=1

exp [Enj: Yir (Xgﬂ + Z?;U,') — exp (xglg + ZITtUz)] }

t=:1
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The term exp [Z:‘;l Yit (ix?; 3+ z:f';U,-) — exp (x,-Tt,B + zﬁU,-)] cannot be equal to

zero and so % = 0 implies

SIBIy,U _ }T_: ;i‘:x“ [yit — exp (xf;,@ + ngi)]} =0

=1 '.t=1

(D.19)

The score equation for D are derived using the following identities (see Hogg and

Craig (1995)).

(1) = /RIfXY(iE,y) dr (D.20)
frix(yl ) = % (D.21)
ERX) ) = [ h¥V)frix(ul =) dy (D.22)

and the assumptions of the mcdel that given U;, the repeated measurements y;; on
subject ¢ are independent.

The conditional density of g, given U, is
friv(uie | Us; B) = C - exp [2 yie (5B + 25 U;) — exp (x5B + z;vCUi)} (D.23)
‘=1

where C is a normalizing const int.

The density of the ¢ dimensional random effects U; is
1
i (Us D) = (27)7 | D [/ exp (-5UTD™'U, ) (B-24)
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We derive
= i (fRu n; {% [| D |/ exp (“-UTD—lU )]}Ht L frw (v | Ui B)(27)~9/2dU; )

‘FRu H:L; fY|U(yzt | Uuﬁ)fU(UnD)dUz
(D.25)

as C is a constant and hence cincels top and bottom in (D.25).

Now we determine

(10 e (-grD)] = (g5 10177 e (—gurD70)
[d‘:) exp (—--UTD 1y, )] (1D 1/2)}

1 1
== {—iD_l | D I‘_l/2 €Xp (—iU?D—III,>

+%D_1U,~U1TD—1 exp (—%UZTD_lUZ> ; D |—1/2}

(D.26)

Using (D.26) we obtain
ol . [froni (AD7YUUD — 1D [IE, frio(ye | U,,ﬂ)fu(Ul,D)dU}

oD B = Jr T2y frw(yie | Uis B) fu(Uy; D)dU;
(D.27)

where the normalizing constants have cancelled each other. The above result uses
the assumption of conditional ndependence of subjects, and using this assumption

further the denominator becorr es
| frwls | Usifo(U) dU; = fr (). (D.28)

With U; integrated out we can include this density in the numerator and obtain

m 1 -1 -1 Lo Sriv(wi) fu(Us) _
Z[/ (ruurp - go) HERERES au

0[)

1=1
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= 2 [/Ru i (ED_IU"U‘TD—I B ED_1> Juy (Ui | gi)  dU;

- Z [EE (D—lUiU?D‘1 — D_l)] , using (D.22)

- [%D‘IE (UUT) D - %D‘l]

From (D.29) we get the score equation for D

"p-1=0

Splyw = %D-l ij (U,»U,.T) D! — 5

=1
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Appendix E

Deriving the likelihood for Poisson

mixed with Giamma distribution

Given

o (ai=1)
exp(—aii)aiy;
flviles) =

F(ai)

and

(~Vipie)¥ exp(—7iptit)
yit!

S | vi, i) =

then we obtain the likelihood a:

L= I [, TS0 (v 0

'Ytl

= ljﬁ/o [ i o ] v exp[—ri(pie + ai)ldyi

-1 Yi t'F‘ Qg
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- [T, i) n Y . }
= " —7i(pir + )] dy;
H{H,Iyzt a')tHl/ 7 exp[—vi(pir + oi)]dy

i=1

_ ﬁ {( t=1 /I'?t") ( o ) [ te1 L' + yit) ] }

i=1 1oy ya! Nag) ) [T (@ + pig)vsetos

et esen) T (msm) |
i=1 (e )(IT720 y:et) Qi + ity it i1 \ Qi + Sy Mit

- I + i) ( a; )a' n'( it )y"]
1;1[ )(nt lytt) o + Y. t:I—[l o+ WYy

where z;. = 37i%, 2,

s
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Appendix F

Simulation procedure for
correlated Poisson data

(Exchangeable structure)

This Genstat procedure was wr tten by S. Harden and R. Murison, NSW Agriculture

Tamworth, to simulate correlat:d Poisson data using the algorithm of Sim [29].
PROCEDURE ’PdISMEANS’

PARAMETER NAME="RHO’, "Inout: exchangeable correlation"

’BETACONS’, "Input: constant term in L.P. "

’BETATREAT’, "Input: "

’BETATIME’, "Input: "

’SIG’,’P’,’LAMBDA’, MU’ ;MOJE=p;

TYPE=’SCALAR’,’SCALAR’,’SCALAR’,’VARIATE’, ’MATRIX’,’SCALAR’,
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"VARIATE’ ,’VARIATE’

SCALAR a,b,dum;VALUE=0,0,¢

CALC notime=NOBSERVATIONS(BETATIME)+1
VARIATE[NVALUES=notime] LAMBDA

CALC LAMBDA$[1]=EXP(BETACCNS+BETATREAT)

FOR I =2...#notime

CALC Ii=I-1

CALC LAMBDA$[I]=EXP(BETACCNS+BETATREAT+BETATIME$[Ii])

ENDFOR

CALC P=NOBSERVATIONS (LAMBLA)

VARIATE [NVALUES=P] MU

CALC MU=LAMBDA

DIAGONALMATRIX [ROWS=P] DSig;VALUES=MU
MATRIX [ROWS=P;COLUMNS=P] 3IG

CALC SIG = DSig / 2

FOR I = 2...#P
CALC IM1 = I-1

FOR J = 1...IM1
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CALC SIG$[I;J] = RHO*SQRT(4*SIG$[I;I]*SIG$[J;JI])
ENDFOR

ENDFOR

CALC SIG = SIG + TRANSPOSE(SIG)

ENDPROCEDURE

OPEN ’poismeans.proc’;CHANNEL=2;FILETYPE=backingstore
STORE [CHANNEL=2; SUBFILE=POISMEANS ; METHOD=o0 ; PROCEDURE=yes] POISMEANS

CLOSE CHANNEL=2;FILETYPE=backingstore

PROCEDURE °’POISSIM’

PARAMETER NAME=’NEWZ’, "Output:the simulated Poisson data"
’SIG’, "Input: Matrix witi means and covariances"

’P’, "Input:NumEer of repeited measures"

’LAMBDA’, "Input: "

’FLAG’, "Output: 1 if suc:essful, O if not"

’LV’, "Input: 1length of eich variable"

’RANSED’ "Input: random number seed"

;MODE=p;

TYPE='VARIATE’,’MATRIX’,’S ’ALAR’,
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’VARIATE’,’SCALAR’,’SCALAF’,’SCALAR’

CALC FLAG=1

CALC P2p = PP

MATRIX [ROWS=P;COLUMNS=P;\ALUES=#P2p(1)] alpha
CALC PL = LV+P

MATRIX [ROWS=LV;COLUMNS=P;VALUES=#PL(0)] Z,x

CALC LAMBDA$[1] = SIG$[1;1]

FOR J = 2...#P

CALC alpha$[J;1] = SIG$[J;1]/LAMBDA$[1]

IF alpha$[J;1].LT.0.0R.alpha$[J;1].GT.1
CALC FLAG=0

PRINT !T(ERROR_alpha)
EXIT[CONTROL=procedure]

ENDIF

IF J.GT.2

CALC JM1 = J-1
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FOR I = 2...JM1

CALC IM1 = I-1

CALC P1[1...IM1] = alpha$|I;1...IM1]*alpha$[J;1...IM1]*LAMBDA$[1...IM1]
CALC a = 0

FOR K = 1...IM1

CALC a = a + P1[K]

ENDFOR

IF a.LT.SIG$[J;I].AND.SIG$[J;I].LT.(LAMBDA$[I]+a)
CALC alpha$[J;I] = (SIG$[.;I]-a)/LAMBDAS$[I]

ELSE

CALC FLAG=0

PRINT !T(ERROR.a)

EXIT[CONTROL=procedure]

ENDIF

ENDFOR "FOR I = 2...JM1"

ENDIF "IF J.GT.2"

CALC JM1 = J-1
CALC P2[1...JM1] = alpha$ J;1.. JM1]*LAMBDA$[1...IM1]

CALC b =0
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FOR K = 1...JM1
CALC b = b + P2[K]

ENDFOR "FOR K=1...JM1"

IF SIG$[J;J].GT.b

CALC LAMBDA$[J] = SIG$[J;J]-b
ELSE

CALC FLAG=0

PRINT 'T(ERROR.LD)
EXIT[CONTROL=procedure]

ENDIF "IF SIG$[J;J].GT.b"

ENDFOR "FOR J = 2...#p"

GRANDOM[DISTRIBUTION=Poisson;MEAN=LAMBDA$[1];

VARIANCE=LAMBDA$ [1] ; NVALUE S=LV ; SEED=RANSED] prans

FOR K = 1...LV
CALC x$[K;1]=prans$[K]
ENDFOR "K = 1...LV"

CALC Z=x
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FOR J=2...#P
VARIATE [NVALUES=LV]alx
CALC alx=0

CALC IM=J-1

CALC rsed=RANSED
FOR I=1...IM

FOR K=1...LV
CALC nbnt=x$[K;I]
FOR L=1...nbnt

CALC valp=alpha$[J;I]*(1-:1pha$[J;I])

IF valp.GT.O

CALC rsed=rsed+L
GRANDOM[DISTRIBUTIUN=binonial;MEAN=a1pha$[J;I];VARIANCE=va1p;
NVALUES=1;SEED=rsed]rbin

CALC alx$[K]=alx$[K]+rbin

ELSE

CALC FLAG=0

PRINT !T(ERROR.variance biromial)

EXIT[CONTROL=procedure]

ENDIF "About binomial"
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ENDFOR "FOR L=1...nbnt"

ENDFOR "FOR K=1...1lv"

ENDFOR "FOR I=1...IM"

CALC prsed2=RANSED+101
GRANDOM [DISTRIBUTION=Poisson;MEAN=LAMBDA$[J];

VARIANCE=LAMBDA$ [J] ;NVALUE3=LV; SEED=prsed2]prans

FOR K=1...LV
CALC x$[K;J]=prans$[K]
CALC Z$[K;J]=alx$[K]+x$[K; 1]

ENDFOR "K=1...LV"

ENDFOR "J=1...#p"

VARIATE nlen

CALC nlen=Px*LV

VARIATE [NVALUES=#nlen] NEWZ

CALC NEWZ$[1...#nlen]=Z$[(L...#LV)#P;#LV(1...4P)]
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ENDPROCEDURE

OPEN ’pcisim.proc’;CHANNELI=2;FILETYPE=backingstore

STORE [CHANNEL=2; SUBFILE=P({ ISSIM;METHOD=0; PROCEDURE=yes] POISSIM

CLOSE CHANNEL=2;FILETYPE=tackingstore

ENDJOB

STOP
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Appendix G

Splus routine for simulation study

using EQL methodology

The following program was wr tten in Splus code to perform the EQL technique on
the simulations conducted in Chapter 4. Comments are provided to help link the
program to the terminology used in Van de Ven and Weber [32].

#Setting up contrasts.
options(contrasfs=c(”cont1.treatment","contr.poly“))
# Matrix of 0’s to put 50 coefficient estimates for each parameter.

sim.betas <- matrix(0,50,¢

# Read in data and declare factors.
siml.df <- read.table("gee.gendata" , header=T)

siml.df$trt <- as.factor(simi1.df$trt)
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siml.df$repm <- as.factor(simi.df$repm)

# Iterate process from data set 1 to 50.

for(w in 1:50){

# Temporary data frame of simulation data set w.

temp.df <- siml.df[siml.df$simno==w,]

# len is the number of measurements in total, len2 is the number of subjects.
len <- length(temp.df[,1])

len2 <- length(unique(temp.df$idno))

# Using glm() to get design matrix of fixed effects, XX.
glm.model <- glm(YY repm+trt,family=poisson,data=temp.df,x=T)

XX <- glm.model$x

# smui represents ) L fij =7 fi.-
smui <- rep(0,len)

Yvar <- as.matrix(temp.df$YY)

# Calculate initial parameter values.

halfsies <- rep(0.5,len)
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TT <- mui <- numeric(0)
AA <~ matrix(0,len,len)

syi <- rep(0,len)

# syl represents EZ?;Iyw-=:y+-
for(i in 1:len2){

syiltemp.df$idno==1i] <- sum(temp.df$YY[temp.df$idno==1]) }

# Initial starting values for p and log(ps). TT and mui represent 7;; and
g -

for(i in 1:len){

muili] <- max(temp.df$YY[i],halfsies[i])

TT[i] <- log(muil[i]) }

mui <- as.matrix(mui)

# AA represents A, a diagcnal matrix of u’s.

diag(AA) <- mui

Xt <- Iuwt <- Tt <- 1list()

# Xt, Iwt and Tt are list forms of matrices X;, A; and T;.

# For extra comments on this loop see main body of program (j loop).
for(i in 1:len2){

a.temp <- AA[temp.df$idno==1i,terp.df$idno==i]
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Iwt <- ¢(Iwt,list(a.temp),

x.temp <- XX[temp.df$idno:==i,]
if(length(temp.df$idno[terp.df$idno==i])==1)
x.temp <- t(as.matrix(x.temp))

Xt <- c(Xt,list(x.temp))

t.temp <- TT[temp.df$idno==i]

Tt <- c(Tt,list(t.temp)) ]

partsi.beta <- parts2.bet:. <- list()

# Calculate initial estimi:tes of fixed effects,

By = (O, XTW X)) ' XTW,'T, where W' = A; (Iwt).

for(i in 1:len2){

partsi.temp <- t(Xt[[i]1)/*%Iwt[[i]1%*%Xt[[1]] # XT A, X;
parts2.temp <- t(Xt[[i11)!*%Iwt[[i1]%*%Tt[[i]1] # X7 AT,
partsl.beta <- c(partsl.beta,list(partsl.temp)) # Make into lists.

parts2.beta <- é(parts2.bnta,list(parts2.temp)) }

len3 <- dim(XX) [2] # Number of fixed effect coefficients, p.
pl.beta <- matrix(0,len3,..en3) # p x p matrix of 0’s.
p2.beta <- matrix(0,len3,:) # p x 1 matrix of 0’s.

for(i in 1:len2){

pl.beta <- pl.betatpartsl betal[i]] # Y7, X7 A;X;, a p x p matrix.
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p2.beta <- p2.betat+parts2.betal[il] # 7, X7 AT, a p x 1 matrix. }
pl.beta <- solve(pi.beta) # (27, XTA;X;)™!
BO <- pi.betal*p2.beta # (7, XTA; X)) 'Sn, XTAT:, apx 1 matrix,,@m).

mui <- as.matrix(exp(XX/*%B0O)) # New estimates of p;,.

for(i in 1:1len2){
smui[temp.df$idno==1i] <- sum(mui[temp.df$idno==i]) }

smui <- as.matrix(smui)

smu.alp <- sy.alp <- numeric(0)

# In this loop find unique vector of y, and p;..
for(i in 1:len2){

sy.alp[i] <- syiltemp.df$idno==i] [1]

smu.alp[i] <- smui[temp.di$idno==1i][1] }

# Initial estimate of 7).

¢ o (nio) = (e il

eta0 <- (sum(smu.alp))A2 ., (sum{(sy.alp-smu.alp)A2)-sum(smu.alp))
eta0 <- log(eta0)

etal <- as.matrix(eta0)

# Z1 is the design matrix of the random effects.
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Z1 <- matrix(1,len2,1)

# AK and BK represent Ag,, and Bgy;.
AK <- BK <- matrix(0,len2,len2)
BK.temp <- numeric(0)

bk.1st <- rep(0,len2)

LK <- rep(0,len2)

# Use initial estimates of [ and 7.

Beta <- BO

eta <- etal

# Number of iterations to be carried out.

niter <- 10

for(j in 1:niter){
# pij’s and a;’s (exp(z?n)) recalculated at the start of each iteration.
mui <- as.matrix(exp(XX%*)Beta))

alphai <- exp(ZZix%eta)

# X;, S., A; and V, given in list form.
Xt <- St <- AA <- VV <- 1l:st()
for(i in 1:len2){

# Forming A; = diag(ﬂila" ,,“in.')~
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a.temp <- muil[temp.df$idnc==i]

if (length(a.temp)>1){

a.temp <- diag(a.temp)}

AA <- c(AA,list(a.temp))

# Forming design matrix for fixed effects X;.

x.temp <- XX[temp.df$idno==1,]
if(length(temp.df$idno[temp.df$idno==1])==1)

x.temp <- t(as.matrix(x.temp))

Xt <- c(Xt,list(x.temp))

# Forming S; =y — .

s.temp <- Yvar[temp.df$idno==i]-mui[temp.df$idno==1]
St <- c(St,list(s.temp)) # Calculate f:.

invalp <- 1 / alphailtemp.df$idno==1][1]

# Calculate V; = A; + puipl /e

v.temp <- AA[[i]]+mui[temp.df$idno==1]%*/t (mui[temp.df$idno==1i])*invalp
# Let v.temp = i@'l.

v.temp <- solve(v.temp)

VV <- c(VV,list(v.temp)) }

partsl.beta <- parts2.beta <- list()
for(i in 1:len2){

# Calculate XEFA,-\/,-'IAi)('i.
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partsi.temp <- t(XtL[[iJ])Y*UAALTi)I%*UVVILA]]%*%AAT 2] ]%*%Xt [[1]]
parts2.temp <- t(Xt[[i]1)¥%*%AAC[i]]%*%UVVI[i11%*%st[[i]1] # XTA,V.7'S;.
partsi.teta <- c(partsl.beta,list(partsl.temp)) # Form lists.

parts2.beta <- c(parts2.beta,list(parts2.temp)) }

pl.beta <- matrix(0,len3,len3) # p x p matrix of 0’s.
p2.beta <- matrix(0,len3,1) # p x 1 matrix 0’s.

for(i in 1:1len2)({

pl.beta <- pl.beta+partsi.betal[i]] # 7, XTA, V1A X;.
p2.beta <- p2.beta+parts2.betal[i]] # 37 XTA, V'S, }
pl.beta <- solve(pl.beta) # ( ;ll)(?/LWé_I/L)ﬂj‘l.

# Brew = Bod + (X0, XTAV, AX) N (En, XTAVTS).

Beta <- Beta+pl.betal*/ip2.beta

# Recalculate estimates of u;; to use in estimating Mnew -
mui <- as.matrii(exp(XX%*%Beta))
for(i in 1:len2){

smuil[temp.df$idno==i] <~ sim(mui[temp.df$idno==1i]) # yx,’s. }

BK.temp <- numeric(0)

bk.1st <- rep(0,len2)
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smu.alp <- sy.alp <- uni.zlp <- numeric(0)
for(i in 1:len2){

uni.alp[i] <- alphail[temp.df$idro==i][1] # ;.
sy.alpli] <- syil[temp.df$:dno==i][1] # y,..

smu.alpli] <- smuiltemp.di$idno==i][1] # u;. }

# AK is Ak, = diag(ag,....ax). In this case a;=a Vi.

diag(AK) <- uni.alp

# This loop calculates Bj,;. See pp210-211 of paper.
for(i in 1:len2){

bk.1st[i] <- 1 / uni.alp[:]*(
log((uni.alp[i]+sy.alp[i]. / uni.alp[i])+
sy.alpl[i] / (2%uni.alp[il*(uni.alplil+sy.alp[il))+
log(uni.alp[i] / (uni.alp!il+smu.alp[i]))+
(smu.alp[i]—sy.élp[i]) / (smu.alp[i]+uni.alp[i])
)+

(smu.alp[i]lA2+uni.alp[il*sy.alp[i]) /
(uni.alplil*(smu.alp[i]+uni.alpli])A2)-

sy.alp[i] / (uni.alp[i]J*Cuni.alp[il+sy.alplil))-
(sy.alp[il*(2%uni.alp[i]+sy.alplil)) /

(2%uni.alp[i]A2*(uni.alp[il+sy.alp[i]l)A2)
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bk.1st{i] <- -1*bk.1st[i] }
bk.1st <- as.matrix(bk.1s-)
BK.temp <- bk.1st

diag(BK) <- BK.temp

# LK is [,,. See pp210-211 of paper.

LK <- rep(0,len2)

for(i in 1:len2){

LK[i] <~ log((uni.alp[il+uy.alplil) / uni.alp[i])+
sy.alp[i] / (2*uni.alp[il>:(uni.alp[il+sy.alp[i]))+
log(uni.alp[i] / (uni.alp i]+smu.alp[i]))+
(smu.alpli]-sy.alp[i]) / 'smu.alp[i]+uni.alp[i]) }

LK <- as.matrix(LK)

# ﬁnew = f]old + (ZTAK+1B;\:+1 AK+1 Z)_IZTAK+1ZZ—+1 .

eta <- etatsolve(t(Z1)%Ux%aKU*xLBKY*%AKY*%Z1) Y*%t (Z1) U*x%AKY*%LK

} #end iterative loop j.

# Making a matrix of estinates for 3 with each of the 50 data sets.

sim.betas[w,] <- Beta
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} # end simulation loop w.

# Results from the 50 date: sets are in the matrix sim.betas.
sim.betas <- round(sim.betas,4)
dimnames (sim.betas) <- list(NULL,c("Constant",'"repm2","repm3","repmd",

"Treatment"))
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Appendix H

Derivation of variogram

The formula for the error term contairing all three sources of variation used is:
e = 25U + Wi (1) + M; (H.31)
From (H.31) we can derive
var(e;;) = 22Dz + 0% + 0y (H.32)
and using the independence property of measurement errors
cov(cir, €i) == 2, Dzy; + okcp(u) (H.33)

where u represents the time lag between measurements.

The variogram can then be represeated as

';'E [(Qt - fij)2] = %E (E?t €y 261’:%‘)
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= —|[var(e;) + var(e;) — 2cov(ey, €;)]

2
1
= 35 {z?;D'Lit + ZZDzij +2(ck. +0%) — Q[Z,‘tDZZ; + Ugcp(u)]}
(H.34)
If the model contains only .+ random intercept, the variogram then becomes:
ylu) = ol + ose[l = p(u)] (H.35)

However, if other random effects, such as slope, are present in the data these

effects will also be contained ir the variogram.
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