A COMPARISON OF METHODS FOR ANALYSING CORRELATED COUNT DATA.

By

Clair Alston

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE

 \mathbf{OF}

THE UNIVERSITY OF NEW ENGLAND

March 1997

Preface

I hereby declare that this thesis describes my own original work, supervised by Dr Robert Murison (major supervisor), Dr David Smith and Dr Ian Davies.

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Clair Alston.

Acknowledgements

I would like to thank my supervisors, Dr Robert Murison and Dr David Smith, for their guidance and support with this work.

Graham Charles of NSW Agriculture, Narrabri, is thanked for providing the herbicide data set which I have used extensively in this thesis.

Thanks are also due to Adr an Doss who scribbled all over several "final" drafts with red ink, to Steven Harder for various computing tips, and to Dr Ian Davies, Tony and Barbara Bernardi for helpful comments on a recent draft.

Family and friends are also gratefully acknowledged for encouraging and tolerating me during the time I have spen doing this project.

Abstract

This thesis considers extensions of Generalized Linear Models (Nelder and Wedderburn, 1972) to incorporate correlated count data. Of particular interest is the Poisson random effects model which is commonly solved by approximate methods due to the complexity of calculations in maximum likelihood estimation (Diggle, Liang and Zeger, 1994, p173-5).

The methods considered fall into 4 categories;

- 1. quasi-likelihood techniques, (Schall, 1991), (Breslow and Clayton, 1993),
- 2. overdispersion models, (Van de Ven and Weber, 1995)
- 3. generalized estimating equations, (Liang and Zeger, 1986), and
- 4. Markov Chain Monte Car o techniques, (Zeger and Karim, 1991).

These techniques are examined and compared both algebraically and through the use of a small simulation study. On this basis, some recommendations for the use of these methods in practice are made.

The variogram is used to determine which error model is appropriate to use with

a number of data sets, and use of several residual types resulting from GLMs are compared. This comparison is done so that the appropriate error model is most evident at the investigative stage of the analysis.

Contents

\mathbf{P}_{i}	refac	e	ii
${f A}$	ckno	wledgements	iii
A	bstra	act	iv
1	Intr	roduction	1
	1.1	Generalized linear models	:3
		1.1.1 Definition of generalized linear models	ō
		1.1.2 Likelihood func ions	6
		1.1.3 Correlation in longitudinal and temporal data	7
	1.2	Models for correlation : tructure	8
	1.3	Random effects models	15
2	Cor	mparative analysis of herbicide experiment	19
	2.1	The experimental design	19
	2.2	Preliminary analysis	22
	2.3	Diagnosing random effects from correlation structure	25

	2.4	GLMM analysis	28
	2.5	GEE analysis	33
3	App	olications to count data	36
	3.1	Introduction	36
	3.2	Methods for analysing correlated Poisson data	41
		3.2.1 Generalized estimating equations	42
		3.2.2 Approximations using penalized quasi-likelihood	45
		3.2.3 Approximations using marginal quasi-likelihood	47
		3.2.4 Approximations using the Gibbs sampler	49
		3.2.5 Dealing with overdispersion by using mixing distributions	53
4	Sim	ulation Study	56
	4.1	Outline of algorithm	56
	4.2	Implementation of algorithm	58
	4.3	Simulation results	59
	4.4	Practical implications	61
	4.5	PQL with small sample sizes	63
5	Err	or model diagnostics for Poisson GLMMs using the variogram	66
	5.1	Introduction	66
	5.2	The variogram for detecting random effects and serial correlation in	
		correlated Poisson models	69
	5.3	Variograms from a simulation study	71

A	Iteratively weighted least squares	78
В	Identities	80
\mathbf{C}	Derivation of $E(y)$ and $var(y)$ in Poisson GLMM	81
D	Derivation of log-likelihe od and score functions in Poisson GLMM	83
\mathbf{E}	Deriving the likelihood for Poisson mixed with Gamma distribution	88
F	Simulation procedure for correlated Poisson data (Exchangeable stru	. C -
	ture)	90
\mathbf{G}	Splus routine for simulation study using EQL methodology	99
Н	Derivation of variogram	110
Re	eferences	112

List of Tables

2.1	Table of experimental creatments	20
2.2	Treatment counts by design row.	22
4.1	Simulation results (±se) for exchangeable correlation structure, $\rho = 0.2$	59
4.2	Simulation results (±se) for exchangeable correlation structure, $\rho = 0.5$	60
4.3	Comparison of MQL and EQL results for slide example	63

List of Figures

1.1	Growth profiles from s mulated data	14
2.1	Experimental design of nutgrass trial	21
2.2	Raw data from nutgrass experiment	23
2.3	Contour plot of residuals from model (2.1), year 1	24
2.4	Contour plot of theoretical correlations amongst residuals. a) Corre-	
	lation between time 1 & 2, b) Correlation between time 1 & 3 and c)	
	Correlation between time 2 & 3	27
2.5	Comparison of estimates for nutgrass model	30
2.6	Contour plot of residuals from MQL model, year 1	31
2.7	Contour plot of residuals from PQL model, year 1	32
2.8	Contour plot of residuals from GEE model, year 1	34
3.1	Example correlation structures, a) autoregressive, b) uniform	43
3.2	Illustration of rejection sampling concept	51
5.1	Example variogram containing 3 error sources	68
5.2	Comparison of two resi luals in Simulation study (one set). The dotted	
	line is 1:1	72

5.3	Simulation study variograms for true residuals (5.9)	73
5.4	Simulation study variograms for working residuals	74
5.5	Simulation study variograms for raw residuals	77