INTFEODUCTION

This study was an investigation of students’ understanding of indices
(exponents). In particular the e nphasis was on persistent errors students
make when working with indices, and on the reasons which explain their
performance.

An examination of the literature relating to errors in index work
showed little has been done in this area. A number of researchers
(DeVincenzo, 1980; Childers, 1987) catalogued numerous errors and
compared errors in arithmetic with errors in algebra. No real attempt was
made to provide general explinations for these errors. Wilson (1985)
explored students’ understanding of indices within a framework developed
from the theories of Bruner, Skemp, Krutetsksi and Gagne. He found that
students, when working with indices, made errors because of a lack of
genuine understanding of the rules they had acquired. From an examination
of students’ written work, Shevarev (1946) drew conclusions about the
processes students use in arriving at answers to questions involving indices.
He focused, particularly, on the influence teachers and textbooks have on
the kind of thinking students apoly.

While there is extensive cvidence of the problems students have in
operating with indices, little has been done to explore the reasons. To
provide focus for such an examination, frequent errors were first identified.
This was done both through a review of relevant literature and from an
analysis of errors in a large public examination conducted annually in
N.S.W. From these errors, themes, relating directly to the problems students
have, were identified for exploration.

A purpose of this researc1 was to provide teachers with direction so
that they might better cater for learning needs of students in this area.
Accordingly, the educational context in which students acquire their
understanding was given a high profile throughout the research. This was
done in terms of both: the influence the context has on understanding; and,
the implications the research has for classroom practices.

Additional themes, relating to theories of learning which may explain
the understanding being appliec, were developed for exploration. The aim of
this was to place the research in a wider context, and to provide further
direction for teachers. A pilot study was carried out prior to the main study.
This was done to clarify issues concerning both the instrument to be used



and the appropriateness of the themes.

Both quantitative and qaalitative analysis were employed in the
research. Persistent errors, and the students making them, were identified
by testing. Students were then interviewed to ascertain the kinds of
understanding they were applying. Statistical analysis was also used to
explore levels of understanding teing exhibited by students.

Chapter 1 provides a bcckground to this research by examining
relevant issues in the teaching and learning of algebra. Indices are largely
applied within algebra and the understandings students have in algebra
influence their understanding o>f indices. The nature of algebra, and its
teaching, are first discussed, tlhien problems students have in algebra are
broadly examined. Following this, consideration is given to implications
certain research in the field of al sebra has for this present project.

In Chapter 2, the research is focused on the central issue, namely,
students’ errors and understandings in their work with indices. It begins by
defining what is meant by indices and describes the position that indices
occupy within the curriculum. Tais provides a structure within which errors
can later be classified. Followi1g this, research in the field of indices is
reviewed. While mention has heen made of how limited this is, several
significant projects have been undertaken in this area by Shevarev,
DeVincenzo, Childers and Wilsoa. An overview of the research is given and,
then, these particular projects are considered in detail. A number of
research issues, relating to students’ understandings, are identified from the
literature. Finally, consideratiorn is given to implications the literature has
for the way in which errors are to be classified.

A comprehensive analysis of student responses to questions involving
indices in the N.S.W. School C-rtificate Moderator examination is carried
out in Chapter 3. Nineteen categories are used to classify errors made over a
period of 11 years. From the persistent errors identified in this analysis, and
from the literature reviewed in the previous chapter. themes for
investigation are developed.

Theories of learning, which may offer explanation for errors students
make in index questions, are examined in Chapter 4. When selecting the
theories, issues raised earlier concerning algebra and indices were taken into
account, together with results of the analysis in Chapter 3. From the
examination of the theories, three themes which may explain the kinds of
understandings students apply in index work are then developed for
research.

Chapter 5 describes the Pilot Study. It begins with a synthesis of



themes and issues raised in the preceding chapters and a discussion of the
purpose of the Pilot Study. The remainder of the chapter is devoted to the
design and analysis of the study and to implications the analysis has for the
Main Study.

The design of the Main Study is presented in Chapter 6, together with
an overview of its results. At ‘he end of this chapter, specific research
questions are posed within each of the content related themes that emerged
from the literature review in Chapter 2 and the analysis of Chapter 3.
Chapters 7 and 8 provide a full analysis and discussion of those research
questions, within the framework of each theme.

In Chapter 9, the first of ‘he three themes relating to theories which
may explain the kinds of undeistandings students apply in index work is
addressed. This theme was concerned with levels of response and, in
particular, the SOLO Taxononiy as a framework within which to view
student responses to questions involving indices. In this chapter, further
statistical analysis of the data, directed at identifying whether levels of
learning can be discerned in student responses, is undertaken. Following
that analysis, the qualitative data is examined to ascertain how it relates
to, and elaborates on, findings e nerging from the quantitative analysis.

Chapter 10 focuses fu-ther on the question of a theoretical
framework. The two remaining; themes, relating to theories which may
explain the understandings students apply in index work, are investigated.
The first of these uses Skemp’s concept of ‘relational’ and ‘instrumental’
understanding to explore the <ind of understanding being applied. The
second theme examines whether particular persistent errors can be
explained in terms of the co)gnitive constructs of ‘connections’, as
postulated by Shevarev, and ‘frames’. as put forward by Davis. Finally, a
synthesis is undertaken of the findings from all three themes concerned
with theories of learning.

The final chapter brings together, and concludes upon, the issues
raised throughout the research The results of the study are summarised,
following a discussion of the limitation and constraints. Implications the
research has for teaching practices, and for further research, are then
considered.



Chapter 1

ALGEBRA - THE SETTING FOR THE RESEARCH

Introduction to Chapter

Students’ understandings of indices develop, and are applied, within their
knowledge bases of arithmetic ¢ nd algebra. Skills in arithmetic should, for
the most part, pose few difficulties to those students pursuing courses of
study in which work involving indices has a significant position. However,
the same cannot be said of algebra, where there is extensive evidence that
students have widespread proble ns.

Algebra sets the context for this research in two ways. Firstly, the
nature and purpose of alg:bra should determine the nature of
understanding of indices. Indices are a tool of algebra and these
understandings should be such as to facilitate success in that field.
Secondly, misunderstandings ir. algebra influence, interact with and recur
in students’ work with indices. While neither issue can be explored in depth
here, it is important to highlight the most relevant points.

The way in which algebra is taught influences students’
understandings of indices. A section in this chapter considers some
implications, pertinent to this research, of the different approaches to
teaching algebra.

Finally in this chapter, tvo research projects are discussed from a
perspective of the contributiors their methodologies and findings might
make to this research. The first of these is the ‘Concepts in Secondary
Mathematics and Science’ project conducted in England between 1974 and
1979. The second, which deve oped from the first, is the ‘Strategies and
Errors in Secondary Mathematics’ project conducted from 1980 to 1983.



THE NATURE AND PURPOSE OF ALGEBRA

If judgments are to be made on the quality of students’ understandings in
algebra it is first necessary to consider what writers in this field understand
by the term ‘algebra’, and how i:s major role in the secondary mathematics
curriculum is justified. It is worthwhile observing that the literature
certainly does not see algebra as simply the manipulation of symbols with
little apparent purpose and invclving little depth of understanding. Algebra
can be seen to have three roles. These are described below.

Firstly, algebra is generalised arithmetic. It is a precise and powerful
language within which we can see and express general statements. The
Mathematical Association (Boy’s Schools Committee1934, p.6) reported that
“the symbolisation involves, or brings to light, generalisation; it helps us to
realise the wide applicability of a single statement or that a multitude of
single facts are included in one seneral rule”. In Routes to/Roots of Algebra,
when focusing on algebra’s capacity to express generalisations, it is stated

Generalising is not restricted to numerical situations. It is a
much more fundamental and wide-ranging activity. It can be
argued that all human learning involves the distillation of
individual experiences irto broader general principles ... As
teachers, it seems appropriate that we should help pupils to
express their own genera isations more clearly and efficiently,
and encourage pupils to check for validity.
(Mason, ‘3raham, Pimm and Gowar 1985, p.4)

Secondly, algebra facilitaies the solving of problems in number and
measurement. It does this through the transformation of algebraic
statements, using procedures whereby general statements may be
manipulated to provide alternative but equivalent general statements. In
this use of algebra “the key instructions are simplify and solve ... (and)
variables are either unknowns or constants” (Usiskin 1988, p.13).
Traditionally, the justification or algebra in the curriculum has been in
terms of its practical applications in the sciences through its ability to
facilitate both calculation and p -oblem solving.

Thirdly, algebra is the study of relationships among quantities with a
central concept being that of 1 function. Usiskin observed “the crucial
distinction between this and the previous conceptions is that, here,
variables vary” (1988, p.13). The concept of a function is central to much of
the content of the courses followed by students in New South Wales
schools. Without a genuine urderstanding of variable much of the work



students do, when graphing functions, answering question in differential
and integral calculus and workir g with series, becomes quite meaningless.

DIFFICULTIES IN THE LEARNING OF ALGEBRA

The strengths of algebra are alsc the features which make it difficult to both
teach and learn. It is a precise and compact language but because of its
succinctness “is open to incomprehension” (Mason 1985, p.1).

While the problems studer.ts have with algebra manifest themselves in
diverse ways, recent articles frame the difficulties within the bounds of: (a)
establishing meaning for letters; (b) knowing what is expected of the answer;
(c) understanding the nature and purpose of generalisations; and, (d)
working with algebraic notation.

Problems of establishing meaning for letters

In discussing this, Milton stated “some children do not see that a letter is
used to stand for a generalised number, whilst still others think that the
‘size of a number’ varies with the ‘position of the letter’; meaning that Y is
worth more than A” (1988, p.6) Routes to/Roots of Algebra (p. 5) contains
material which identifies the ccnfusion which can occur in translating an
English statement. This can result in students treating letters as units of
measure or as representing objects, not as generalised numbers.

The importance of establishing meanings for letters is reinforced by
Booth’s statement that “one could say that until a student does appreciate
the use of letters as variables, or at least as ‘generalised numbers’ then
algebra can have little meaning” (1986, p.3).

Problems in knowing what is expected of an answer

Problems which centre on the difficulties students have in deciding what is
expected in the way of an answer have their basis in the experiences
students typically have in arith:netic. Here the student is usually expected
to arrive at some ‘specific numerical answer’ so that

Many students assume the same is true in algebra, even in
cases where no specific enswer is desirable. ... Consequently,
children will resort to various strategies, in order to derive a
numerical answer. ... Even when the possibility of a non-
numerical answer is accepted, there is a tendency for students
to assume that at least wl.at is required is a single term.

(Booth 1986, p.3)



Further to this point, students also have problems knowing just when they
have the answer. In Routes to/Rcots of Algebra it is said that

Many children find it difficult to know when they have arrived
at an answer in an algeb-a question. The implicit rules of the
game in algebra are that if the question contains an equation,
you solve it, if you are given an expression, you simplify it. Even
then, there is still the problem of what constitutes a final
answer.

(1985, p.5)

Problems with generalisation

This is closely tied in with problems of establishing meaning for letters, but
it goes further. In this case, the development of the concept of a generalised
number proceeds to a point where the notion of a ‘variable’ has genuine
meaning. Milton reported

Even quite able children do not understand the nature and
purpose of generalisation. At the heart of generalisation is
structure and form - or pattern, if you like. To capture and
express pattern with number operations is the point and
purpose of algebra and ailgebraic thinking, especially at the
outset of algebraic study.

(1988, p.6)

Chalouh and Herscovics (1988) highlighted the fact that teachers can
contribute to problems that students face. They commented

Quite often, algebraic expressions are introduced by stating that
they involve variables and that a “variable is a letter that stands
for one or more numbers.” Such formal definitions may be
adequate for mathematics teachers but they often fail toc provide
meaning for the beginning student.

(p.33)

Can students be expected to develop meanings for variable if they are
not provided with the experiences needed in looking at patterns and the
time in which to let these expericnces take effect?

Problems in working with algebhraic notation

Difficulties students have with algebraic notation have received considerable
comment from researchers in recent times. Kieran (1989) observed that
“many high school algebra students appear to be experiencing serious
obstacles in their ability to recognise and use the structure of



algebra” (p.52). Booth (1989a) believed that “without an understanding of
the semantics of algebra, the mere manipulation of symbols becomes a fairly
arbitrary exercise in symbol gymr nastics, sometimes performed correctly and
sometimes not, but in either casz with little sense of purpose” (p.58).

The introduction of a ra sed number into an expression can only
compound problems students ¢re already having with the complexities of
notation.

THE TEACHING OF ALGEBRA

In conducting research in the ficld of algebra an important consideration is
the impact teaching has on stuc ents’ understandings. Teaching approaches
may account for many difficulties students have with indices. In light of
what has gone before, effective teaching approaches in algebra are ones
which: develop abilities to generalise; minimise difficulties in working with
symbolism; and, develop skills n using algebra as a tool and a vehicle for
the creative sulution of problems.

Teachers bring to their classrooms a variety of strong influences on
their teaching. Perhaps the stror gest are: those features that were evident in
their own teachers; contact with associates; and, ‘the textbook’. Recent, and
not so recent articles in the rescarch literature indicate that, in the area of
algebra, the outcomes these inf uences have generated are not particularly
satisfactory for many students. "While traditional teaching strategies and the
role of algebra are being widely questioned by researchers, it seems that
there has been little impact in tt.e classroom. Thorpe commented that

The teaching of algebra in the schools is not significantly

different today from what it was fifty years ago ... meanwhile

mathematics and its appli ;ations have changed dramatically.
(1989, p.11)

In Routes to/Roots of Algebra it is suggested that algebra is “generally
perceived as both hard and poir tless” (1985, p.1) while Fey stated that “the
agenda for high school algebra s overloaded with skills that prove difficult
for many students ... as a consequence, there are usually substantial
differences among the intended, implemented and achieved algebra
curricula” (1989, p.199). In an effort to satisfy requirements placed on them
by the syllabus and examiners, teachers and textbook writers have resorted
to strategies designed to enhance success through rote learning. Such



approaches are counterproductive to the development of understanding, and
do not support the purpose of aljiebra.

As far back as 1934 in Britain the Mathematical Association Report,
The Teaching of Algebra in Schools (Boys’ Schools Committee of the
Mathematical Association), raised the issue of the gap between algebra as it
was, and undoubtedly still is, taught, and what the writers saw as the
essence of algebra. The need or teachers to re-evaluate their role was
reflected in the remark that “tae teacher must get out of his head that
juggling with X and Y has any special merit of its own” (p.9). The situation
appears to be much the same riow as indicated by Booth’s comment that,
for many students, “algebra ainounts to little more than a set of fairly
arbitrary manipulative techniques which seem to have little, if any, purpose”
(1986, p.2).

In discussing the great emphasis which has been placed on students
acquiring manipulative skills, Booth reported

one of the problems with -he teaching of algebra has been that
there often was a very tnclear picture of what the goals of
learning algebra might je. Failing a clear and convincing
analysis in this regard, teachers and textbooks fell back on the
surface features of algebra and contented themselves with
teaching manipulative skills and the routine application of a
few standard algorithmic grocedures.

(1989Db, p.238)

Researchers have identified students’ first experiences of algebra as the
source of much of the difficult es. The introduction provided by teachers
appears to be quite crucial i1 setting the ground work for students’
development. In commenting on the introduction of algebra, the
Mathematical Association Report (1934) stated that, “Historically, algebra
grew out of arithmetic, and it ought =o to grow afresh for each individual”
(p.5). While recent research throws new light on the way this may occur, it
remains the underlying principle on which students’ understanding of
algebra needs to be built. Booth, in writing about an approach in which
algebra does not grow out of arithmetic, stated

Such an introduction ma)r not serve appropriately to reveal the
power and purpose of alg:bra. What is perhaps required, is an
introduction which focuses on this latter aspect, leaving issues
of simplification and manipulation until the need for these is
recognised by the students..

(1986, p.4)



MacGregor (1986), in discussing the commonly adopted teaching and
textbook strategy of introducir g algebra through a “letter as an object”
approach, e.g., “2a+5a=7a because two apples plus five apples gives seven
apples”, commented

Advice to manipulate symbols without concern for their
denotation is surely dangerously misleading. The student learns
that algebra is a meaningless and useless game played with the
letters of the alphabet.

(p.10)

It appears that what is need:d is an introduction which focuses on
structure in number giving “exp¢ riences which lead from concrete arithmetic
situations to algebraic gener:lisations over sufficient time and with
sufficient variety of problem situations to allow for growth and maturity to
occur” (Briggs, Demana and Osbourne 1986, p.5).

Pegg and Redden (1990), in their article Procedures for and Experiences
in Introducing Algebra in NS&W, looked closely at the benefits, and
implications, of such an approach. Benefits they listed are: the avoidance of
early manipulation of symbols; the assistance it gives students to see
algebra as more than just a ser es of abstract rules; the highlighting of the
benefits of learning algebra; and, the leading of students to more readily
realise that symbols stand for numbers (rather than objects) (p.1). Such an
approach also emphasises ‘procedure’ and could assist students overcome
the problem of wishing to ‘close’ on a simple answer.

The writers of Routes to/Roots of Algebra advocated avoiding premature
use of symbols and believed “more time can profitably be spent with the
prior aspects of ‘seeing’ and ‘sasing’, even if such activities seem not to be
explicitly algebraic in nature” (p.8). From this ‘seeing and saying the
teacher needs to use appropriat: language and communication to guide the
student to appreciate the need for a concise symbolism and assist the
student to put meaning into this symbolism.

Such an approach is far removed from the one under which most
mathematics teachers acquired their skills, and this in itself is a hindrance
to change. If the move in this direction is to be pursued successfully, and
with conviction, it needs to b: supported by convincing evidence from
researchers.

The placement of algebra within the curriculum is also a
consideration. Some problems 1nay result from the introduction of algebra
at too early a stage. Students’ irst experiences typically occur around 12
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years of age. Jesson (1983), in considering what students might be expected
to be capable of at various ages, cornmented “a number of studies have
shown that teachers consistently overestimate children’s ability or, equally
underestimate the difficulty of t1e mathematics involved” (p.125). Students
vary greatly in their mathematicil performance on entering secondary school
and, in view of the difficulties extperienced by many, it would seem that the
timing and sequencing of algebr: should be looked at.

Algebra is an integral par. of our secondary mathematics curriculum
and, given that all is not well n the teaching of it, educators must seek
strategies to improve the outcoines for students. MacGregor in addressing
this issue stated

If we accept that the misconceptions of elementary algebra are

caused, at least in part, by the teaching strategies we are using,

it may be beneficial to consider cther ways of presentation.
(1986, p.11)

Indices are an integral pait of algebra and the comments above, while
applied to algebra generally, substantially apply also to indices in particular.
If the topic is to be taught or understanding, then the educational
researcher needs to consider classroom practices and to help teachers decide
which of them encourage achievement of the aims, which of them do not,
and what changes might be appropriate.

DISCUSSION OF TWO RESEARCH PROJECTS IN ALGEBRA
WHICH ARE OF RE_EVANCE TO THIS RESEARCH

In this section two related research projects, which look at difficulties
students have with algebra, are discussed. These are the ‘Concepts in
Secondary Mathematics and Science’ and the ‘Strategies and Errors in
Secondary Mathematics’ researc 1 projects.

The first of these projects, the algebra section of the Concepts in
Secondary Mathematics and Science (CSMS) project, was conducted in
England between 1974 and 1973. Children aged 13-to-15 years were tested
for understanding of basic algetraic concepts, and the results were used to
identify and examine the types >f errors made. The project was reported by
Kuchemann in Children’s Understanding of Mathematics (Hart (ed.) 1981)

From the CSMS project grew the second research project, Strategies
and Errors in Secondary Mataematics (SESM), which was carried out
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between 1980 and 1983. It sou ght “to investigate the reasons underlying
particular errors in generalised arithmetic which the earlier CSMS project
had shown to be widely preveclent among 2nd to 4th year students in
English secondary schools” (Bcoth 1984, p.1). The examination of errors
was directed toward establishing the strategies used. The project was
reported in Booth’s book, Algebra: Children’s Strategies and Errors. Since the
CSMS led directly into the SESIM project, the projects are treated as one in
the discussion.

The following discussion aas a two-fold purpose. Firstly, it provides
information on the research methodology that these researchers found to be
appropriate in examining stude¢nts’ understanding in algebra. This offers
guidance to the methodology of this present research. Secondly, it adds to
information on problems students appear to be having in algebra generally,
problems we 1night expect to occur also in questions which focus on indices.

Implications of the Methodoloyly Used in this Research

There are five main aspects of the methodology used in the CSMS and SESM
projects which seem particularly relevant to this current research. These are
now discussed.

1. The Researchers Chose to Focus on Underlying Themes

In devising their test, the rese: rchers began by looking to sample a wide
range of typical high-school al sebraic activities but quickly realised that
“such activities, singly and in combination were far too numerous to be
investigated thoroughly by one test, and that other, far more fundamental
criteria had to be found”. Because of this, the scope of testing was restricted
to algebra as generalised arithmetic, and the researchers decided to focus on
two themes only. These themes were the effect of structural complexity of
the items and the meanings given to letters. The approach of looking for
underlying threads running across activities, rather than focusing on the
nature of the activities themselves, is more likely to provide practical and
general strategies for the classroom teacher.

2. The Researchers Sought to Exp ain Errors Using Cognitive Theory

The research attempted to ident fy the quality of the thinking used. Items in
the CSMS project were sorted ir to four levels according to the complexity of
the item and the nature of their cslements. These levels were:



Level 1. Items of simple structure which could be solved using lower
level interpretations of letters.

Level 2. Items of some increased complexity but still only requiring
letters to be evaluated or used as an object. Children at Level
2 showed a growing acceptance of answers which were not
closed.

Level 3. Children at this lerel were able to use letters as specific
unknowns if the itera structure was simple.

Level 4. Children were able to cope with items requiring specific
unknowns and having a complex structure.

Kiichemann (p.117) suggested it can be argued that there is the following
corresporidence between these levels and the Piagetian sub-stages:

Level 1 Below late concre te
Level 2 Late concrete

Level 3 Early-formal

Level 4 Late-formal

In the SESM report, Booth said that “the emphasis on analysing children’s
errors is based upon the Piagetian view that a consistently made error to a
given problem reflects a way of viewing that problem or handling its
solution, which is consonant with the child’s cognitive structure” (1984,
p.7). However, Booth commented later that there were inconsistencies
“mitigating against the unqualified acceptance of the ‘unified stage’ view of
cognition which characterises the Piagetian formulation” (1984, p.95). The
research does not reach firm cor clusions about the relationship between the
nature of a child’s cognition and their performance in algebra, but does
signal it as an important area “or research. The work of Biggs and Collis,
focusing on students’ responses in specific tasks, is referred to in the text. It
is suggested that their Structu-e of Observed Learning Outcomes (SOLO)
Taxonomy may be of significance to future research in light of the need to
elaborate on “the mechanisms ty which task-specific and task-independent
abilities are coordinated” (1984, p.95).

3. The Researchers Made Use of Foth Testing and Interviews

The CSMS testing and analysis provided valuable information on common
errors students make in algetra. However, while some evidence of the
strategies students use resides ia the answers themselves, errors may occur
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at several points along the way. In light of this, the use of interviews in this
kind of research would seem not simply appropriate but quite essential.
Their value was clearly demonstrated in the SESM research. As well as
clarifying the processes studer ts were using, interviews can be used to
identify the meanings students attach to the input they receive and the
output they produce. Often thesc are different from what might be expected.

4. Students Selected for Intervieuw Were from a Targeted Group

The CSMS Algebra test was administered to 3550 students aged from 13-to-
15 years across the full spectrum of abilities. The SESM project started by
using the CSMS items on approzimately 240 students from five high schools
with a view to eventually int:rviewing approximately 50 students. In
schools, where classes were graded, the students were selected from the
middle ability groups, while in schools with ungraded classes, students were
chosen at ranndom. This was because it was felt that the more able students
would make fewer of the identificd errors while the less able would not be as
confident in explaining their methods and ideas.

The compromise taken by sampling from the middle stream in just
several schools does place some limitations on generalising from the results.
Nevertheless, the sample used focuses almost certainly on the group where
problems with algebra have mcst impact, in that middle-stream students
obviously have trouble in meeting the demands of the present curriculum.

5. Students Were Interviewed on tems with Which They Had Difficulty
Children were selected for interview on the basis of the errors they made in
the test. The interviews focused on identifying the reasons for those errors.
This does limit the inferences which can be made about the wider
population. However, the loss of generality caused by the methodology is far
outweighed by the fact that i nportant issues were given the in-depth
examination which they warranted using what seemed the best approach to
get to the heart of the research c uestions.

Findings from the two Projects. which are of Relevance to this Research
From the CSMS project, nine items were selected for further investigation in
the algebra section of the SESM research. These item were ones in which
student responses exhibited a high incidence of systematic errors. The
questions involved operating wit 1, and interpreting, algebraic expressions.
The errors, as listed by Booth (1984, p.3), seemed to result from: the
treating of letters as objects (as indicated by the conjoining of numerical



and algebraic elements); the ignoring of letters (as indicated by certain
numerical answers); the unjustifiable numerical substitution for letters (as
indicated by certain numerical answers); and, by the viewing of letters as
specific unknowns rather than generalised numbers.

The SESM research con:inued to confirm the importance of the
interpretation students use for 1:tters. It clarified some previously identified
issues and raised a number of rew ones. The following six points stand out
as being of relevance, possibly, to research in the field of indices,

1. Students Often Misinterpret a Letter and this May Lead to Errors

Six different interpretations of ¢ letter were identified in the CSMS project
and these were further investigated in SESM project. These were: assigning
it a numerical value; not using t; regarding it as an object; treating it as a
specific unknown; treating it as a generalised number; and, treating it as a
variable. The first three, lower level interpretations, are ways “by which
children avoid having to operate on a specific unknown” (Kiichemann 1981,
p.105). They are incorrect inte:pretations but do not lead necessarily to
incorrect answers. The latter th -ee, higher level interpretations, are correct
interpretations. However, their use does not guarantee success as noted by
Booth (1984) in the comment that “children who recognise letters as
representing number may still produce the erroneous answer” (p.29).

2. Items May be Solved in Unexpe cted Ways

The different meanings students may give to letters does “affect item
difficulty in that some items might be solved in unexpected ways”
(Kichemann 1981, p.103). Boota (1984) said that interviews indicated that,
for some commonly asked types. of questions in algebra (such as ‘add 3 to
5y’), “the level of letter interpretation may bear little relation to success”
(p.29). No doubt this makes the job of researchers more difficult, in that, as
‘mathematicians’ they have preconceptions as to appropriate solutions and
find it difficult to account for less usual approaches.

3. Notation and Symbolism Cause Considerable Difficulties

Booth (1984) reported that “the problems children have with symbolisation
must not be underestimated. Children do not readily assimilate the meaning
of abstract representations” (p.J4). In many cases, students treated 2e as
meaning “the sum of 2 and e” while in other cases they accepted 2e as
meaning a product but then translated 27 as meaning 2x7 (Booth 1984,

p-30). The role of the addition s gn in algebra as opposed to arithmetic also
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caused problems. In arithmetic ‘+’ indicates the need to operate and this
leads the child to view an expression with ‘+’ in it as requiring something
more to be done. As Booth (1984) stated “This distinction between what
constitutes a question or state nent of method, and what constitutes an
answer, appears to underlie much of children’s difficulty in algebra” (p.29).

4. Many Students Fail to Understand the Significance of Brackets
Booth (1984) found that

A number of children corsidered expressions with or without
brackets to be equivalent, maintaining that ‘you can put the
brackets in if you want, it’s just the same’ and a similar number
exclude the bracket expre:ssions altogether, either because they
considered their presence unnecessary, or more rarely, because
they did not know what th2 brackets meant.

(p.31)

This was not restricted to the less able students, “children in the top ability
groups also appeared to ignore the need for brackets” (p.54). Difficulties with
notation not only cause errors but result in erroneous answers following
correct reasoning. In a partic alar question there was “a proportion of
children (five out of fourteen) whose otherwise correct answer was rendered
incorrect because of their apparent non-recognition of the need to use
brackets” (p.20).

5. Informal Methods Developed in Arithmetic can Lead to Errors in Algebra
Students may successfully us: their own informal rules in arithmetic.
However, algebra involves the writing of general statements using the rules
of arithmetic and so “the possitility of non-use or non-recognition of these
rules and structures in arithmetic may have considerable consequence for
the child's performance in algebra” (Booth 1984, p.6). “These methods are
also characterised by being strongly adhered to and reluctantly abandoned
by the child, possibly because of previously successful usage” (p.37).

6. Delineating Between Problems esulting from Teaching/Learning Experiences
and Those Grounded in the Child’'s Cognitive Development Can be Difficult

While considerable reference is made to cognitive development of students
through Booth's text, few definitive statements are made about its impact.
Observations are very much of ¢ general nature such as “whilst some of the
misconceptions that children have may be due to inadequacies in the
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teaching-learning situation ... some of the difficulty appears to be related
more to a ‘cognitive readiness factor’ ” (Booth 1984, p.87).

This present research is seeking to identify and explain systematic
errors students make in an area where both letter interpretation and the use
of notation are central concerns. The projects discussed in this section have
provided valuable information on both these issues. In addition, the
methodology used by these researchers provides guidance as to appropriate
strategies for investigating children’s understanding of indices.

CONCLUSION

Proficiency in algebra is an important skill especially for those wishing to
pursue a higher level of mathematics in the senior secondary school. It is of
considerable concern that riany students find great difficulty in
understanding algebra and have come to see its study as having little value.

In examining difficulties students have in learning algebra, clearly it
is not sufficient to look only at answers, as these disguise many
misconceptions involving the m eanings of letters, operations with letters,
notations and conventions, problems of knowing what constitutes an
answer and so on. Correct answers obtained through incorrect reasoning
and incorrect answers obtainec from correct reasoning both appear to be
frequent occurrences. Interviews. need to be an integral part of the research
if students’ understanding is to be examined closely.

In that much of students’ work with indices is within the general
framework of algebra, the findings of the SESM project provide guidance to
issues which may be of relevaace to this research. The extent to which
difficulties students have wth questions involving indices reflects
difficulties in learning algebra gznerally is reflected upon in the concluding
chapter.

Reasons for students’ ur derstanding, or lack of understanding, in
algebra are composed of a comblex interweaving of issues concerned with
both the cognitive developmeat of each student and their classroom
experiences. Like the two projects reviewed in this chapter, this current
research focuses on a number of key themes which can be probed in detail.
From this it would be of gre:t value to teachers and researchers if a
theoretical framework could b: found to describe the thinking used by
students.
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Chapter 2

INDICES - THE SUEJECT OF THIS RESEARCH

The construction of the¢ exponential function is far from a
trivial task (Goldin and Herscovics 1991, p.70).

Introduction to Chapter

Chapter 1 was devoted to establishing the broad framework for this research
by examining the nature of aljgebra and the problems posed in both its
teaching and learning. This cl apter focuses on the central issue of the
research, that is, students’ understanding of indices. The position indices
occupy within the mathematics curriculum is examined, existing research in
the field of indices is considered and research issues arising from this review
of the literature are noted. Finally, consideration is given to any
implications the research has fo - the categorisation of errors.

It should be noted that research into students’ problems of
understanding in the field of irdices appears limited. Students’ strategies
and errors in index work seem not to have come under close scrutiny and in
depth probing to the same exterit as other topics in arithmetic and algebra.
There are several researchers, however, namely, Shevarev, DeVincenzo,
Childers and Wilson, whose work does relate closely to this current project,
and their research is examined i1 some detail in this chapter.

INDICES IN THE CURRICULUM

While mathematicians see indices as forming a complete and coherent
system, students learn of the different aspects of indices in a developmental
sequence. Questions posed to students tend to be readily identifiable with
steps in this sequence. In this section, an International Overview is
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provided which shows the position of indices in the mathematics curriculum
in the United Kingdom, United States and Australia. This is then followed
by a New South Wales Overview which focuses on the specific syllabuses
applying to students in Year 9 1o Year 12 where indices are developed and
applied. It shows both the content and the typical sequence of development
to which they have been exposed. However, before these overviews are
provided, it is important to clarify what is meant by the term ‘index’ in the
context of this research.

What are Indices?

The sense in which ‘index’ is used in this work is in the traditional
mathematical sense. An index is first thought of as a positive integer
indicating a repeated factor, an1 is then allowed to take values other than
positive integers in such a way that is coherent both with this starting point
and with mathematics generaly. In mathematics the terms ‘power’ and
‘exponent’ are frequently used instead of ‘index’ and these terms are
regarded as meaning exactly the same throughout the text.

The Universal Encyclopedia of Mathematics defines an index as “a
product of equal factors, e.g., 4 = 4x4x4, a = axaxaxaxa” (Newman 1976,
p-334) and goes on to discuss tae various operations which can be carried
out with such expressions. The World Book Dictionary describes an index as
“a small number written above and to the right of a symbol or quantity to
show how many times the symbol or quantity is to be used as a factor, for
example 23a%= 2x2x2xaxa” (Barnhart & Barnhart 1986, p.751). While the
concept of powers “was already known in antiquity ... our notation for
powers essentially goes back tc René Descartes (1596-1650)” who used it
“for integral exponents greater than 2”7 (Gellert, Kustner, Hellwich &
Kastner (eds) 1975, p.47).

It is common for syllabuses to not explicitly state a definition of an
index, but imply it by listing coritent and skills objectives which evolve from
the definitions given above.

International Overview

In 1989 the United Kingdom with its document Mathematics in the National
Curriculum and the United Siates with its Curriculum and Evaluation
Standards for School Mathema ics made statements about what students
should be achieving at various stages of their education. In the same year,
Australia, with its Mapping the .\ustralian Curriculum, examined the content
of the mathematics curriculum being provided for students in each of the
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Australian States. The position indices occupies in these documents is now
considered.

In the United Kingdom docurnent, Mathematics in the National
Curriculum, a sequence of levels is used to indicate expected student
attainment. A student preparin 3 to pursue mathematics at a high level in
the later years of schooling wou .d, on completing the year in which most of
the age cohort turn 16, be expec ed to be able to:

e use index notation to exp ‘ess powers of whole numbers

e express a positive integer as a product of primes, e.g., 147 = 3 x72

e express numbers in standard index form using positive and
negative powers of 10

¢ use index notation to represent powers and roots

e use the rules of indices ‘or positive integer values, e.g., simplify
2x2+3x2, 2x2x3x3 and (3x¢)3

e use the rules of indices for negative and fractional values, e.g.,
xO0=1, y3=1/y3, 2/x8=1/x=x1

(Dept. of Ed. and Science and the Welsh Office 1989, p.8, p.18)

Curriculum and Evaluation Standards for School Mathematics provides a
set of standards for the mathematics curricula in United States Schools (K-
12). It is “a vision of what the mathematics curriculum should include in
terms of content priority and 2mphasis” (Commission on Standards for
School Mathematics 1989, v.). The document focuses on what students
ought to be able to do. Standards are indicated across grades and within
content areas. For Grades 5-8 it is stated that the curriculum should be
such as to enable students to “understand, represent and use numbers in a
variety of equivalent forms (inte ser, fraction, decimal, percent, exponential
and scientific notation) in real-world and mathematical problem
situations” (p.87). While very ittle direct comment is made on indices,
topics discussed in the section ¢n Grades 9-12 (such as Algebra, Functions,
Probability and Calculus) impl/ that students require the same skills in
indices as described in the UK and Australian documents.

Mapping the Australian Zurriculum (Australian Education Council
1989, p.64) is similar to the UX document in the pattern it describes for
students intending to study senior-school tertiary-entrance mathematics
courses. In seven of the eight Australian States or Territories (all except
Queensland) the topics taken prior to the end of Year 10 contain the
following work with indices:

operating with exponentiils having numerical bases
e graphing exponential exp "essions
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e using the index laws for the multiplication, division and the
raising to a power of exponential expressions
working with zero, negative and fractional indices
applying the laws to numerical and algebraic problems
solving simple indicial eq 1ations.

New South Wales, Victoria, the Australian Capital Territory and the
Northern Territory also includz work on indicial equations with unlike
bases. Details are now provided of the position of indices in the
mathematics curriculum of New South Wales.

New South Wales Overview

The mathematics curriculum for N.S.W. is determined by syllabuses relating
to stages of schooling and, in high school, to the ability and interests of
students.

At the primary level a sinile syllabus applies. This covers the school
years from Kindergarten to Year 6 and. commonly, the ages of 5 to 12 years.
Students enter high school at around age 12 and, if progressing through to
Year 12, leave near the age of 18. During Years 7 and 8 students follow a
common syllabus. In Years 9 and 10 three distinct courses are available. The
Advanced Course is taken by the more capable mathematics students,
representing about 36% of the age cohort. The Intermediate Course is
followed by middle-ability students who constitute approximately 43% of the
cohort. The General Course is fcr the less able students. By the end of Year
10 (16 years of age), students should have acquired the index skills needed
for the senior courses. No new sKkills are introduced in the syllabuses for
Years 11 and 12.

The 2 Unit and 3 Unit Mathematics Courses for the N.S.W. Higher
School Certificate are the senior courses in which facility in operating with
indices is of considerable importance. The 2 Unit course is designed to
prepare students to undertake tertiary study of mathematics as a minor
discipline while the 3 Unit course can lead to the study of mathematics as a
major discipline. The syllabus for those two courses makes direct reference
to index skills only in terms cf revising previous work (Board of Senior
School Studies 1982, p.8).

Typically, a student's experience of indices in the N.S.W. Education
System follows the pattern described below and occurs at about the times
mentioned.

(i) First experiences of indices occur around Year 3 (8 years of
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(ii)

(iii)

(iv)

v)

(vi)

(vii)

(viii)

(ix)

age) with the use of ¢ raised 2 to indicate squaring. In Year 5
(10 years of age) indices are used for place value, e.g.,
274=2x102+7x10+4. In both cases it might be expected that
students would see indices as a name for a specific operation
rather than as a gene-al indicator of a repeated factor.

Indices are then us:d as a more general indicator of the
number of times a numerical factor repeats, e.g., 23 = 2x2x2,
and are applied in siinple numerical expression. This usually
occurs in Year 6 (11 years of age) but is extended considerably
in Year 7 (12 years of age), the first year of secondary school.

Towards the end of Year 7, or some time in Year 8 (13 years of
age), indices are used as an indicator of the number of times
an algebraic factor repeats. This is coupled with first ideas on
the product of algebreic terms.

The collection of like terms involving indices is then
addressed.

At approximately the same time, students multiply, divide and
raise to integral powzars algebraic expressions which involve
coefficients and integial powers of a pronumeral, e.g., 3a2x5a4,
8m7+ 4m3 and (5b2)3. Those who later pursue the General
Course are not expected to go beyond this.

The meaning of a zerc index is developed.

Students are then introduced to negative indices to indicate
rational numbers, e.g , 4-3=1/43. Advanced Course students do
this near the end of Year 9. It is optional for Intermediate
Course students but most would come across the concept in
Year 10.

The use of the fracticnal index as an indication of a root of a

3 -
number, e.g., 81/3= Y8 is introduced to the Advanced Course
students in Years 9 or 10.

Experience is given in simplifications involving a combination
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of the above concepts, and in substituting in more complex
expressions. Changing the subject of more involved formulae
is addressed. The degree of difficulty of questions varies with
the ability level of the students.

(%) Scientific notation is introduced to Advanced and Intermediate
students in Years 9 o1 10.

The specific references to indices given in the documents cf the relevant
syllabuses are provided in Appendix A.

A point to note is that literature on students’ learning in algebra, as
discussed in Chapter 1, indicates that notation can pose considerable
difficulties. The questions generated from the syllabus content listed above
often involve the added complex ties of brackets and fraction bars as well as
raised notation and radical signs. This provides students with extensive
opportunities to make notation-related errors.

Another important consideration is the position that calculators
occupy in students' work with indices. The calculator is much more than a
tool with which to more easily >btain correct answers. Besides expanding
the scope of questions which can be posed, the variety of ways in which
different calculators display ar index has introduced to students a new
range of likely answers, both correct and incorrect. Calculators do have
implications for both the teachirg and assessment of index work.

Despite the fact that calculators have been widely available since the
mid 1970s their position in the N.S.W. Mathematics Curriculum is one
which is neither stable nor clearly understood. For that reason the
development of index related cal:ulator skills cannot be readily placed in the
sequence above. Attitudes vary greatly on the role of calculators and on the
point at which students should be introduced to them. Some students have
extensive access to scientific czlculators at the beginning of Year 7, while
others only use them on a limited basis until Year 9. Certain students have
used calculators while learning indices, others are only introduced to the
index application of calculators :fter they have covered all of the concepts.

It appears from the documentation that indices occupy a similar
position in the N.S.W. curriculuin as they do in the curriculums of the U.K.,
U.S.A. and other Australian States. This being the case it is likely that
findings of research undertaken within N.S.W. will find application within
the other contexts.

23



RESEARCH IN THE FIELD OF INDICES: AN OVERVIEW

As mentioned above, there appears to have been little research into
students' problems of understar.ding in the field of indices. In order to gain
direction for this current research, four significant projects carried out in
this area are examined in some detail in later sections of this chapter.

The first of these projects: was a psychological analysis of algebraic
errors first published in 1946 ty the Soviet psychologist Shevarev. In this
publication, Shevarev offered exblanations for certain errors students make
in index questions. Shevarev's work was one of a number of Soviet
publications translated into English in a joint project by the School of
Mathematics Study Group at Stanford University, the Department of
Mathematics Education at the University of Georgia, and the Survey of
Recent East European Mathematical Literature at the University of Chicago.
The translations were published in 1975.

The second project was a PPh.D. dissertation by DeVincenzo, published
in 1980, in which she compared errors made by students when answering
similarly structured problems in arithmetic and algebra. Many of the
problems which were the subject of her research involved indices.

The third project was a Ph.D. dissertation by Childers, published in
1987. In this she examined the cffect on error patterns in index problems as
bases and exponents changed rom being constants to being variables or
polynomials. Like DeVincenzo, Childers tested hypotheses about the number
of errors in various types of problems and whether the errors were alike or
different. Both researchers drew on the work of Shevarev in structuring their
research.

The final project was a Ph.D. dissertation by Wilson, published in
1985. Wilson examined the understanding of exponents by Remedial Algebra
Students at a Four Year College. He interviewed students and qualitatively
classified their understandins of the concept of exponent within a
theoretical framework developed from the theories of Bruner, Skemp,
Krutetskii and Gagne.

Before considering these research projects, there are a number of
other authors who provide some research information on students’
understanding of indices and relevant points from their publications
warrant examination.

Bernander and Clement (] 985) investigated errors in basic arithmetic
and included ten errors which students make with indices. The source of the
data are given as “In-classroon: observations of tutors and instructors in

24



remedial level mathematics courses at the University of Massachusetts”
together with “The retrospective reports of tutors and instructors” (p.6). The
more substantial research projects, yet to be discussed, show that the errors
listed by Bernander and Clemen: indicate only a small number of those that
students make. However, two aspects of index work which are given little
attention elsewhere do figure in their list of errors. These are the
interpretations given to negative indices and to the zero index. The errors
identified were:

(i) ignoring the negative sign completely (5-2 = 25)

(ii) treating a negative index as though it is positive but placing the
negative sign in front of the answer (52 = -25)

(iii) obtaining a correct fractional value but making the answer
negative (5-2 = -1/25)

(iv) treating the zero index as generating an answer of zero.
(p.24)

Other errors mentioned include multiplying the base and the power (23=6)
and multiplying powers when multiplying numbers expressed with an
exponent (a3xad® = ald). These ar: also mentioned by other researchers.

Operations with exponents are given brief mention in the National
Assessment of Educational Progress (NAEP). In 1981 the NAEP found that
90% of students, with two years of algebra, correctly answered expressions
of the form a3xa? but that only 43% could correctly answer a%/a20. In the
later question there was “a strong tendency to perform a fraction
simplification on the exponents alone” (Corbitt 1981, p.64) and to arrive at
an answer of 1/a® (25%) or even 1/5 (4%). Students also had difficulty in
taking the square root of an alge¢braic expression involving an exponent. For
the question Vad6 only 26% obrained the correct answer of al8 while 47%
chose the answer of ab by takir g the square root of the exponent. Each of
these questions were in multiple-choice format. In 1989 the NAEP found
that in open ended questions >nly one in four students with 2 years of
algebra could correctly answer V12 | (Lindquist 1989, p.60).

Vinner (1977) asked the question “do students look at exponentiation
the same way some of their teachers tried so hard to teach them?” (p.17).
The research addressed whe her students, studying mathematics at
university, could “identify the defining formulae of exponentiation, a™ =

a.a.da........ a (in times), a™ = 1,/am and am/n = Ve ® (p.18). He examined
these issues with 195 mathema:ics freshmen and 56 students at the upper
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level of the mathematics undergraduate studies. Vinner used a multiple-
choice questionnaire containing these three formulae among others whose
task was a “masking role”. He asked the students to identify each formulae
as being either (A) a theorem, B) a law, (C) a fact about numbers, (D) a
definition or (E) an axiom. Even these capable students of mathematics
found considerable difficulty with this task and only one fourth of the
freshmen and one half of the other undergraduates identified all three
defining formulae. Vinner attrib ated the problems to students being taught
through a “definitional approach” at a stage when they were not ready for it.
He said that “Mathematical ma«turity as well as intellectual development
needs both time and experience ... to teach the definitional approach before
the student is at the suitable intellectual stage is just useless” (p.24).
Vinner referred to the work of Piaget and advocated teaching approaches
which take account of the intellcctual stage of the student.

Much of the literature on understanding of indices tends to concern
itself with discussing techniques that might be appropriate to some highly
specific issue in the teaching of indices. It seems that observations, on the
implications of such techniques, are made with little effort to justify their
reality in the classroom situation. Examples of these subjective
observations are “exponents other than whole numbers are quite natural
when calculators are used” (Comstock & Demana 1987, p.48) and “very
quickly, the student will find p -ocedural shortcuts when larger exponents
are involved (e.g. 26=23x23 =3x8)" (Goldin & Herscovics 1991, p.69).
Evidence from the research projects now to be examined suggest that such
remarks gloss over the myriad o problems that students have in index work
and hardly provide a structure for development of sound programming or of
more appropriate teaching methods.

RESEARCH OF P.A.SHEVAREV

In the publication An Experiment in the Psychological Analysis of Algebraic
Errors (1975), Shevarev offered <. theoretical basis to explain errors students
make in algebra. He exemplified his theory with errors made in index
questions. Both the errors and the theory are of considerable relevance to
this current research. While Chapter 4 of this thesis is devoted to
considering several theoretica frameworks, which may be of value in
explaining students’ understanding of indices, it is neither desirable nor
particularly manageable to sepa ate Shevarev’s discussion of errors from his
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theory. For that reason both are addressed in this chapter. Important
aspects of the theory are briefly 1ighlighted again in Chapter 4 and research
questions relating to his theory are listed there.

Shevarev’s psychological analysis was based on written answers in
workbooks of students of two e ghth-grade classes in a Moscow secondary
school. Also, textbooks used by the students were examined in order to
ascertain how their structure influenced students’ answers.

Shevarev categorised errors in algebra into those which occur when a
student: does not know the required ‘rule’; cannot apply a ‘rule’; and,
“knows the rule, is able to aprly it, but nevertheless acts contrary to it”
(Shevarev 1975, p.1). His discussion focused on this last type of errors, and
he examined them within the context of the errors students make when
working with indices.

Shevarev does not define, unfortunately, the term ‘rule’ as he uses it.
However, the implication is that a rule for a particular problem is one
whereby the student is able to clearly identify the operation to be carried out
and then carries out the ope¢ration with genuine understanding. For
instance, in questions of the type AMxAN the rule would be that AM means
M factors of A multiplied together and AN means N factors of A multiplied
together, so we have M+N factors of A which can be written AM+N,

Shevarev suggested that when students solve problems, they are
unaware, almost always, of rules because the recalling of a rule disappears
“during the repeated solving of problems of the same type” (p.3). Students
can still act in accordance with rules by using “connections” they have
developed. These connections being a special combination of mental
processes made up of two components. The first component is the
recognition of the “general fe:atures” of a specific part of an algebraic
expression and the second comnponent is the kind of operation that is
performed in response to that recognition. In this way, by using only
selected features of an algebrzic expression to identify the operation to
perform, the student is able t> reduce a complex problem to a routine
process. If the selected features clearly identify the operation to be performed
then the connection will be a coirect one and give a correct result.

Problems occur when the connections, developed to replace rules, are
not formed correctly. Such incoirect connections are formed and reinforced
while the student is “correctly solving problems of a definite type” (p.58).
They are related to the nature of the teaching and the structure of the
textbook.

Two of the three types of i1correct connections discussed by Shevarev
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relate to students’ recognition of general features of a specific part of the
expression with which they are "working. The first of these is now discussed
in considerable detail since it ray offer an explanation for errors students
make in a variety of index questions. The second was one of the issues
examined by Childers whose rescarch is discussed later in this chapter.

In the first type of incorrect connection, students omit some essential
feature when recognising the general features of the expression. An example
is the mistake of the type (aMN =: aM+N, Shevarev argued that it is clear from
the sequence of teaching, the written answers and the textbook structure
that students have “somehow confused the expression (aM)N with aMxaN
and, therefore, perceiving the first expression, performed an operation
pertaining to the second” (p.6). Shevarev, in discussing student responses to
aMxalN and (aM)N, said that features common to both expressions were “the
absence of plus and minus sigrs on the base line and the presence of two
exponents ... the specific feature of the first expression is the presence of
two identical letters (bases) on the line; the specific feature of the second is
the presence of only one such etter” (p.9). The connection formed by the
students for multiplying omitted the important specific features. Further,
because multiplication of expressions had been more strongly reinforced by
more questions, and at an earli¢r stage, students added indices. As a result
students employing this connection obtained correct answers when doing
questions involving a product but incorrect answers when raising to a
power.

Shevarev continued his aigument by saying that this particular error
could not be perceived as accidental as it was made by eight of the students
in the two classes and was, in fact, the only error. Nor could the error be
viewed as forgetting the correct rule and proceeding from an incorrect rule
since “in the same assignment ‘he pupils had to formulate, in writing, the
rule for elevating a power to a new one, and all pupils in question
formulated it correctly” (p.5). This showed that the students certainly
understood the rule and yet did a0t apply it correctly.

He pointed out that the same eight students did, however, obtain
correct answers to a similar question of the type (a2, giving an answer of
the form a2M (p.9). This he attributed to the fact that “squaring occupies a
special place in an elementary .algebra course” and “pupils are acquainted
with this operation much earl er than elevating a power to a new one”
(p.10). This suggests that squaring, and possibly cubing, should be treated
as separate cases of raising to a power.

Two other incorrect connections of this first type were also analysed
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in detail by Shevarev. One of tl ese occurred, as part of another question,
when students gave the answer -x7= 1/x7. Here they have obviously used a
connection which would be corrzct for questions of the type x (pp.18-19).
The other was where students ‘reduced” the expression a8b!2/afb10 and
obtained a%b®/a3b5. Shevarev noted that those pupils who made this last
mentioned error did obtain a co rect answer for by-1/by-2¢, Obviously, they
knew the rule for this situation but did not always apply it. Shevarev
believed this incorrect conne:tion “arose while the pupils were still
practising the reduction of arithmetic fractions ... awareness that both
members of the fraction were products and that one number stood in the
numerator and the other in the denominator was sufficient basis for
reducing the number” (p.21). He said that students saw ab/a3 in the same
light as 6a/3b. A point he does r.ot address is how students who make these
errors respond to questions where there is both a coefficient and exponent
in the numerator and the denominator. e.g., 8a5/4a3.

In the second type of incorrect connection identified by Shevarev, the
first component, namely, recognition of the “general features” of a specific
part of an algebraic expression, ‘contains something which should not have
entered into it and which narrows its scope” (p.26). Shevarev found that
students who could simplify a®y5/ay!0 could not simplify a%(x - y)5/alx -
y)15 and explained this by say ng “the feature that the power’s base is a
letter, and not a polynomial enclosed in parentheses, entered into the first
component of the connection . . this attribute, of course, does not enter
into a correct connection” (p.27). He noted that the reason this occurred
could be found in the fact tha:, in doing such questions, students were
given very little data of the type nvolving a polynomial.

The key issue arising from the above discussion is that students using
connections, either correctly or incorrectly, do know the ‘rule’ to answer the
question correctly but normally they do not use it. Shevarev found that “a
definite rule is recalled only wl en a special orientation for recalling rules
exists” (p.59) and that this normally arises when dealing with a problem
which is new or when working with a new type of data.

Shevarev addressed also the question of why incorrect connections
arise in only some students. He suggested some students “have a general
orientation, habit, or custom of solving algebraic problems consciously ... to
clearly recognise all essential features of the data even when this situation
does not demand this awareness of them. Hence the correct connection
arises in them” (p.17).

Shevarev carefully, and tt oroughly, analysed the errors he identified.
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While he did not interview the students who made the errors, it would
appear that there could be corsiderable merit in his explanations of the
circumstances leading to these errors. There would seem to be value in
teachers adjusting their strategics to take his findings into account.

RESEARCH OF M.A.R.DEVINCENZO

DeVincenzo, in her Ph.D. dissertation An Investigation of the Relation
Between Elementary Algebra Students’ Errors in Arithmetic and Algebra in
Selected Types of Problems, looked at the question of whether errors “in
arithmetic may transfer to algebraic problems which demand similar skills”
(1980, p.3). “Transfer” meant the proposition that “students apply what they
previously learnt in mathematics to new mathematical situations” (p.3).
Students might therefore tend to make errors in algebra which are
essentially the same as their errors in arithmetic. The subjects of the study
were students enrolled in an elementary algebra course in 14 Public and
Parochial schools in New York City.

DeVincenzo’s findings are of special relevance to this present research
in that three of the eight types of mathematical problems she examined
involved indices. A description »f the types and the actual questions used
are now given. The letters (D), () and (F) used below are the letters which
DeVincenzo attached to these particular questions. They are:

(D) Multiplying two numbers in exponential form with the same base

Arithmetic questions 5552 23x22 76x75
Algebraic questions b> b2 b3xb2 bMxhn

(E) Raising a number in expoaential form to a positive integral power
Arithmetic questions  (23)2 (52)4 (36)3
Algebraic questions (a3)2 (a2)4 (amn

(F) Dividing two numbers in ¢xponential form with the same base
Arithmetic questions  2°/2 38/3 512/53
Algebraic Questions a‘/a a8/ ab am/a

For these questions, DeVincenzc tested the hypothesis that

For Multiplication, Division, and Simplification of Exponential
Problems of this study, there are more instances where errors
are different for algebra and arithmetic than instances where
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errors are the same for both forms.
(p.14)

In putting forward this hypothesis, DeVincenzo suggested that “one must be
aware of the existence of altern:te techniques for solving these problems in
arithmetic, ways which cannot t e used to solve the same sort of problem in
algebra” (p.15). This, of course, is because numerical expressions may be
correctly evaluated in various ways such as converting a number expressed
exponentially into an integer be:iore using it to multiply. For these reasons,
DeVincenzo argued that it was not unlikely for students to react differently
to algebraic and arithmetic forrns. It was also pointed out by DeVincenzo
that “results of the NAEP (1975 p.255) indicate that students are not very
successful at solving problems with exponents in arithmetic, whatever
technique is used” (p.16).

In carrying out her research DeVincenzo designed the problems in
arithmetic and algebra “so that corresponding problems would have the
same instructions, same writter. format, same operations, and some of the
same numbers ... similar skills” (p.4). Errors were regarded as being
consistent if two of the three prcblems, which were used for each type, were
solved in the same incorrect way. An example of the same error in
arithmetic and algebra is answzring 56 for (52)4 and a® for (a2)4. A total of
1122 students were given both an arithmetic and algebraic diagnostic test
and from these 93 were selected for Observation-Interview sessions.

From the statistical analysis of the written tests it was found, as
hypothesised, that there were si;nificantly more instances of different errors
than the same errors for the arithmetic and the algebraic forms of the index
questions considered in the research. Of those students who made an error
in both the arithmetic and algeoraic forms in the Type (D) questions, only
12% made the same error, while for Tvpe (E) it was again 12% and for (F) it
was 21% (p. 68). Taken as a per:entage of the total population, 0.17% made
the same error in algebra and arithmetic in (D), 0.71% in (E) and 0.5% in
(F) (p.66).

DeVincenzo identified 15 1ypes of errors for the type (D) questions, 32
for the type (E) questions and :20 for the type (F) questions (p.223). When
one looks at the few elements, vhich are part of the type (E) questions, it is
remarkable that students have managed to generate so many consistent
error types. That this applies als o to the other two types of questions clearly
demonstrates the extensive difficulties students have with indices.

The error types listed indicate that, when answering an index
question, many students wer: very confused as to the mathematical
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operation they should apply, an1 to which elements of the expressions. For
example, errors listed for type (D) questions included “performs
multiplication and then uses th s as a base with sum of exponents for new
exponent ... multiplies base tiines exponent and then divides instead of
multiplying” (p.223). The frequzncy of error types is not provided in the
report except for occasional and incidental references to the frequency with
which certain errors occurred in the interviews.

The Observation-Intervievs sessions were designed to “establish the
reliability of categorising errors from written solutions and to understand
more deeply the nature of specific errors” (p.175). Students were selected at
random from each of three categories which had been identified using the
written tests. These categories were: (a) students who made the same errors
in both the arithmetic and algetraic forms; (b) students who made different
errors in each form; and, (¢) students who made consistent errors only in
algebra and no errors in arittmetic (p.51). While the total of students
interviewed was 93, the way they were distributed between categories was
not indicated.

From DeVincenzo’s discussion of the interviews emerge a number of
issues of relevance to this research, and they are given in point form below.

* The transcripts of interview:s given in the dissertation confirmed that
students have extensive problems iri answering index questions.

e In Type (D) problems, i.e., miltiplying two numbers in exponential form
with the same base, there is a1 strong tendency to multiply somewhere in
the question. The interviews ‘indicated that certain students adhered to
a designated rule for the expcnents in this problem type and were guided
by the times sign for the bas:s” (p.127) leading to the result 23x22 = 45,
Multiplying exponents also o:curred 23 times in the interviews (76x75 =
730) and again students indicated in interview that it was because of the
multiplication sign. Other errors included a combination of these two,
that is, 23x22 = 46,

e Errors for Type (F) questions, i.e., dividing two numbers in exponential
form with the same base, mirrored, to some extent, those for Type (D)
questions. Common errors ¢ ppear to have been: correctly subtracting
indices but dividing bases (corresponding to adding indices and
multiplying bases in Type (D) ; dividing indices while not changing bases;
multiplying base times exponent before dividing; and, dividing both the
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bases and the exponents (pp.l141-145).

Students do have problems in adapting the additional notation of a
raised index to other mathematical conventions. For example, a student
giving an answer of 36 to (32 4, having multiplied the result of 32 by the
power of 4, said “They don’t have any sign here and usually when the
numbers are together and taere’s no sign, it's usually times” (p.135).
Similar errors occurred in Type (D) (uestions giving results such as 76x79
= 42x35 (p.129).

Some students recognised “the exponential format” and correctly
“performed computations associated with exponents”, but not in a
correct order. For example (23)2 = 29 where they have raised the 3 to the
power of 2 (p.133).

Students who lack basic understanding in algebra obviously have
considerable difficulty with index questions. For example there was
evidence that some studen:s, who gave the answer b™Mm for bMmxbn,

regarded mn as meaning m+n (p.129)

“Rote activities seemed to te the key to how many students applied
correct as well as incorrect algorithms” (p.188). Here DeVincenzo is
implying that students are not working from genuine understanding but
are applying rules they have developed. This supports Shevarev’'s
argument that students are using connections. It may be that this
application of an ‘incorrect algorithm’ is the result of an incorrect
connection.

“The acquisition of mathematical jargon without much understanding
was frequently demonstrated during the interviews” (p.189). As with the
previous point, this indicates that students are not applying genuine
understanding.

“Discussion with some teachrs in the participating schools verified that
many topics were ‘covered’ hut not taught with mathematical meaning

and certainly not individualised for particular students” (p.189).

DeVincenzo observed that “scveral discussions with students during the
Observation-Interview sessicns confirmed the tendency for students to
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experience difficulties in only the algebraic forms of these problem types”
(p.82). It is surprising there was no attempt to substantiate this
important point using eviderice of the testing. Even more so when one
takes into account that her d scussion of errors is more about arithmetic
problems than algebraic problems.

The fact that the frequenc of errors was not included in the research
report makes it difficult to isolate which were the common errors. Despite
DeVincenzo’s observation that problems were more common with the
algebraic form than the numeri:al form, her discussion does indicate that
difficulties students have in operating with numerical bases is an issue
which should be pursued. DeVincenzo’s research highlights the fact that
errors are extensive and that student strategies are not particularly obvious.
She used the interviews to “unc erstand more deeply the nature of specific
errors” (p.175) but did not attempt to integrate the findings for specific
errors into more general explinations of why they are made. This is
obviously an area which needs tc be addressed in this current research.

RESEARCH OF G.F.CHILDERS

In 1987 Childers published her Ph.D. dissertation, An Error Analysis of
Algebra Problems Containing Exponents when Constants, Variables, and
Algebraic Expressions are Interchanged in the Laws with Implications for
Cognitive Style Theory and Latent Trait Test-Scoring Methods. This research
investigated systematic errors miide by students when using index laws.

The following laws for exponents were investigated:

1) alal= am+n
2) al 1/ al = gnn
3) (a 'n)n. = (TN

4) (ab)m = ampm
(Childers 1987, p.12)

Childers examined the differences in error patterns which occurred in
problems using these laws whea: (i) the exponents in the expression were
interchanged between being con:tants and variables; and, (ii) the bases were
interchanged between being constants, variables and algebraic expressions.
Childers generated six types of problems using various combinations of base
and exponent. These types were:
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TYPE 1 Problems involving powers in which the bases are variables
and the exponents are constants representing non-zero
integers, for example, a3.a2, a3/a?, and (a3)2.

TYPE 2  Problems involving powers in which the bases are constants
representing positive integers and the exponents are
variables, for example, 3M.3n, 3M/31, and (3™

TYPE 3  Problems involving powers in which both the bases and the
exponents are variables, for example, a™.al, a™/a", and
(amm.

TYPE 4  Problems involving powers in which the bases are binomial
expressions and the exponents are constants representing
non-zero integers, for example, (x+y)20+y)3, (x+1y)2/(x+y)3,
[Oe+y)213.

TYPE 5  Problems involving powers in which the bases are constants
representing positive integers and the exponents are
constants represernting rion-zero integers with at least one
negative exponent in each problem, for example, 2-4.28, 2-
4/28, and (2-4)8.

TYPE 6 Problems involving powers of a term made up of a
coefficient, a variaole to an integral power (greater than 1)
and a variable vwith an unwritten exponent of 1, for
example, (3x2y)-2.

(pp.12-13)

Childers made considerable re'erence to the work of DeVincenzo, whose
thesis was discussed previously and used it for guidance as to the types of
errors students make in index quaestions. Apart from Type 5, which involved
a negative index, Childers chos¢ not to examine errors occurring where the
base and the exponent were both constants. The reason given was that
“DeVincenzo found that more errors and more different errors than same
errors were made in algebraic exponent problems than in exponent problems
involving bases and exponents which were both constants” (p.37).

The subjects of this study were £2 students enrolled in Basic Algebra I
at the J.Sargeant Reynolds Community College in Richmond Virginia.
Students were tested for field- ndependent and field-dependent cognitive
style and then given a test containing sixteen tasks, each task having five
repeated measures. A systematic error was regarded as being the same error
for three of the five repeated measures. The tasks and Childers findings are
discussed below.

Fifteen of the tasks were problems applying the first three laws listed
above to each of the expressions of Types 1 to 5. For Law 1 there were five
questions of the form a3.a? ¢nd similarly for the forms 3m.31, am.an,
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(x + y)3.(x + y)2 and 2-4.28. The same was done for Laws 2 and 3. Childers
found “there was a significant difference in the number of systematic errors
in Types 1 to 5” using the first three laws of exponents and “students quite
often make different types of errors on exponent problems when constants,
variables, and algebraic expressions are interchanged” (pp.135-136).

The sixteenth task was simplifying expressions of the form (2y3z)4.
This was to determine how students applied the exponent outside the
brackets to each of the three components of the product inside (in effect
treating each question as three problems). The components were a constant
coefficient, a variable to an in egral power (neither zero nor one) and a
variable to the power of one (the power being understood, not written). She
found there was a significant difference in the errors students make when
applying the exponent to each o these components (Childers 1987, pp.121-
122).

Childers also tested the relationship between the number of
systematic errors made and :he field-independent or field-dependent
cognitive style of the subjects. She referred to the work of Shevarev and
stated that “of special interest t) this study is Shevarev’s conclusion of the
reason for the error made by four stucdents who got the problem a%y5/ay!0
and xA+1,A / x.Al-U correct tut missed A%4(x - y)5/A(x - y)15" (p.28).
Shevarev’s explanation of this error was discussed earlier in this chapter. He
said that in such questions “the feature that the power’s base is a letter,
and not a polynomial enclosed in parentheses, entered into the first
component of the connection” (Shevarev, p.27). This meant that students
looked on the case with a polynomial base as being quite different to the
one where the base was a letier, and so did not bring the appropriate
strategy to bear.

Within her Type 4 classijication of questions, Childers investigated
students’ responses to questions involving polynomial bases. She “felt that
the reason or reasons why many students seemed puzzled by Type 4
problems ... was either related to the students’ spatial abilities, abstract
abilities, or previous mathematical training” (p.51). Childers proposed that
“one theory which seemed to connect all of these constructs was Herman
A.Witkin’s (and associates) thecry of field-dependent and field-independent
cognitive styles” (p.51). However. in her research, she found that this theory
did not explain the errors and that “Systematic errors in exponent problems
were not significantly related to the cognitive style of a subject” (p.136).

Childers listed sixty-nine error types which had been identified by
other researchers (mainly DeVincenzo) in these types of questions. In
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addition, she identified another forty six through testing and ten additional
error types through audio-taped interviews (p.91). Brief mention only is
made of the interviews, this being that “Ten audio-taped interviews with
students taking a shortened version of this test were also used to locate
errors and to confirm other errors already found” (p.138).

Childers provided a table indicating the proportion correct for each of
the items (pp.208-209). Besides giving an indication of the relative difficulty
for students of each of the individual items it can also be used to indicate
the relative difficulty of each Type within each Law. Examination of
Childers’ table showed that for Law 1/Type 1 questions, the percentages
correct were: a3.a? (77%); x5.x2 (60%); y%.y7 (87%); z9.z-2 (75%); and,
bS.b"1 (81%).

Since all candidates were given all questions, these results can be
averaged to show that, in gene-al, 76% of all answers to these questions
were correct. A similar analysis by this present researcher, of each of the
combinations of Laws and Types presented in Childer’s data provided the
results listed in Table 2.1.

Table 2.1. A Summary of Student Performance
on Index Questions Developed from Childers’ Data

Category Example % Correct
Law 1, Type 1 ad.at 76%
Law 1, Type 2 3m.3n 59%
Law 1, Type 3 am.an 77%
Law 1, Type 4 (x+ y)m(x+ yn 41%
Law 1, Type 5 2-4.28 61%
Law 2, Type 1 X7 [ x2 72%
Law 2, Type 2 2a / 2b 58%
Law 2, Type 3 cm /et 62%
Law 2, Type 4 (x+ 4)6 / (x+ 4)3 45%
Law 2, Type 5 45/ 46 54%
Law 3, Type 1 (a3 84%
Law 3, Type 2 (7mA 92%
Law 3, Type 3 (xnm 90%
Law 3, Type 4 [(x + y)7]3 35%
Law 3, Type 5 (2-3)4 72%




Table 2.1 shows that students had most difficulty when dealing with a base
which was a polynomial. However, it is also apparent, from the table, that
the error rate for Laws 1 and !} is noticeably higher where the base is a
constant than when it is a single variable. The fact that the same did not
apply for Law 3 with Type 2 questions may be because students’ options
were limited by the fact that both the exponents were variables. This
observation is supported by the higher error rate for Law 3, Type 5 questions
where the indices are constants.

Type 6 questions were coricerned only with Law 4 and were all of the
form (4A5B)3. The overall success rate with these questions was 41% which
indicates that students had considerable difficulty with them.

RESEARCH OF F.J.WILSON

In 1985 Wilson published his Pa.D. dissertation, A Clinical Investigation of
the Understanding of Exponents 2y Remedial Algebra Students at a Four Year
College. In this research Wilson nvestigated the following questions:

1. Do remedial algebra students have a relational, instrumental or
no understanding of the prerequisites conjectured as necessary
for success in dealing with the concept of exponent?

2. Do remedial algebra students have a relational, instrumental or
no understanding of the concept of exponent?

3. Do remedial algebra students have the ability to generalise the
various properties of exponents?

4. What types of imagery (o students use when working with the
concept of exponent?

5. Do successful students differ from unsuccessful students with
respect to the four questions above?
(Wilson 1985, p.7)

In his investigation, Wilson used a theoretical framework which was
“developed by combining critica. features of each of the theories of Bruner,
Skemp, Krutetskii and Gagne’ (p.9). Wilson interviewed students and
classified, qualitatively, their understanding of the concept of exponent as
belonging to one of the cells of the matrix provided in Figure 2.1.
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UNDERSTANDING
Instrumental Relational

MODE Iconic
Symbo ic

Figure 2.1. Wilson’s Frame work for Categorising Understanding

In this matrix, ‘instrumental’ and ‘relational’ refer to Skemp’s classification
of understanding while ‘iconic’ and ‘symbolic’ refer to Bruner’s modes of
internal representation of inforn.ation.

The subjects of the research were students from the Ferris State
College in Michigan. Students frym two courses, a beginning algebra course
(comparable to a ninth-grade algebra course) and an intermediate algebra
course, were selected for interview on the basis of a diagnostic examination
delivered after the completion o a unit on exponents. It is relevant to note
that, in the diagnostic examination, the most commonly missed problems
were x0, 20, 82/3, 42/22 23 4 22 x3 + x2, (xy)? and (x3)?2 (p.140). Wilson
mentions also that, in unit exams, twenty-seven students out of one
hundred and fifty-nine beginnin 3 students missed 34.32, while twenty-three
and twenty-eight out of thirty-two intermediate students missed 25.55 and
147/75 respectively (p.140).

Fourteen students across the two groups were interviewed. Students
were asked to explain their tlinking, while working through forty-nine
problems covering basic operations involving indices. The interviewer “was
free to offer hints of encouragen ent, challenge and contradict, or to present
related problems in an effort to ‘draw out’ the thought processes of the
students” (p.136).

Wilson found that “beginning and intermediate algebra students, both
successful and unsuccessful, have a relational understanding of positive
integer exponent ... it is with tt e use of the various exponential properties
that instrumental understandin § replaces relational understanding” (p.229).
In discussing his results, Wilson expressed considerable concern that
students have little relational understanding of indices and carried this
through to a more general obse:'vatior on algebra by saying that “one must
question the educational priorities of a system which enables a student to
continually move up the educational ladder by continually memorising
material” (p.240).
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Most of the students interviewed worked within the symbolic mode
and only used the iconic mode “vhen input from the interviewer stimulated
such a response. Wilson observed that “The primary difference in imagery
usage between the relational th nkers and instrumental thinkers appeared
to be the fact that the students with relational understanding recognised
that they could use numerical in.agery” (p.233).

Wilson’s comment on the failure of some students, “to notice all the
relevant features of a problem ... frequently home in on one surface feature
that matches a feature of an algorithm available to them” (p.232), is very
interesting in the light of Shevar:v's findings that certain students are using
‘connections’ when working with indices.

Wilson's research confirms that there are widespread problems
existing in the understanding of indices and that interviewing is a valuable
tool for obtaining insight into thz difficulties students have.

RESEARCH ISSUES ARISING FROM THE LITERATURE

The literature does indicate tha: students make many and varied errors in
questions involving indices. The diversity of errors is no doubt related to the
many combinations of operations available to students in dealing with the
components of such questions. .\ remarkable number of erroneous answers
come from the simplification of 3a2)4. How many more errors can be made
by Year 8 students when confronted, in a typical popular textbook in New
South Wales, by the simplification of “(3a2)2x5a3/9(a3)2” (McSeveny,
Conway and Wilkes 1988, p.122)?

In making sense of students’ difficulties in this area, there seems little
point in simply continuing to caialogue errors. A more productive strategy is
likely to be one which focuses on students’ thinking when answering index
questions and, in particular, when making the more common errors. Under
such an approach an examination of the extensive range of questions
generated by the literature gives rise to four issues described below.

Issue 1
The research into errors students make while undertaking index

questions has been carried out in other countries.

Issue 2
In questions which requi-e multiplication or division of expressions
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involving exponents: what is the thinking behind students’ tendency
to multiply or divide numecrical bases when they do not do this if the
bases are variables?

Issue 3

What relationships do students see as holding between the
components of a numerical expression involving an index and a power
to which that expression i3 raised? What impact does the inclusion of
variables/constants have on their perception?

Issue 4

The concept of connections was used by Shevarev to explain

inconsistencies in student responses across similar questions.

(a) Is there evidence to support this hypothesis?

(b)  Are there other insti nces in the topic of Indices where this
concept seems to ap»ly?

The first of these research issues is resolved in the following chapter while
the others are considered later in the thesis.

ISSUES IN CATEGORISING ERRORS

In determining an appropriate classification of errors for this current
research it is of value to consider how errors were classified by the four
researchers whose work has beer: discussed.

Shevarev chose to categorise errors according to the type of incorrect
connection he saw as generating them. There are two such types which seem
most relevant. Firstly, there are those where the first component of the
connection, the recognition of tie ‘general features’ of a specific part of an
algebraic expression, is missing some essential feature. Secondly, there are
those where the first component contains something unessential which
narrows the connection’s scope. The sequencing of course content is a vital
aspect of the development of ccnnections. Students having a commonality
of experiences, given by followir.g a particular learning sequence, are likely
to develop the same connection: and, if the connections are incorrect ones,
make the same errors. Shevarev considered only errors made in algebra but
it is possible his theory has app ications in many other fields.

DeVincenzo classified errars by the index law being used, and then
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looked at whether the same errors were being made in arithmetic and
algebraic forms. The three lav/s she considered were: multiplying two
numbers in exponential form with the same base; raising a number in
exponential form to a positive integral power; and, dividing two numbers in
exponential form with the sarae base. She found that students made
different errors in the algebraic forms to those made in the arithmetic forms.

Childers classified errors according to the nature of the bases and
indices in a particular problem. She used six categories of problems
generated from various combina iions of having a constant or variable for an
index and a constant, variable o1 algebraic expression for the base.

Wilson classified respor ses according to the mode of internal
representation of the information and whether relational or instrumental
understanding was demonstratec|.

It is apparent, from the ex»eriences of these researchers, that it would
be of benefit to have a classification of errors which takes into consideration
three particular issues: (1) the important role the sequence of instruction
may play in generating errors; (2) the distinction between algebraic and
arithmetic types of problems; aid, (3) the great variety of errors which do
occur. Accordingly, a categorisetion of errors which accounts for both the
content and sequence of the syllabus is indicated. Earlier in this chapter
the order in which students’ experiences commonly develop was described.
From that sequence, broad categ ories for classifying errors can be identified.
These are errors in:

(A) Evaluating a Numerical Expression.
(B) Interpreting an Algebraic Expression.
(C) Simplifying; an Algebraic Expression.
(D) Substitution and Evaluation.

(E) Changing .1 Subject.

(F) Scientific Notation.

In the following chapter an extensive examination of the errors students
make is undertaken. The categories listed above provide a useful overall
framework for that examinationn. Within each of the six categories, there
will need to be sub-categories to take account of the great variety of errors.
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CONCLIUSION

Although the research in this fi¢ld is limited, it is sufficient to indicate that
many students do have difficuliies in answering index questions and that
numerous, systematic errors are being made. The research consistently
supports the proposition that riany students, even when giving a correct
answer, are not applying a ger uine understanding of the meaning of an
index but are using other strate sies. An important point, which needs to be
addressed, is the extent of the use of other strategies.

While researchers agree that many students are not applying an
understanding of index rules tiey appear to disagree on whether or not
students do have that understanding available and could use it if
circumstances encouraged them to do so. In reporting her interviews,
DeVincenzo implied that erro's were simply a result of students not
understanding the concepts. Shevarev, on the other hand, believed many
errors result when a student knows a rule “but nevertheless acts contrary to
it” (Shevarev 1975, p.1). The ex>lanations offered by Shevarev are thought
provoking and bear further research. The clarification of this issue is
obviously a crucial one for research in this area. This requires a close
examination, not only of the errors being made, but of the understandings
students have developed, and ar¢ applying.

The curriculum context vithin which students in N.S.W. gain their
understanding of indices has bzen discussed. Mathematical performance,
stemming from that curriculum is assessed near the end of Year 10 using
an external examination called the N.S.W. School Certificate Moderator. By
that stage, index skills needed to support students’ work in mathematics in
the two senior years of schooling; should have been acquired. An analysis of
responses to index questions contained in that public examination is the
subject of Chapter 3.

The analysis of the School Certificate data will address the first of the
issues listed above, namely, tkat previous research into errors students
make while undertaking index questions has been carried out in other
countries. The analysis will determine whether Australian students are
making the same sorts of errors as identified in the literature. Additionally,
it is an important source of evidence on how significant the other three
issues are likely to be in this c¢xamination of students’ understanding of
indices. Finally, from that an:ilysis, new issues which warrant further
research will undoubtedly emerge.



Chapter 3

AN ANALYSIS OF ERRORS MADE IN
INDEX QUESTIONS BY
N.S.W. SCHOOL CI=RTIFICATE CANDIDATES,
1981-91

Introduction to Chapter

In Chapter 2 the position of indices in the Mathematics Curriculum was
considered and existing researct. in the field of indices examined. It appears
that work in this area is limit:d and there is little to indicate a strong
direction for future research.

It is fortunate that there already exists a substantial data source
covering an extensive range of questions involving indices. This source is the
subject of the present chapter. It is in the form of student responses to
questions in the objective answer section of the School Certificate
Moderator, an examination und¢rtaken by students throughout N.S.W. near
the end of Year 10. The percenta se of students choosing particular responses
to questions in these examinaticns are published each year. There has been
no previous research in which data from the questions involving indices
have been collated, and the narure of student responses explored. In this
chapter the source of the data ic discussed, the way in which the errors are
categorised is explained, and the data are analysed. From the analysis,
research themes concerning stuc ents’ understandings of indices are drawn.

THE SOURCE OF THE DATA - THE N.S.W. SCHOOL CERTIFICATE

The New South Wales School Certificate Moderator examination is
administered each July to Year 10 students of N.S.W. schools, both
Government and Private. Since 1983 it has been set at three levels,
Advanced, Intermediate and Gereral with the candidature for each being as
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described in Chapter 2. The data are drawn from the 1981 and 1982 papers,
which covered all levels of abilit7, and from the Advanced and Intermediate
papers from 1983 to 1991.

Questions discussed belovs are from the Part A section of each paper,
the section for which statistics are readily available. This is made up of 50
multiple-choice questions which count half the total value of the paper.

There are limitations to such data when researching students’
understanding, these being the :onstraints posed to answers by the limited
number of possible responses, a1d the fact that students’ thought processes
are not being explored. However, the data are drawn from a remarkably
extensive and representative sample (i.e., approximately 80 000 students
each year), and, as such, provide a wealth of information on which to
establish directions for research.

CATEGORISATION OF ERROR TYPES

As discussed in the preceding chapter, there is benefit in categorising errors
in a way which accounts for: tie sequence of instruction; the distinction
between algebraic and arithmetic types of problems; and, the great variety of
errors which occur.

This research categorises the occurrence of errors according to both
the content and sequence of the syllabus under six main headings,
previously identified, from the course of study followed by students in
N.S.W. schools. These are hiercrchical in nature, beginning with errors in
arithmetic then moving into problems of understanding, and operating with,
algebraic expressions. Arithmetic and algebra come together in questions
involving substitution. Operations with indices and equation-solving skills
both come into play when dealing with a change of subject. Finally, a
specialist application of indices in the form of scientific notation is
considered. To take account of the great variety of question types, the
categories are further subdividad into a total of nineteen sub-categories.
These are also hierarchical in that, within the six areas, the sub-categories
are arranged in the typical order in which the content is taught.

The categories for classification of error types are:

(A) Evaluating a Numerical Expression.
(a) Multiplying Numbers with the Same Base.
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(b) Dividing Numbers wi h the Same Base.
(c) Raising a Term to An>ther Power or Taking a Root of a Term.
(d) Operations Involving a Zero or Fractional Index.
(B) Interpreting an Algebraic Expression.
(a) Writing an Expression Involving Repeated Factors.
(b) Giving the Expanded Form of an Expression.
(c) Questions Involving Ilegative and/or Fractional Indices.
(C) Simplifying an Algebraic Expression.
(a) Collecting Like Terms Involving Indices.
(b) Finding the Product of Algebraic Terms.
(c) Finding the Quotient of Algebraic Terms.
(d) Finding Powers of Algebraic Terms.
(e) Simplifying Algebraic Fractions of Greater Complexity.
(f) Taking the Square Root of an Algebraic Term.
(g) Simplifying Expressicns Involving a Zero Index.
(D) Substitution and Evalu:ition.
(E) Changing a Subject.
(F) Scientific Notation.
(@) Writing a Decimal Number in Scientific Notation.
(b) Converting a Numbe - in Scientific Notation to a Decimal.
(c) Written Problems Involving Scientific Notation

The N.S.W. School Certificate Moderator examination is designed to assess
students’ success at the end of ear 10 and, as such, covers all the content
areas under consideration. Although the test is wide ranging, the questions
tend to be clearly identifiable with particular parts of the syllabus, and are
readily classified. From the test papers considered, all questions which fall
clearly within each category have been selected for analysis. It should be
noted that links between the concepts in different content areas mean,
almost certainly the analysis will generate research questions which are
relevant across categories.

ANALY'SIS OF THE DATA

In the analysis, the following information is provided for ease of reference.
For each content area, questiors are given a sequential number and then
the year, level and number of the question in the examination paper, from
which it came, is identified. Th: terms “Advanced” and “Intermediate” are
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abbreviated to “Adv.” and “Int.”. Questions from Advanced papers are listed,
followed by Intermediate questions and then questions from 1982 and 1981,
years in which the papers covered all the levels of ability. Within these
groupings, the questions are ordered from most recent to least recent. The
percentage of students, giving cach response, is provided in parentheses
after the response (percentages are rounded and may not total exactly
100%). The percentage population making the correct response is
underlined.

Following each set of questions, there is an analysis section within
which frequent errors are examined. Where relevant, comparisons are made
concerning how different candidatures performed on similar questions, and
how the same candidature performed on different questions. Any
relationship that seems to ex st between performance in the different
categories is commented upon. I'ssues appearing to warrant further research
are drawn from the points made in the analysis and are listed under the
heading ‘For Investigation’.

It should be noted that where distractors are referred to as
‘corresponding’ this means they are arrived at using the same operations.
For example, the response of 36 for 33x32 corresponds to 512 for 53x54 since,
in both, the bases were left unchanged and the indices multiplied.

(A) Evaluating a Numerical Expression

(a) Multiplying Numbers with Numerical Bases
There were four questions in th s category. One of these was asked of both
the Advanced and Intermediate candidature in the same year (1984).

[1] 33x32 = 2 (1984 Adv. Course Question 1)
(A) 35 (68%) (B) 36 (2%) (C) 95 (28%) (D) 96 (29%)

2] 53x5% = ? (1986 Int. Course Question 1)
(A) 57  (48%) B) 512 (3%) () 257 (45%) (D) 2512 (4%)

[3] 33x32 = 7 (1984 Int. Course Question 1)
(A) 35 (44%) (B) 36 (3%) (C) 95 (47%) (D) 95 (5%)

[4] 23x32 = 9 (1982 Question 2)
(A) 69 (66%) (B) 65 (5%) C) 36  (1%) (D) 72 (28%)
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While many students realised the indices needed to be added in [1], [2] and
[3], there was a great temptation to multiply bases. This shows many
candidates did not have, or were not using, genuine understanding. Such
responses would be precluded if students worked from a position of
sustained awareness that an index meant a repeated factor. Items [1] and
[3], being the same question, bu for different candidatures, showed that the
error of multiplying bases occur:-ed less frequently with Advanced students.
Nevertheless, the error rate was still high with almost a third of this able
group (approximately the top 36" of the age cohort) choosing that option.

Very few students multiplied indices. That examiners persisted with
these distractors perhaps supports the view that wrong responses
'mathematicians' expect from stadents often are not the ones that actually
occur.

It is possible that students look for an answer involving indices. This
is shown in [4] where the correct numerical response ((D)) is not particularly
popular compared to the correct responses in the other questions.

A consistency across the :same level candidature in different years is
demonstrated in the results for Items (2) and (3). The questions are very
alike and an examination of ‘he responses shows remarkably similar
percentages choosing correspor ding distractors (which, from left to right,
happen to be in the same order).

For Investigation: (i) What m=2anings do students attach to integral
indices?
(ii) When multiplying numbers with the same base, why
do some students multiply bases as well as adding
the indic:s?

(b) Dividing Numbers with Num.erical Bases

One question, only, required stiu dents to divide expressions with numerical
bases. The base in both expressions was 2 and it may be that the equality,
or otherwise, of bases is an issuc¢ affecting responses.

(1] 212:92 - 2 (1983 Int. Course Question 16)
(a) 16 (10%) (B) 26 (6%) (©) 110 (40%) (D) 210 (44%)

This question appeared in the 1383 Intermediate paper which was directed

at approximately the middle 43%) of the age cohort. The majority of students
chose the correct option with the indices ((C) or (D)), as they did for
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multiplication. Still, almost half of these also chose incorrectly to divide the
bases ((C)). This again shows lack of application of genuine understanding
of the meaning of an index.

The fact that students wer 2 satisfied with an answer of 110, an answer
which implies the numbers bein 3 divided were equal, shows the answer was
either not put under scrutiry by the students or not viewed with
understanding. As for multiplication, it appears that many students are not
working from the basis of an integral index as indicating a repeated factor.

Half of the candidates (responses (A) and (C)) chose to divide bases in
this question. This closely mirro ‘s the proportion of Intermediate candidates
who operated on bases in the multiplication questions discussed in the
previous section (49% for Item 1 and 52% for Item 3).

For Investigation: (i) When dividing numbers with numerical bases, why
do students divide bases as well as subtract indices?

(c) Raising a Term to Another Power or Taking a Root of a Term

Three questions involved the application of a power to a numerical
expression either by the use of an index outside parentheses or a radical
sign. The success rate was not h gh.

n Vied= 2 (1987 Adv.Course Question 10)
(A) 44 (43%) (B) 48 (5 1%) C) 8% (3%) (D) 88 (1%)

2] (4+32= 2 (1982 Question 21)
(A) 12 (10%) (B) 16V3 (38%) (C) 36 (12%) (D) 48 (40%)

B8] 232= 2 (1981 Question 9)
(A) 25 (19%) (B) 26 (52%) €) 29 (4%) (D) 45 (24%)

Many students found difficully in determining whether the base, the
exponent or both were altered. Responses [1] (A), [2] (B) and [3] (D) seem to
indicate that students want to apply the familiar operations of squaring or
finding the square root to the more obvious number only.

It seems many students confused raising to a power with finding the
product of terms which have the same base (see response [3] (A)). Shevarev
used an example of this type wh:n explaining his first incorrect connection.

Questions [2] and [3] bot1 required students to square a numerical
expression. Despite the operation being the same, there is no obvious
similarity in errors between the two questions. While this is largely a
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function of the distractors provided, it would appear the nature of the term
being squared largely determines the kinds of errors made.

For Investigation: (i) What relationship do students see existing between
a root o1 power and the term to which it is being
applied?

(ii) Do students confuse raising to a power with finding
the prodiict of two terms with the same base?

(d) Operations Involving a Zero or Fractional Index
There were two questions in tlis category, the second of which required
students to have an understand ng, also, of the index of a half.

[1] 8x30 = 2 (1983 Int.Course Question 5)
(A) 0O (10%) B 1 (B%) (C)8 (62%) (D) 24 (25%)

2] 160+161/2 2 (1982 Question 40)
(A4 (15%) B)5 (42 %) )8 (27%) (D)9 (16%)

Responses seem to indicate a different interpretation of the zero index
between the two candidatures. In [1], 10% of candidates appear to have
multiplied the base and index or interpreted a zero index as generating a
zero answer in some fashion. Thz second question, having been examined in
1982 when the candidatures irere combined, covers a broader range of
abilities than the first. In [2], 42% of students ((A) and (C)) appear to have
done the same thing. While the candidatures differ, the results are
surprising. Perhaps this is related to the fact that in [2] there was no option
to treat 169 as being simply 1¢. That type of option attracted 25% of the
candidature to select (D) in [1] and it may be that many of these could be
those choosing (A) and (C) in [2]. Whatever the explanation, it is evident
that a significant source of error results from treating the zero index as
giving an answer of zero or as being able to be ignored.

For Investigation: (i) What meanings do students attach to the zero index?
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B) Interpretation of an Algebraic Expression

(a) Writing an Expression Involving Repeated Factors
The two items in this category came from papers for the Advanced course.
Both questions were framed in words.

[1] In a certain area of Australia the ratbit population doubles each year. At the
beginning of one year there were x rebbits in the area. How many rabbits will

there be in the area after nyears? (1987 Adv.Course Question 24)
@A) 2x1 (7%) (B) 2x 161%) (©) 2 1x (8%) (D) 2% (24%)

[2] Which expression shows the froduct of p factors, each of which is m ?
(1985 Adv.Course Question 10)

A) pm (52%) B) p™ (20%) (C) mP (24%) (D) p+m (3%)

These questions show that even capable students have great difficulty
describing situations requirin;f the use of indices as a shorthand for
repeated factors. Comprehension of a written question may have been a
factor in the error rate of [1] and, perhaps, [2]. This is something which
needs to be kept in mind when considering responses to any questions posed
in words.

The success of distractor (B) in [1] may indicate a preference for
applying an index to a pronumeral, rather than to a number, where such an
option exists. Textbooks rarely use an expression of the form 27x and
students may be conditioned not to expect such an answer.

The popularity of response (A) in [2] indicates students may have a
strong preference for multiplica ion in situations where the word 'factor' is
used. In [2], those who realised that an index would describe the repeated
factor were equally divided over which pronumeral was the base and which
was the power. Is this a result of the wording, or of a lack of genuine
understanding?

For Investigation: (i) What are the difficulties students have when
translating cases, where a factor repeats, into
algebraic notation?

(ii) Is there ¢ particular problem with students accepting
that a pronumeral can be the index?

(b) Giving the Expanded Form of an Expression

The two questions in this section were similar in structure and had
corresponding distractors. Answers for the first question were all written in
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fully expanded form. Multiplication signs, between the unknowns a and b,
were omitted from two distractors of the second.

1

[1] 3 at2 =? (1985 Int.Course Question 23)

1 1 1
(A) gxaxtxt (68%) (B) pxaxt2 (4%) (C) pxaxaxtxt (16%) (D) %xctxtx-;— waxt (119%)

2] 3ab? = ? (1984 Int.Course Question 15)
(A) 3abx3ab (30%) (B) 3xabx ib (149%) (C) 3xaxbx2 (2%) (D) 3xaxbxb (54%)

Students had considerable success, though the main error again appeared to
be applying the index to all or several of the bases preceding it. That
students were less inclined to do this in the first question may relate to the
coefficient being a fraction. How=ver, it may also be that the omission of the
multiplication sign, between the coefficient and bases, in (A) of [2] made it
more attractive than was its corresponding distractor, (D) of [1].

For Investigation: (i) What relationships do students see existing between
an index and numbers or pronumerals preceding it?

(c) Questions Involving Negative and/or Fractional Indices
All eight items in this group were from Advanced papers. Each required
students to convert an expressicn to, or from, index notation.

[1] Which expression is equivalert ax1
1
(A) -4x (5%) (B) Ax (€ 1%)

(1991 Adv.Course Question 39)

© % % O % 8%

[2] Which is equivalent to 64a2/3 2
3 _
@) 16Va2 (16%) (B) 64Vd (14%)

[3] Which expression is equivalent :o x2?
@A) x (7%) B) -2 (7%)

[41 x1yl/d = 2

4
(&) -x Ny (15%) (B)
6] 2x1/2= 2

a) = (29%) B
X

\[_

(1990 Adv.Course Question 21)
3 v
©64Va2 (67%) (D) 512Va3 (3%)

(1990 Adv.Course Question 42)

1 1
(®) N (16%) (D) 2 (69%)
(1988 Adv.Course Question 7)
4—
© 75 eon DL 9w
Xy X

(1987 Adv.Course Question 30)

(D) —= (40%)

1
C) — (23%
( (23%) T2

2\ x



1

6l 553 = ? (1985 Adv.Course Question 11)
(W 2x1/3 (12 (B) 203 61%) (O 5x1/3 8% (D) 33 (19%)

(71 sx1/2- < (1984 Adv.Course Question 9)
() r;( es% B 5 13%) (C)—sl—& @3%) (D) \% (25%)

8] 3a2= 2 (1983 Adv.Course Question 5)
B S5 620 B 5 @8% (OS5 7% (D) 5 (3%

The success rate for these questions was very low despite the candidature
being the most able (Advanced students. Applying the index to both the
coefficient as well as the base vzas the main source of error. In each case,
where the index was a negative integer and the term included a coefficient
(Items [1], [6] and [8]), this error was made by more than 60% of candidates.
Where the index was a negative fractional index (Items [5] and [7]) the error
was less, though still high. Distractor (A) in (7) may have proved more
popular were it not for the attachment of a negative sign to the numerator.
Despite the high error rate, it is clear, from the responses across the eight
questions, that the great majority of students understand a negative index
means reciprocal and an index of%means square root.

Though appearing as structurally complex as the other questions, [2]
and [4] were completed much mcre successfully. In [2], this could be because
students were encouraged to thi1k more critically by the larger coefficient or
because there was no option where 64 was included within the radical sign.
In [4], the lack of a numerical coefficient, or the fact that each base had an
index attached, may have made ‘he question easier.

The simple interpretaticn of a negative index, in [3], was well
answered. This supports the prcposition that the problem is not so much in
understanding the meaning of a negative or fractional index but in applying
it in less straight-forward situations. It appears that the error, which
Shevarev identified, of associatiag 1/x” with -x7 does not occur frequently if
the question is simple. However, where questions have been more complex,
such as in [1] and [7], one in four students have chosen to interpret a
negative index as leading to a negative expression of some sort. Hence, when
the cognitive load associated with a question is higher, students are more
likely to make an error with th: interpretation of the negative sign. Could
the theory of Shevarev explain why students seem to have understanding
and yet not apply it correctly?
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For Investigation: (i) What relationships do students see existing between
an index and numbers or pronumerals preceding it?
(ii) Why do students find less problems where each or
several o the bases have an index attached?
(iii) Why do students have less problems working with
pronumeral bases than with numerical bases?

(C) Simplifyingt an Algebraic Expression

(a) Collecting Like Terms Involving Indices

Three of the four questions in tiis section came from Intermediate papers.
The question from the combined paper of 1982 had the apparent added
complication of involving operat-ons with fractions.

[1] Simplify m3+m3 (1991 Int. Course Question 2)
(A 23 (32%) B) mb (£ 5%) (C) 2mB (22%) (D) m9  (12%)
2] 3y2-2y+5y+4y2 = ? (1988 Int.Course Question 18)

(A) 7y2+3y (51%) (B) 7y2-7y (13%, (C) 7y*+3y (26%) (D) 7y%-7y (10%)

[3] S+aS = ? (1984 Int. Course Question 9)
(A) a® (34%) B) @ (15%) C)2a3  (27%) (D) 2a8 (25%)
2
[4] )}5_2'*2_;_ = 7 (1982 Question 46)
w32 uzy ® o 0 e o usw

Problems students have with directed number concepts and fractions have
confused the issues in [2] and 4], respectively. However, when taken with
[1] and [3], responses to these (uestions show many students do not have
the understanding needed to avcid adding indices when adding like terms.

A number of students wish to multiply indices when the operation is
the addition of terms (see [1] ard [3]). Perhaps the action of adding indices
when multiplying terms has developed an association with the operations of
multiplication and addition whe 1 working with indices.

Items [1] and [3] are identical, except for the letter used as the base
and the order of the distractors. The percentage selecting corresponding
responses differs little across the two candidatures. This consistency would
seem to indicate the range of urderstandings being applied by Intermediate
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candidates has remained largely anchanged over 8 years, from 1984 to 1991.

For Investigation: (i) What problems do students have in collecting like
terms insolving indices? In particular, why do they
add or multiply the indices?

(b) Finding the Product of Algebraic Terms

Relatively few questions have b:en pcsed on what might be expected as a
common operation in the matktematics classroom. None of the questions
were from Advanced papers.

[1] Simplify -6a9x(-2a?) (1990 Int. Course Question 2)
(A) -12a7 (10%) B) -12ald (@%) (C) 12d7 (75%) (D) 12al0 (11%)

[2] 2ax3axta = *? (1987 Int. Course Question 2)
(A) 9a (1%) (B) 9a3 (2%) (C) 24a (21%) (D) 24a3 (76%)

8] (ab)2xB3 = ? (1981 Question 27)
(A) a2b5 (71%) (B) ab® (13%) (C) a2b5 (10%) (D) ab® (7%)

It appears that questions of this type pose few problems. The option to add
the coefficients in [2] (A) provided almost no attraction. This indicates there
is little substance in examiner s expectation that students might look to
add indices but, on not finding taem, would instead add coefficients.

A substantial proportion of candidates correctly multiplied the
coefficients but did not insert the index in question [2] (21%). Was this
because there were no indices in the original question to provide a cue, or
was it because there was some confusion with the collecting of like terms
where the index does not change?

Questions [1] and [3] show that only a small proportion of students
are tempted to multiply indices when finding the product of algebraic terms.

For Investigation: (i) Does the absence of a unit index result in a failure
to trigger the normal index operations?
(ii) What wculd those students, who did not insert the
index, h: ve done if the terms had indices attached?

(c) Finding the Quotient of Algebraic Terms
In this group, the Advanced, Intermediate and combined candidatures each
were represented by one item. A fraction bar was used to indicate division in
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the Advanced question. The base was a known constant and the index an
unknown. The other items wer> similar in structure to each other. They
used the conventional divisio1 sign and involved terms containing a
coefficient and an unknown base¢.

2£l+1

[1] 2nf1" = ? (1983 Adv. Course Question 8)
) 2-1 (26%) (B) 22 (22%) () 22n (17%) (D) 2n+1/n-1 (329

2] 12mB+am3 = 2 (1984 Int. Course Question 3)
(A) 3m3 (85%) (B) 3m2 12%) (C) 8m3 (3%) (D) 8m2 (0%)

[3] 8mb:2m2 = 2 (1981 Question 28)
(Aa) 6m* (5%) B) 6m3 1%) © am? (79%) (D) 4m3 (15%)

Despite being answered by the mr ost able candidature, Item [1] was by far the
most poorly done. Using the :raction bar to denote division may have
contributed to the error rate, especially when the popular distractor (D) is
considered. Working from the real meaning of index could yield nothing like
that answer. Students, having not seen the fraction bar as indicating
division, may have selected (D) on the basis of appearance.

Problems in working with the base as a number and the index as a
pronumeral could also have been a factor in Item [1]. This difficulty was
noted previously in questions requiring students to write expressions
involving repeated factors.

Students were very successful in Items [2] and [3]. This may reflect
frequent exposure to such quaestions in the classroom and through
textbooks. The items contained corresponding distractors which attracted
similar percentages of studeats. Students found little attraction to
subtracting coefficients. However, some students did divide, rather than
subtract, the indices.

For Investigation: (i) Do stud:nts have greater problems manipulating
expressions when the base is a number and the
index a pronumeral? (note the relationship of this
with (B).(a),(ii)).

(ii) What ur derstandings influence students to divide
indices when dividing algebraic terms?

(iii) What problems are posed by using a fraction bar to
denote division rather than a division sign?
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(d) Finding Powers of Algebraic Terms
There were five questions requiring students to raise to a power a term
which contained a coefficient and an unknown base with an integral index.

1 @ad3 = 2 (1983 Adv.Course Question 6)
A 6a (3%) B) 6a9 (%) (C) 8ab (24%) (D) 8a9 (67%)

2] 2x33 = 2 (1988 Int. Course Question 2)
(A) 6x3 (20%) (B) 6x8 ( 9%) (C) 853 (24%) (D) 8x8 (37%)

8] 432 = 2 (1987 Int. Course Question 6)
A) 4x° (17%) (B) 4x8 (21%) (C) 16x0 (22%) (D) 16x8 (40%)

[4] (2x3)2 = ? (1985 Int. Course Question 6)
(A) 4x° (27%) (B) 4x8 (50%) (C) 64x0 (14%) (D) 6:8 (8%)

5] @3m3S = ? (1982 Question 23)
() 27mb (43%) (B) 27m2 (17%) (C) 9mB (21%) (D) 9m® (19%)

The Advanced candidates experienced a relatively high level of success in
Item 1 and were noticeably more successful than Intermediate students in
this type of question. It is appcrent from the responses in [2], [4] and [5]
that many students are tempted to multiply both the index and the
coefficient by the power to whic1 the term is being raised. This means that
many students who answered [4] correctly may, in fact, have multiplied the
coefficient by the index of 2 rathzr than squared it.

The problem of students adding indices in such questions is clearly
evident. More than a third chose to do this in all but one of the above
questions. This is one of the errors explained by Shevarev in terms of his
first ‘incorrect connection’. It supports a positive response to the question of
whether errors students made ir the School Certificate are the same sorts of
errors as found in research elsew here.

The only item in which the available solutions allowed students to
leave the coefficient unchanged, was [3]. Brackets should have given a clear
signal to apply the index, in some fashion at least, to the coefficient. The
fact that 38% of candidates (responses (A) and (B)) chose not to, shows
clearly that the meaning given by students to parentheses does warrant
further investigation.

For Investigation: [i) When a term containing a coefficient and index is
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[ii)

raised tc a power, why do students often multiply

the power and the coefficient?

When a term containing a coefficient and index is
raised tc a power, why do students often add the
index and the power?

(iii) When available, is the option of not applying the

index to the coefficient attractive to students and, if

so, why?

(e) Simplifying Algebraic Fractions of Greater Complexity
There were eight questions in this section. These consisted of algebraic

fractions in which numerators ¢ nd denominators contained more than one

unknown base or required some simplification prior to dividing numerator

and denominator by a common factor. They came from across the range of

candidatures. Items [1] and [4] are the same question but for different

candidatures in the same year (1991).

6
) " a®b
[1]  Simplify 252

(2]

(3]

(4]

(5]

[6]

(7]

3
% 20%)
24
Simplify (n2)%
(A m3 (32%)
(ah?t
aZ
(A) at (10%)
abb
Simplify -5 2
3
A& G (23%)
6
Simplify (%)
(A) md (9%)
6a2 _
2ab = °

(A) 3ab (32%)

.aé_zsﬁ=?
2

(A) X° (46%)

2

4
(B % (€5%)

B) mt (12%)

B) ¢ (1%)

4
® G @3%)

(B) m8 (35%)
® L 62

B) 8  39%)
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(©

(®)

(€

(®)

(€

©

(1991 Adv.Course Question 32)

S b (5%) D) at b (9%)

(1990 Adv. Course Question 6)

ml6 (49%) (D) ml8 (8%)

(1988 Adv. Course Question 2)

a8 (24%) D) al4 (45%)

(1991 Int.Course Question 36)

a3 b (16%) D) b (17%)

(1990 Int.Course Question 10)

m8  (39%) D) m9 (17%)

(1986 Int. Course Question 7)

6b (3% D F 6%

)

(1983 Int. Course Question 8)

x12 (14%) (D) x22 (1%)
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(8] @2 - ? (1982 Question 36)
b 58
(a) b* (9%) (B) b5 (15%) C) 5 (23%) D) -7 (63%)

These questions were poorly answered across the range of candidatures. A
major source of error was dividi1g the indices. Responses [1] (4), [2] (A), [3]
(C), [4] (A), [5] (B) and [7] (A) iadicate that many students who correctly
raise a term to a power, or successfully multiply two terms, are attracted to
carrying out a division of indices, if the division is stated using a fraction
bar. Other distractors show, as may be expected, many students making
initial errors in simplifying the numerator or denominator also continue on
to divide indices. It is again evident that School Certificate students are
making errors of a type identified by other researchers.

While question [6] was relatively well done, it could be that students
have used an elimination process to narrow answers down to the first two
options. Coefficients do not seen: to have caused significant problems.

There is again some evilence in [3] (responses (A) and (B)) that
students confuse raising to a power with multiplying terms in that they
have added the indices.

In the common question of 1991, Items [1] and [4], the order in which
the distractors attracted students was the same, though the Advanced
students were noticeably more siiccessful. The tendency to divide indices has
been noted previously. Howevel, it is surprising that, in distractor (A) the
students who have divided ind ces for base a, have, in effect, subtracted
indices for base b. This probably relates to the issue of students treating an
unwritten unit index differently to a written index,

Again, in Item [1], it is somewhat surprising that 15% of this able
candidature chose distractors (1) or (B) in which the factor b appeared in
the numerator. Application of tt e basic concept of a fraction would seem to
preclude such a response.

For Investigation: (i) What problems are posed by using a fraction bar to
denote d vision rather than a division sign?
(ii) Do students confuse raising to a power with finding
the prodict of two terms with the same base?

(f) Taking the Square Root of an Algebraic Term
This operation was only exariined once. The question came from an
Advanced paper.
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(1] 16x16 = 2 (1986 Adv.Course Question 1)
Aa) 44 (59%) (B) 48 139%) C) 84 (1%) (D) 88 (1%)

Again the success rate of Advanced students was relatively low with 59%
choosing to take the square root of both the base and the index. This they
would not do if they were applying a meaningful understanding of indices. It
must be a great temptation to :ake the square root of any perfect square
that lies within a square root sign, especially when that solution is one of
the responses. It would be of ir terest to see the response to a question of

the form V 16x10. It would also be interesting to see what distractors the
examiners would use if they did set such a question.

For Investigation: (i) What relationship do students see existing between
a square root sign and the term to which it is being
applied?

(g) Simplifying Expressions Involving a Zero Index

Only two of the seven items came from Advanced papers. This was in
contrast with the questions invclving negative or fractional indices of which
all were from Advanced papers.

[1] 2d0 +al= 2 (1986 Adv.Course Question 17)
1 1 1

(A) 4 (6%) B) 2+ 5 (68% (O 1+ 45 (20%) (D)2-a (5%)

2] 2-30 = 2 (1983 Adv.Course Question 2)
A) -1 (72%) B) 0 (293 (C) 1 (18%) (D) 2 (8%)

[3] Simplify 2a0p0 (1991 Int.Course Question 17)
A) O (8%) B) 1 (12%) (C) 2 (43%) (D) 2ab (38%)

[4] The expression 710 is equivalent to: (1990 Int. Course Question 31)
(A) 0 (11%) (B) 1 (24%) (C) 7 (35%) (D) 7k  (30%)

[5] (3,60 + 2yo = ? (1987 Int.Course Question 17)
A 0 (26%) (B) 2 (34%) (C) 3 (14%) (D) 5 (27%)

6] l+x+x0 = ? (1986 Int.Course Questiorn 28)

(A) 1+ x (24%) B) 1+2x (30%) ((C) 2+x (41%) (D) 3 (4%)
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(71 3a0 = ? (1985 Int.Course Question 19)
(A) 3a (25%) (B) 0 (1t%) (C) 1 (35%) (D) 3 (25%)

Answers selected by the great mijority of students indicate they are aware a
zero index, in some way, gener:ites a result of 1. Despite this, the correct
answer in [5] was the least popwular option. This exemplifies the fact that
many students fail to see the relzvance of brackets. In this question, 61% of
candidates treated the two ternis as being identical in structure by either
applying the index to both the base and the coefficient (response (B)) or to
the base only (response (D)).

One alternative, to interpreting a zero index as generating an answer
of 1, was simply to rewrite the term without the index. That choice was
available in Intermediate questions only (see ([3] (D), [4] (D), [6] (B) and [7]
(A)). This option of ignoring the iadex, or consider it as having no effect, was
chosen, in each instance, by at 1:ast 25% of candidates,

Another alternative, available ini all questions, was to treat the zero
index as giving an answer of zero. Only a small proportion of students were
attracted to this, except in tem [5] where more than a quarter of
Intermediate students selected (3). This question had two terms with a zero
index, one of which involved p:rentheses. It may be that students felt an
answer of zero was a way of dealing consistently with the two terms.

The Advanced students had a relatively high degree of success with
their two questions. Their errors; came, almost exclusively, from incorrectly
applying the index to the coefficient. This problem of applying the index to
both the base and the coefficient, and arriving at an answer of 1, accounts
for a high proportion of errors throughout the questions (see responses [1]
(C), [2] (C), (3] (B), [4] (B), [5] (B) and [7] (C)).

For Investigation: (i) What meaning do students attach to the zero index?
(ii) What do students see as the significance of
brackets"

(D) Substitution and Evaluation
There were no sub-categories in this section. Three of the four questions
came from Intermediate papers and each required the substitution of a

negative number. The fourth was from a combined candidature paper and
involved the substitution of posi:ive values for two unknowns.
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[1] When x=-1, 3x2-x= ? (1988 Int.Course Question 15)

(A) 2 (13%) (B) 4 (4S%) (C) 8 (14%) (D) 10 (23%)

[2] Whenx=-3, x2+5x=? (1986 Int.Course Question 21)
(A) -24 (8%) (B) -6 (73%) (C) 6 (6%) (D) 24 (9%)

8] Ifa=-3 then 4a2= ? (1984 Int.Course Question 23)
(A) -36 (6%) (B) 36 (E9%) (C) -144 (8%) (D) 144 (27%)

[4] Ifa=2.t=6then % at? =2 (1982 Question 18)
A 72 (12%) (B) 36 (i5%) (C) 12 (8%) (D)9 (5%)

Responses to these questions st.ow a relatively high success rate compared
to other types. One reason might be that the act of substitution makes
students apply genuine understanding of the meaning of an index. Answers
to Items [1], [2] and [3] indicate that substituting a negative number does
not pose as great a problem as mr ight be expected.

It is evident that having tae option of applying the index to both the
base and the coefficient contributed to the lower success rate in Items [1]
and [3] (see responses [1] (C) and (D), [3] (D)). This has already been
mentioned as a major source of >rror in other situations.

For Investigation: (i) What relationships do students see existing between
an index and numbers or pronumerals preceding it?
(E) Ctange of Subject.

There were only two questions in this group. Both came from Advanced
papers.

1
[1] Given that s = 5 at® thena= ? (1988 Adv.Course Question 14)
2 2 2¢
(A) 5= (18%) ® % @ Oy @29 (D) —\[t—s (15%)
[2] IfVA=n then2A="? (1987 Adv.Course Question 48)
(A) 2vn (21%) (B) V2n (13%) (C) 2n2 (59%) (D) 4n2 (7%)

The complexity of these items is probably responsible for the way in which
student support is spread widelrr across the range of distractors. The results



indicate an uncertainty between the relationship of indices to the
operations of squaring and takirg the square root. This is the same concern
as raised in (A) part (¢).

For Investigation: (i) What relationship do students see existing between
a root or power and the term to which it applies?

(F) Sc ientific Notation

(a) Writing a Decimal Number in Scientific Notation

There were five items in this section. Questions in this section were
structured with the decimal point correctly placed behind the first
significant figure. This meant that students were only required to determine
the index to attach to the 10. Scientific notation has not been examined in
the Advanced papers under consideration and that candidature is not
represented in this, or the following two, sub-categories.

[1] Write in scientific notation, -0.23 (1990 Int.Course Question 42)
(A) -2.3x10-1 (39%) (B) -2.3x1)1 (28%) (C) 2.3x10"1 (28%) (D) 2.3x10! (5%)

[2] In scientific notation 0.00085:. = ? (1988 Int. Course Question 5)
(A)8.52x103 (8%) (B)8.52x1)% (19%) (C)8.52x1073 (13%) (D)8.52x10™4 (60%)

[3] 0.00057 = 5.7x10™, The value >f nis: (1987 Int.Course Question 22)
(A) 4 (25%) (B) 3 (10%) (C) -3 (13%) (D) -4 (51%)
[4] 0.0002 = ? (1985 Int. Course Question 9)

(A) 2x104 (56%) (B) 2x10° (17%) (C) 2x103 (19%) (D) 2x103 (7%)

[5] 17 000 000 = 1.70x10™, n=7 (1983 Int. Course Question 1)
(A) 5 (11%) (B) 6 (17 %) (C) 7 (68%) (D) 8 (4%)

Two formats were used in posing these questions: one where the possible
answers were written in scientitic notation; and, another where the correct
index needed to be selected.

Apart from the format of (3], Items [2], [3] and [4] were very similar,
with each containing a negative power of 10. An examination of the
responses to these questions s1ows the different format had no apparent
influence. In these items, errors were divided relatively equally between
those giving the index an incorrect direction and those where the value
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assigned to the index was obtainzd by counting the number of zeros.

Item [1] involved a negative number and a negative index. It was the
least well answered of the questions. All three distractors that contained a
negative sign proved attractive tc students

In Item [5] the direction sign of the index was not an issue and results
did improve. However, 32% is s:ll a large proportion of students giving an
incorrect response to a very straight-forward question.

For Investigation: (i) Are strategies used in establishing the index of the
10 relate1 to a genuine understanding of an index?

(b) Converting a Number in Sci:ntific Notation to a Decimal
There were two questions which required students to convert a number
presented in scientific notation t> a decimal number.

[1] 1.2x10% = ? (1984 Int. Course Question 2)
(A) 48 (3%) (B) 12 00C (86%) (C) 20736 (1%) (D) 120000 (10%)

2] 12x102 = ? (1982 Question 13)
(A) 120 (22%) (B) 0.014 1 (6%) (C) 0.0012 (16%) (D) 0.012 (56%)

Students had considerably more¢ success in Item [1] than in Item [2] where
the index was negative. This hac also occurred, though not as noticeably, in
the previous section. The larger difference here may relate to Item [1] being
more readily answered using a calculator than is Item [5] from the previous
category (students have had access to calculators in the School Certificate
Moderator examination from 19¢.3).

In Item [2], students coulc choose to apply the index to both the base
and coefficient in distractor (B). This option, despite being a significant
source of error elsewhere, did r ot prove attractive to students. That it did
not, may relate to the coefficment and base both being numerical and
separated by a multiplication sign.

For Investigation: (i) Are strategies used in establishing the index of the
10 related to a genuine understanding of an index?

(c) Written Problems Involving Scientific Notation
The two questions in this section came from Intermediate papers of
successive years.
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[1] The budget deficit is $3800 mi lion. The number 3800 million expressed in scientific
notation is: (1986 Int.Course Question 18)

(A) 3.8x103 (36%) (B) 3.8x1(8 (15%) (C) 3.8x108 (17%) (D) 3.8x109 (32%)

[2] Radio waves travel at 3 x 10¢ metres each second. How many kilometres will
they travel each second ? (1985 Int.Course Question 22)
(A) 3x102 (36%)  (B) 3x106 (23%)  (C) 3x1910 (17%) (D)3x1011 (23%)

The fact that these questions are framed largely in words adds an extra
dimension of complexity to them. It appears that this, coupled with the
'sameness’ of the distractors, has contributed to students’ indecision and to
a lack of any particular pattern ia responses. There is some evidence that, in
grappling with Item [1], students. have avoided complexity by focusing on an
obvious number, either ‘3800’ or the ‘million’, and used that number to
determine the index.

It seems unusual for examiners to have included distractor (C) for
Item [2], in that it contained 19 as the base. The fact that it attracted 17%
of candidates gives further indication that students found this a complex
question.

For Investigation: (i) To what 2xtent does the complexity of an item cause
students to focus on one aspect of a question
involving indices and, in so doing, miss other
relevant points.

IDENTIFICATION OF RESEARCH THEMES

This analysis of the School Certificate data has generated thirty-one
questions under the heading of ‘For Investigation’. A number of these are
common to several of the content areas, and so the number of different
questions totals twenty-two. Ttis large number is a function of the many
errors being made.

As indicated before, simply identifying and examining more individual
errors does little to assist us understand students’ thinking when answering
these questions. What is needec is a limited number of issues which can be
examined in detail and which, if they can be explained, will provide insight
into the thought processes applizd in working with indices.

An examination of the twenty-two questions arising in this chapter
shows there are a number of themes which run through them and within

65



which questions can be grouped. The School Certificate results confirmed
the problems students have when multiplying and dividing expressions with
numerical bases, as opposed to variable bases. It also confirmed students’
confusion over the relationship of the index to the base and coefficients.
These two issues were also raised by the literature review and are the first
two themes listed for research. The other themes are concerned with several
specific aspects which seem to pose problems to students when working with
indices, namely, students’ interjretation of the fraction bar, interpretation
of the radical sign and interpret:tion of the zero index.

The themes are outlined helow and are worthy of being the basis for
research. The references given ir brackets, at the end of each theme, refer to
related questions identified as *“or Investigation’ in each subsection of the
data analysis in Chapter 3.

Theme 1: Integral Bases Versus Variable Bases

DeVincenzo and Childers both identified the strong tendency for students to
multiply and divide bases in qu estions where these bases were numerical
(e.g., 34x32, 34+:32, 23x39). Sinilar questions with variable bases (e.g.,
aSxa?) pose few problems. The S:hool Certificate data strongly support these
results. What is the thinking the t makes such a high proportion of students
multiply and divide numerical be ses?

{(4) (&) (iD); (A) (b) @); B) () (ii); (C) (o) () }

Theme 2: The Relationship of Indices to Bases and Coefficients

The errors listed by DeVincenzc and Childers (Childers 1987, pp.184-207)
include a high proportion wher: the index has been applied incorrectly to
coefficients and bases. Errors included: multiplying bases by the index;
multiplying coefficients by the index; and, applying indices to bases and
coefficients to which they do not relate. Where an expression involving an
index is raised to a power, the 1wo indices are often added, not multiplied.
Many of the errors are associated with the treatment of the expression 3ab?
as though it were (3ab)2 and vice versa. The School Certificate analysis
confirmed the frequency of such errors. In 1985, 61% of the Advanced
students applied the index to the coefficient and gave the answer of 2x3 for
1/2x3 while only 19% gave th: correct answer of é—x‘3. Why is it that
students misunderstand such bisic conventions of notation?

{4 (@) @; (A) () () (A) (c) (); B) (@) @); (B) (a) (i); (B) (b) (O); (B) (c) (): (B)
(c) (ii); (C) (a) (): (C) (b) (ii); (C) (d) (1): (C) (d) (iD); (C) () (iii); (C) (e) (ii); (C)
(@ (); (D) @:(E) (1)}
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Theme 3: Interpretation of the Fraction Bar

The tendency for students to livide indices when simplifying algebraic
fractions (e.g., al9/a2? = ad) has received mention by Shevarev and also in
the 1981 National Assessmeni of Educational Progress Report. A high
incidence of this error appears in Childers data and in the results of the
School Certificate analysis. What is the thinking behind students dividing
indices? Is it concerned with th: fraction bar, or would students make the
same error when the question is written as a division?

{ (C) (c) (iid); (C) (e) () }

Theme 4: Interpretation of the Radical Sign

In 1981, the National Assessmeint of Educational Progress Report found that
for the question Va36 only 26% of students obtained the correct answer of
al8 while 47% chose the answar of af, by taking the square root of the
exponent (Corbitt 1981, p.65). In 1989 the NAEP found that, in open ended
questions, only one in four s:udents with two years of algebra could
correctly answer Vx12 (Lindquist 1989, p.60). In the 1986 School Certificate
Moderator examination for tte Advanced Course 59% of candidates
responded with 4x% for the simp ification of V 16x16 while only 39% gave the
correct answer of 4x8. Why are ;students responding this way, and how will
they answer questions where the index is not a perfect square (e.g., V25x3)?

{(A) (@ @; (C) O @; (E) 4}

Theme 5: Interpretation of the Zero Index
The zero index has received little attention from researchers but the School
Certificate analysis shows the sticcess rate in such questions is not high. In
1985 only 35% of Intermediate candidates could correctly answer 3a0 = ?. In
1987, for that same course, cnly 14% correctly simplified (3x)0 + 2y0.
Incorrect thinking commonly manifests itself in answers which treat the
index of zero as giving an answer of zero (e.g., a0 = 0) or as having no effect
(e.g., a® = a). While the issue o’ the zero index is a relatively specific one,
the difficulties students exhibit do demand that it be addressed. It may be
that insights, gained here, relate also to Theme 2, above.

{ (&) (d) (); (C) ) (); (C) (g) ()}

The first of the research issues, raised from the literature in Chapter
2, asked whether data gathered from the N.S.W. School Certificate
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Moderator examination indicat: that students from within Australia are
making the same sorts of errors identified by the research carried out in
other countries. Given the Schcol Certificate findings, as discussed above,
the answer to this question is aa emphatic yes. This is reflected in the five
research themes, generated fromr eighteen of the twenty-two questions listed
for further investigation in this chapter. It can be seen that these themes
closely relate to the broad categories of errors described in the research
discussed in Chapter 2. Given that the same sorts of errors are identified, it
would seem that Australian stuidents, as would be expected, use similar
thinking in index questions to that used by students elsewhere.

CONCLUSION

The high error rate for index questions in the School Certificate Moderator
examination does give cause for concern. This is especially so if we regard
the ability to operate with ind ces as a basic skill expected of students
pursuing higher levels of mathematics. This research needs to determine
whether students in the senior s;econdary years of schooling face the same
problems as those in Year 10. Another concern is that the School Certificate
items may not be testing genuine understanding of indices but testing
strategies which students have developed personally while answering drill
type questions.

Despite the research whi:h has been carried out, there is no clear
vision of how students think wl en answering index questions. The work of
DeVincenzo and Childers throws little light on this issue. Wilson found the
subjects of his study relied exter sively on instrumental understanding when
answering index questions. As ciscussed in the previous chapter, Shevarev
used students’ written responses to provide strong evidence for the wide
spread use of ‘connections’ when answering index questions. He did not
attempt to substantiate these a ‘guments with data from interviews. It may
be that student interviews would support his findings but they could point
also to quite different forms of thinking by students.

In seeking a better unde -standing of students’ strategies, research
should employ both written responses and interviews. Testing allows the
identification of students makir g systematic errors. Students need then to
be interviewed with the aim of ascertaining the understandings they have of
indices and the thought processes which have led to their answers.

It would be of great bencfit for teachers if a theoretical framework
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could be provided which explaiiis the thinking behind students’ errors in
index work. Such a theoretical context would give teachers guidance in
determining appropriate programming and lesson strategies directed at
improving students’ learning of index concepts. The next chapter considers a
number of theories which may provide such a theoretical framework.
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