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Abstract

This thesis considers extension: of Generalized Linear Models (Nelder and Wedder-
burn, 1972) to incorporate corr:lated count data. Of particular interest is the Pois-
son random effects model whict is commonly solved by approximate methods due to
the complexity of calculations i1 maximum likelihood estimation (Diggle, Liang and
Zeger, 1994, p173-5).

The methods considered fall into 4 categories;

1. quasi-likelihood techniques, (Schall, 1991), (Breslow and Clayton, 1993),
2. overdispersion models, (Vin de Ven and Weber, 1995)

3. generalized estimating equations, (Liang and Zeger, 1986), and

4. Markov Chain Monte Car o techniques, (Zeger and Karim, 1991).

These techniques are examined ind compared both algebraically and through the use
of a small simulation study. On this basis, some recommendations for the use of these
methods in practice are made.

The variogram is used to de ermine which error model is appropriate to use with



a nurnber of data sets, and use of several residual types resulting from GLMs are
compared. This comparison is done so that the appropriate error model is most

evident at the investigative stage of the analysis.
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